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Introduction

Graph: G=(V, E), N=|V|

: adjacency matrix, 

: degree matrix, 

: Laplacian matrix (graph Laplacian), L = D - A
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Introduction

Discrete Fourier Transform: 

How to connect them?
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Graph Signal

Signals on graphs(vertex domain signals):

[ (0),  (1),  ...,  ( 1)]Tx x x Nx



Graph Signal

Several common signals can be transformed into graph signals

(1) time series

(2) digital image

(3) weather stations



Graph Shift with A

A graph shift is the movement of the signal sample from the vertex n along all walks, with the length 

equal to one.

x 1x xA



Graph Shift with A

Considering a graph shift on a directed circular graph, it is like signals shifted by 1 in traditional DSP

x 1x xA



Graph Shift with A

In general, a graph signal shifted by m is obtained as a  shift by 1 of the graph signal shifted by m-1:

1x x xm

m mA A



Graph Shift with L

:     # of neighbors*signal on it– sum of signals over its neighbors

= Sum of signal differences between neighbors

=

● For node 0, x1(0) = 2*4-2-4 = 1*4-2+1*4-4

● In practice, we often use L or normalized L for graph shift for better mathematical properties than 
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Graph Filter

The output signal from a system on a graph can be written as

H(L): graph filter, a matrix polynomial of L
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Graph Fourier Transform

Spectral decomposition of L: L = UΛU-1

U: columns are eigenvectors of L

Λ: diagonal matrix, diagonal entries are eigenvalues of L
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Graph Fourier Transform

Multiplied by U-1 =>

U-1 : graph fourier transform(GFT) matrix

: spectral domain graph signals

: filter in spectral domain

1 1y ( ) xHU Λ U

( )H Λ

Y= ( )XH Λ

X, Y

GFT: X = U-1x

Inverse GFT: x = UX



Graph Fourier Transform

=> GFT is a projection on the eigenspace of the graph shift operator
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Comparison with DFT

● GFT ● DFT
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Example of GFT
-0.5 0.4082 0.7071 0.2887
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Frequency of graph signals

● frequency↑ ⇨ signal variation↑

● Graph shift with L (weighted): 1 ,( ) ( ) ( ( ) ( ))i j
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Frequency of graph signals

● Consider eigenvector ul => 

● λl↑ ⇨ frequency of ul↑

● Inner product with ul↑ ⇨ X(l)↑

● If X(l) of the signal is large, it contains a lot of component ul

Similar to DSP, signal values in spectral domain reflects frequency components of the signal
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Example of GFT
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Colorization

luminance image y chrominance image u

representative 

pixels (RPs) x

u Cx

Colorization Colorization-based 

image coding

Colorization-based image 

coding using GFT 



Colorization Based Coding

● C = (I - B)-1

● Colorization-based image coding

● Recovering error

u*:   original chrominance image

x:     RP vector 

Cx: recovered chrominance image
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Colorization Based Coding Using GFT

● Graph construction of p RPs

● : distance between RPs(vertices)

● : difference of the luminance values between vertices
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Colorization Based Coding Using GFT



Colorization Based Coding Using GFT

𝑢 = 𝐶𝑥 = መ𝐶𝑓

𝑓 = 𝑉𝑠 ≈ ෠𝑉 Ƹ𝑠
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Recovering error:

Ƹ𝑠 = (𝐶𝑝
𝑇𝐶𝑝)

−1𝐶𝑝
𝑇𝑢∗

2

2min || * ||p
s

u C s

P cV

,  P MN Pf C

cs



Colorization Based Coding Using GFT

● Algorithm

MNucs* MNu 



Colorization Based Coding Using GFT

● PSNR ● SSIM



Graph Convolutional Network

● Graph neural network (GNN)=> deep learning on graph-structured data
○ Spatial-based GNN

○ Spectral-based GNN->GCN

● Convolutions on 2D signals (images)=>CNN

● How to define convolutions on graph signals?



Convolutions on graphs

● Convolution theorem:

● Spectral domain multiplication vertex domain convolution
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Convolutions on graphs

Tk: Chebyshev polynomials (avoid direct computation of L)
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Graph Convolutional Network
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renormalization trick: avoid 

gradient vanishing/exploding



Graph Convolutional Network

1 GCN layer:

=>correspond to 1 convolutional layer in CNN

1 1
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nonlinear 
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Results

● Model: 2-layer GCN
(0) (1)( ,  ) softmax(  ReLU( ) )Z f X A A AXW W
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Conclusion

● GFT is a graph signal analysis approach. Like DFT in DSP, it can reflect frequencies by observing 

signals in the spectral domain.

● Colorization based coding is an idea of image coding, which utilizes colorization technique. 

Colorization based coding using GFT  constructs a graph of representative pixels of an image and 

applies GFT to use values of spectrum for encoding.

● GCN is a type of graph neural network (GNN), it is based on spectral graph theory and models 

convolutions in the vertex domain as multiplications in the spectral domain.
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