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Abstract 
 

The objective of pattern recognition is to assign an object to one of several 
predefined categories. The methods to solve the problems in pattern recognition field 
can be roughly divided into two parts. One is the decision-theoretic method dealing 
with the pattern which is represented as quantitative values. The other is structural 
method dealing with the pattern constructed by using its structural relations rather 
than numerical values. In this paper, we discuss four basic models for pattern 
recognition, that is, template matching, statistical, neural networks, and syntactic 
approach. Then we introduce eigenspace-based face recognition in the final section. 
 
1 Introduction  
 

Human can easily recognize things based on the past learning experiences. For 
examples, recognizing a people’s nation from what kinds of languages he speaks, 
recognizing a friend by looking his face, recognizing a specific area in a map, etc. 
After computer are created and has been widely used all over the world, we human 
seek to find a way that best mimics human’s recognition system for computers. 
Applications related to pattern recognition has been developed such as face 
recognition, handwriting recognition, iris recognition, language recognition, etc. Even 
though different applications are designed for different purposes, the main block 
diagram of different applications is the same. Fig.1 shows a typical diagram of a 
pattern recognition system. 

The block diagram shown in Fig.1 can be viewed as two parts. One is 
classification phase which is in the left hand side of Fig.1. The other is training phase 
shown in the right hand side of Fig.1. The goal of training phase is to learn the 
structure of classifier via training data. Usually we can improve the system 
performance by refining classifier from different training data. 
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Fig.1 Process diagram of a pattern recognition system 

 
 After the classifier is defined, we can assign an unknown pattern to one of 
several predefined categories, which is the objective of classification phase. 

In this paper, we briefly introduce four kinds of recognition models, which is 
shown in Table 1. The four models can roughly divided into two parts based on the 
difference between input’s properties. One is the decision-theoretic method dealing 
with the pattern which is represented as quantitative values. The other is structural 
method dealing with the pattern constructed by using its structural relations rather 
than numerical values. Only the syntactic model employs structural method. Besides 
the four models, we also present a briefly introduction of face recognition in the 
section 6, which is one of the most user-friendly application among all pattern 
recognition applications. 

Table 1: Pattern recognition models 
Approach Representation Recognition 

function 
Typical criterion 

Template 
matching 

Samples,pixels,curves Correlation,distance 
measure 

Classification 
error 

Statistical Features Discriminant 
function 

Classification 
Error 

Neural network Samples,pixels,features Network function Acceptance error 
Syntactic or 
structure 

Primitives Rules,grammar Mean square error
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2 Two Dimensional Matched Filter 
 
 Matched filter is widely used for degrading the noise effect on our desired 
pattern and comparing the similarity of two objects. In the context of image 
processing, it is used for template matching to find the best location between 
reference image and template, or finding the correlation measure between two images. 
Given reference image I(m, n) and template H(m, n), where m and n are the row and 
column indices respectively, the basic form of 2-dimensional matched filter output is 
 

Y(m, n) = I(m, n)∗H*(-m, -n)                    (2-1) 
 

, where ∗  represents discrete two dimensional convolution. Because Eq. (2-1) 
without normalization process results in the nondistinctive phenomenon, the 
normalized discrete 2D matched filter is required. It has the form 
 

Y(m, n) = 
( , ) *( , )

m1 n1
2 2

m1 n1 m1 n1

I m m1 n n1 H m1 n1

| H(m1,n1)| | I(m+ m1,n+n1)|

+ +∑∑

∑∑ ∑∑
       (2-2) 

.Eq. (2-2) can also be viewed as 2D normalized cross correlation function between 
I(m, n) and H(m, n). 
 There is an example for template matching between binary image I and binary 
template image H. We want to find the location of the panda’s left eye shown in Fig. 
2-2 from the panda shown in Fig. 2-1. The distinctive effect shown in Fig. 2-3.The 
lightest point in Fig. 2-4 which is the peak value of Y reveals the location of the 
panda’s eye. It also confirms the presence of Fig. 2-2 in Fig. 2-1. 
 

           

Fig. 2-1 Input image I           Fig. 2-2 Template image H 
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      Fig. 2-3 Output without normalization Fig.2-4 Output with normalization 

The drawbacks of template matching are (1) the poor discriminative ability on 
template shape, (2) an enormous number of templates must often be test matched 
against an image field to account for changes in rotation and magnification of 
template objects. For this reason, template matching is usually limited to smaller local 
features, which are more invariant to size and shape variations of an object. 
 
3 Image Registration 
 
 Image registration is a common issue in image processing applications because 
images should be aligned correctly so that making systems have better performance. 
It is necessary to spatially register the images, and thereby, to correct for relative 
translation shifts, rotational differences, scale differences and even perspective view 
difference. However, we need to detect the misregistration parameters before further 
alignment process between two images. In the rest of this section, we only focus on 
how to detect the misregistration parameters rather than alignment process. 
 Among all kinds of misregistration such as rotational, and scale differences, 
translational differences is the central problem because the methods employed in 
detecting translational parameters can be extended to other problems. The classical 
technique for detecting translational parameters is normalized correlation function 
which is identical to normalized 2D matched filter. The peak value of normalized 
correlation function’s output is the translational offset coordinates between the input 
image pairs.  

Instead of finding the translational parameters via spatial domain, we can 
indirectly obtain the parameters via frequency domain which is called Phase 
Correlation Method. Given two images F1(x, y), and F2(x, y) = F1(x−x0, y−y0), where 
(x0 , y0) denotes an offset with respect to one another, the Fourier transform of the 
images are related by 

 

F2(wx, wy) = F1(wx, wy) exp{−i(wxx0 + wyy0)}            (3-1) 
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The exponential phase shift factor can be computed by the cross-power spectrum of 
the two images given by 
 

1 2
0 0

1 2

( , ) *( , )( , ) exp{ ( )}
| ( , ) ( , ) |

x y x y
x y x y

x y x y

w w w ww w i w x w y
w w w w

≡ =
F F

G
F F

+

0

         (3-2) 

 
Taking the inverse Fourier transform of Eq.3-2 yields the spatial offset 
 

0( , ) ( , )G x y x x y yδ= − −                    (3-3) 
 
in the space domain. Therefore, we can easily obtain offset parameters from Eq.3-3. 
 The phase correlation method for translational misregistration detection can be 
extended to scale and rotation misregistration detection. Consider a a pair of images in 
which a second image is translated by an offset and rotated by an angle with respect to 
the first image. Then 
 

2 1 0 0 0 0 0( , ) ( cos sin , sin cos )F x y F x y x x y 0yθ θ θ θ= + − − + −

0

      (3-4) 
 
Taking Fourier transform of both sides of Eq.3-4, one obtains the relationship 
 

2 1 0 0 0 0 0( , ) ( cos sin , sin cos )exp{ ( )}x y x y x y x yw w w w w w i w x w yθ θ θ θ= + − + − +F F  (3-5) 
 

The rotation component can be isolated by taking magnitudes M1(wx, wy) and M2(wx, 

wy) of both sides of Eq.3-1. By representing the frequency variables in polar form, 
 

2 1( , ) ( , )0ρ θ ρ θ θ= −M M                    (3-6) 
 
the phase correlation method can be used to determine the rotation angle 0θ . 
 If a second image is a size-scaled version of a first image with scale factors (a, b) 
such that F2(x, y) = F1(ax, by) , then its Fourier transform is 
 

2 1
1( , ) ( , )

| |
x y

x y
w wF w w F

ab a b
=                   (3-7) 

 
By converting the frequency variables to a logarithmic scale, scaling can be converted 
to a translational movement. Then  
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2 1
1(log , log ) (log log , log log )

| |
x y x yw w w a w b

ab
= − −F F         (3-8) 

The phase correlation method can be applied to determine the unknown scale factors  
(a, b). 
 
4 Decision-Theoretic Methods 
  

Decision-theoretic approaches to recognition are based on the use of decision 
functions, di(x), 1≦i≦W , where W is the number of pattern classes and x = (x1, 
x2,…., xn) represents an n-dimensional pattern vector which each component in x 
represents different feature measurement. The pattern x is classified to wk if dk(x) 
generates the largest value among all di(x). 

The decision boundary dij(x) separating class wi from wj is given by values of x 
for which di(x) = dj(x) or, equivalently, by values of x for which 

 
dij(x) = di(x)−dj(x) = 0.                  (4-1) 

 
We can simply classify x to wi by checking sign(dij(x)) if all the boundary exists.  
 
4.1 Bayes Statistical Classifiers 
  
 Because of the randomness under which pattern classes normally are generated, a 
probabilistic approach to recognition is important. Bayes statistical classifier which is 
optimal in the sense that it minimizes the total average loss in misclassification 
provides a probabilistic model for recognition. It assigns an unknown pattern x to a 
class wi if  
 

ki k k qj q q

W W

k=1 q=1
L p(x / w )P(w )< L p(x / w )P(w )∑ ∑              (4.1-1) 

 
for all j ; j≠i ,where Lij is a misclassification loss function represented the pattern 
classifier decides that x came from wj, when it actually came from wi , p(x/wi) denotes 
the probability density function that a particular pattern x comes from class wi ,and 
P(wi) is the probability of occurrence of class wi . Given the misclassification loss 
function Lij is symmetrical function, Bayes classifier assigns an unknown pattern x to 
a class wi if  
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i i j jp(x / w)P(w)> p(x / w)P(w)                 (4.1-2) 

 
for j = 1,2,….,W; j ≠ i. Eq. 4.1-2 is the posterior probability decision rule. Also, the 
decision function for symmetrical loss function is of the form  
 

j j jd (x)= p(x / w)P(w)= P(w / x)j                (4.1-3) 
 
where a pattern vector x is assigned to the class whose decision function yields the 
largest numerical value. However, the probability density functions of the patterns in 
each class, as well as the probability of occurrence of each class, must be known. The 
latter requirement usually is not a problem. For instance, if all classes are equally 
likely to occur, then P(wj) = 1/M. Even if this condition is not true, these probabilities 
generally can be inferred from knowledge of the problem. Estimation of the 
probability density functions p(x/wj) is another matter. If the pattern vectors, x, are n 
dimensional, then p(x/wj) is a function of n variables, which, if its form is not known, 
requires methods from multivariate probability theory for its estimation. These 
methods are difficult to apply in practice, especially if the number of representative 
patterns from each class is not large or if the underlying form of the probability 
density functions is not well behaved. For these reasons, use of the Bayes classifier 
generally is based on the assumption of an analytic expression for the various density 
functions and then an estimation of the necessary parameters from sample patterns 
from each class. By far the most prevalent form assumed for p(x/wj) is the Gaussian 
probability density function. The closer this assumption is to reality, the closer the 
Bayes classifier approaches the minimum average loss in classification. 
 
4.2 Neural Networks 
  

The ideas of neural networks stem from the operation of human neural networks. 
It uses a multitude of elemental nonlinear computing elements ( called neurons ) 
organized as networks reminiscent of the way in which neurons are believed to he 
interconnected in the brain. In its most basic form, the perceptron learns a linear 
decision function that dichotomizes two linearly separable training sets. Figure 4.2-1 
shows schematically the perceptron model for two pattern classes, where wi is 
undetermined coefficient. By using appropriate training algorithms for different cases , 
wi can be obtained for each case respectively. In other words, the structure of neural 
networks is more flexible than Bayes classifier. 
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Fig.4.2-1 The two pattern classes model for neural networks 

 
4.2.1 Multilayer Feedforward Neural Networks 
 

 
Fig.4.2.1-1 The basic structure of multilayer feedforward neural networks 

 

 The basic structure of multilayer feedforward neural networks is shown in 
Fig.4.2.1-1.It recognizes a pattern vector x as belonging to class wi , if the ith output of 
the network is "high" while all other outputs are "low". Each neron has the same form 
as the perceptron model shown in Fig.4.2-1 except the activation function is 
differentiable function called sigmoid function. The sigmoid activation function has 
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the following form with layer K denote the layer preceding layer J, Ij is the input to 
the layer J, Ok is the output of layer K, and wjk denote the coefficients in the layer J, 
 

j j Nk
jk k j 0

k=1

-( w O + )/

1h (I )=

1+e
θ θ∑

                  (4.2.1-1) 

  
where  

k

j j

N

k=1
k kI = w O∑                     (4.2.1-2) 

 
,and  
 

Ok = hk(Ik)                      (4.2.1-3) 
 

In order to train the multilayer feedforward neural networks, we must solve the 
main problem in training a multilayer network, that is , adjusting the weights in the so 
called hidden layers. That is, in those other than the output layer. Therefore, we first 
adjust the coefficient of the output layer because the desired output of each node is 
known and the total coefficients can be obtained by a back propagation way. The 
training steps for multilayer feedforward neural network are summarized as follows. 

 
1. Initialization 

Assigning an arbitrary set of weights throughout the network (not equally). 
2. Iterative step 

a. Computing Oj for each node by using training vector, then generating the error 
terms for output δq, where (q q q q= (r - O )h ' I )qδ , rq is the desired response. 

    b. Backward passing appropriate error signal is passed to each node and the 
corresponding weight changes are made. 

 
In a successful training session, the network error decreases with the number of 

iterations and the procedure converges to a stable set of weights that exhibit only 
small fluctuations with additional training. After the system has been trained, it 
classifies patterns using the parameters established during the training phase. In 
normal operation, all feedback paths are disconnected. Then any input pattern is 
allowed to propagate through the various layers, and the pattern is classified as 
belonging to the class of the output node that was high, while all the others were low. 

The complexity of decision surfaces implemented by multilayer networks is 
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shown in Fig. 4.2.1-2. As in the third row of Fig.4.2.1-2 presents, the complexity of 
decision regions implemented by a three-layer network is, in principle, arbitrary. In 
practice, a serious difficulty usually arises in structuring the second layer to respond 
correctly to the various combinations associated with particular classes. The reason is 
that patterns of the same class may occur on both sides of lines in the pattern space. 
 

 
 

Fig. 4.2.1-2 Decision surfaces complexity implemented by multilayer networks 
 
5 Structural Methods  
 

Decision-theoretic methods deal with patterns quantitatively and largely ignore 
any structural relationships inherent in a pattern’s shape. In the contrast, structural 
methods uses the representatives of structural relationship as the input. In the 
following subsections, we introduce the syntactic recognition. 
 
5.2 Syntactic Recognition 
 

Syntactic recognition provides a unified methodology for handling structural 
recognition methods. The basic idea of syntactic recognition is similar to the language 
system of human. The recognizer of syntactic recognition called automaton receives 
L(G) as input which can be viewed as some kinds of language and decides whether it 
is valid or not. This concept is shown in Fig. 5.2-1. We introduce two different types 
of syntactic recognition respectively in the following two subsections. 
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Fig. 5.2-1 Conceptual diagram of syntactic recognition 

5.2.1 Syntactic Recognition for Strings 
 

The input to the automata are unknown sentences, Li(Gi),1≦i≦W,where W is 
the number of automaton(It can be view as the number of languages in use for the 
system). The grammar is defined as the 4-tuple 
 

G = (N, Σ, P, S)                    (5.2.1-1)   
  

Where 
  N is a finite set of variables called nonterminals, 
     Σ is a finite set of constants called terminals, 
  P is a set of rewriting rules called productions, and 
  S in N is called the starting symbol. 
It is required that N and Σ be disjoint sets. 
Also, the finite automaton is defined as the 5-tuple 
 

Af = (Q, Σ, δ, q0, F)                 (5.2.1-2) 
 

Where 
  Q is a finite, nonempty set of states, 
  Σ is a finite input alphabet, 
  δ is a mapping from Q×Σ into the collection of all subsets of Q, 
  q0 is the starting state, and 
  F is a set of final states.  
The conversion between regular grammar and corresponding automaton states as 
follow. 

Given G = (N, Σ, P, S),where X0≣S, and suppose that N is composed of X0 plus n 
additional nonterminals X1,X2,….,Xn.The set Q for the automaton is formed by 
introducing n + 2 states {q0,q1,….,qn,qn+1}such that qi corresponds to Xi for 0≦i≦n, 
and qn+1 is the final state. The set of input symbols is identical to the set of terminals 
in G. The mappings in δ are obtained by using the following two rules, for a in ∀
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Σ ,and each i and j ,with 0≦i≦n, 0≦j≦n, 
 
1.If Xi→aXj is in P, then δ( qi, a) contains qj. 
2.If Xi→a is in P, then δ( qi, a) contains qn+1. 
 
 For the case of known grammars in advance, we can learn automata directly 
from the corresponding grammar by using the above algorithm. Conversely, if the 
grammars are not known in advance, the syntactic recognition required specification 
of the appropriate automata for each class under consideration. Therefore, It is 
necessary to learn the automata from sample patterns(such as strings or trees).  
 
 Suppose that all patterns of a class are generated by an unknown grammar G and 
that a finite sets of samples R+ with the property 
 

R+ {v|v in L(G)}                     (5.2.1-3) ⊆

 
is available. For a positive integer k, we define the k tail of z with respect to R+ as the 
set h( z, R+, k), where 
 

h( z, R+, k) = {w| zw in R+ ,|w|≦k}.          (5.2.1-4)  
 

A procedure for learning an automaton Af(R+, k ) = (Q, Σ, δ, q0, F) consists of letting 
 

Q = {q|q = h( z, R+, k) for z in Σ*}            (5.2.1-5) 
 

and, for each a in Σ, 
 

δ( q, a) = {q’ in Q|q’ = h(za, R+, k), with q = h( z, R+, k)}.     (5.2.1-6) 
 

In addition, we let 
 

q0 = h( λ, R+, k)                     (5.2.1-7) 
 

and 
 

F = {q| q in Q, λ in q}                  (5.2.1-8) 
 

where λ is the empty string. Therefore, we can obtain Af(R+, k ) from the sample 
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patterns and a particular value of k. 
There are a relations between k and automaton’s performance , that is , the value 

of k controls the nature of the resulting automaton. Given the R+ is fixed , the 
following properties exemplify the dependence of Af(R+, k ) on k. 
 
Property 1. R+⊆  L[Af(R+, k )] for all k ≧0 ,where L[Af(R+, k )] is the language 
accepted by Af(R+, k ). 
Property 2. L[Af(R+, k )] = R+ if k is equal to ,or greater than, the length of the longest 
string in R+ ;L[Af(R+, k )] =Σ* if k=0. 
Property 3. L[Af(R+, k + 1 )]  L[Af(R+, k )]. ⊆

 
This three properties is graphically shown in Fig. 5.2.1-2. 
 

 
Fig. 5.2.1-2 Graphic relation between k and L[Af(R+, k + 1 )] 

 
5.2.2 Syntactic Recognition for trees 
 
 A tree grammar is defined as the 5-tuple 
 

G = ( N,Σ, P, r, S)                   (5.2.2-1) 
 

where, as before, N andΣ are sets of nonterminals and terminals, respectively; S, 
contained in N, is the start symbol, which in general can be a tree; P is a set of 
productions of the form Ti → Tj, where Ti and Tj are trees ;and r is a ranking function 
that denotes the number of direct descendants (offspring) of a node whose label is a 
terminal in the grammar. Of particular relevance to our discussion are expansive tree 
grammars having productions of the form 
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where X1, X2, . . . .,Xn are nonterminals and k is a terminal. 
 A tree automata begin simultaneously at each node on the frontier (the leaves 
taken in order from left to right) of an input tree and proceed along parallel paths 
toward the root. Specifically, a frontier-to-root automaton is defined as 
 

At = ( Q, F,{fk | k∈Σ})                  (5.2.2-2) 
 
where  
 
Q is a finite set of states, 
 
F, a subset of Q, is a set of final states, and 
 
fk is a relation in Qm×Q such that m is a rank of k. 
 
For an expansive tree grammar, G = ( N,Σ, P, r, S),we construct the corresponding 
tree automaton by letting Q = N, with F = {S} and, for each symbol a inΣ, defining a 
relation fk such that (X1, X2,…., Xm, X) is in fk if and only if there is in G a production 
 

. 

 
6 Face Recognition 
 
 Face recognition is one of the most user-friendly techniques among all pattern 
recognition applications such as iris, fingerprint, and retina, etc. The reason is 
evidence that we human recognize others by his face rather than his iris, fingerprint, 
or retina. As a result, face recognition has been developed to many applications. Table 
2 shows some applications of face recognition. 
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Table 2 : Some applications of face recognition 
Areas Specific Applications 

Immigration, National ID, Passports, Voter Registration 
Drivers’ Licenses, Entitlement Programs 

 
Biometrics 

Welfare Fraud 
Desktop Logon(Windows NT,Windows95) 

Application Security, Database Security, File Encryption 
Internet Security, Internet Access, Medical Records 

 
 

Information Security 
 Secure Trading Terminals 

Advanced Video Surveillance, CCTV Control 
Portal Control, Post-Event Analysis 

Law Enforcement 
And Surveillance 

Shoplifting and Security Tracking and Investigation 
Smart Cards Stored Value Security, User Authentication 

Access Control Facility Access, Vehicular Access 
 
However, the weakness of face recognition should be noted. Either iris, fingerprint, or 
retina recognition method performs high recognition accuracy compared with face 
recognition. Also, face recognition has two unsolved fatal problems, that is, 
illumination and pose varied problems. Consequently, we can only perform good face 
recognition system under some constrained circumstance.  
 Before considering the actual design problems of a face recognition system, 
realizing a face recognition of human deeply may give us a direction to solve the 
problems. We list the nineteen results that reveals the characteristics of human as 
below. 
 
Recognition as a function of available spatial resolution 
 

Result 1: Humans can recognize familiar faces in very low-resolution images. 
Result 2: The ability to tolerate degradations increases with familiarity. 
Result 3: High-frequency information by itself is insufficient for good face 

recognition performance. 
 

The nature of processing: Piecemeal versus holistic 
 

Result 4: Facial features are processed holistically. 
Result 5: Of the different facial features, eyebrows are among the most important 

for recognition. 
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Result 6: The important configural relationships appear to be independent across 
the width and height dimensions. 

 
The nature of cues used: Pigmentation, shape and motion 

 
Result 7: Face-shape appears to be encoded in a slightly caricatured manner. 
Result 8: Prolonged face viewing can lead to highlevel aftereffects, which 

suggest prototype-based encoding. 
Result 9: Pigmentation cues are at least as important as shape cues. 
Result 10:Color cues play a significant role, especially when shape cues are 

degraded. 
Result 11: Contrast polarity inversion dramatically impairs recognition 

performance, possibly due to compromised ability to use 
pigmentation cues. 

Result 12: Illumination changes influence generalization. 
Result 13: View-generalization appears to be mediated by temporal association. 
Result 14: Motion of faces appears to facilitate subsequent recognition. 
 

Developmental progression 
 

Result 15: The visual system starts with a rudimentary preference for face-like 
patterns. 

Result 16: The visual system progresses from a piecemeal to a holistic strategy 
over the first several years of life. 

 
Neural underpinnings 

 
Result 17: The human visual system appears to devote specialized neural 

resources for face perception. 
Result 18: Latency of responses to faces in inferotemporal (IT) cortex is about 

120 ms, suggesting a largely feedforward computation. 
Result 19: Facial identity and expression might be processed by separate 

systems. 
 

 A general statement of the face recognition can be formulated as follows: Given 
still or video images of a scene, identify or verify one or more persons in the scene 
using a stored database of faces. Additional information such as race, age, gender, 
facial expression and speech may be used in narrowing the search to get a higher 
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recognition performance. The problem involves in detecting faces from a cluttered 
scenes, extracting our desired features from the face regions, identification or 
verification. In identification problems, an unknown input face can be labeled as one 
of the existing face in database, whereas in verification problems, the recognition 
system reports back if the input face is in stored database. 
 In the following subsections, we focus our attention on still image-based face 
recognition, and a holistic approach to solve the problems. We introduce 
eigenspace-based approach to face recognition. 
 
6.1 Eigenspace-based approach 
 
 Face recognition is a high-dimensional pattern recognition problem. Even 
low-resolution face images generate huge dimensional feature spaces (20 000 
dimensions in the case of a 100×200 pixels face image). In addition to the problems 
of large computational complexity and memory storage, this high dimensionality 
makes very difficult to obtain statistical models of the input space using well-defined 
parametric models. Moreover, this last aspect is further stressed given the fact that 
only few samples for each class (1–3) are normally available for the system training. 
However, the intrinsic dimensionality of the face space is much lower than the 
dimensionality of the image space, since faces are similar in appearance and contain 
significant statistical regularities. This fact is the starting point of the use of 
eigenspace-based methods for reducing the dimensionality of the input face space. 
 
Standard Eigenspace-based face recognition 
 
 Standard Eigenspace-based face recognition is a PCA(Principal Component 
Analysis) method. The scheme is based on an information theory approach that 
decomposes face images into a small set of characteristic feature images called 
“eigenfaces.” These eigenfaces are just the eigenvectors of the distribution of face 
images within the entire image space. It consists a set of complete orthogonal basis. In 
the language of information theory, the method extract the relevant information in a 
face image, encode it as efficiently as possible, and compare one face encoding with a 
database of models encoded similarly. Recognition is performed by projecting new 
images to the subspace spanned by the eigenfaces and then classifying the face by 
comparing its position in face space with the positions of known individuals, which is 
also represented by projecting to eigenspace.  

Let training set of intensity face images be I1, I2, I3,…., IM, its corresponding 
vector form denoted as Г1, Г2, Г3,…., ГM  with each length is N. The average face of 
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the set is defined by   
 

1

1
n

M

nM =
Ψ= Γ∑                      (6.2-1) 

 
Each face differs from the average by the vector Φi = Гi−Ψ. An example of training 
set is shown in Fig. 6.2-1, with the average face shown in Fig.6.2-2. 

 

 

 

 
Fig. 6.2-1 A training set of face 

 

 
Fig.6.2-2 Mean face 

 
We seek a set of M orthonomal vectors, un, which best describes the distribution of the 
data. The k th vector, uk, is chosen such that 
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2

1

1 ( T
k k

M

n
u )n

M
λ

=
= Φ∑                     (6.2-2) 

 
is a maximum. The vectors u and scalars λ are the eigenvectors and eigenvalues, 
respectively, of the covariance matrix  
 

1

1 T
n n

M
T

n
C AA

M =
= Φ Φ =∑                 (6.2-3) 

 
where the matrix 1 2[ , ,...., ]MA = Φ Φ Φ . 

However, the matrix C is by ,and determining the  eigenvectors and 
eigenvalues is an intractable task for typical image sizes. Therefore, we use a indirect 
method to obtain the eigenvectors and eigenvalues. Consider the eigenvectors vi of 

 such that  

2N 2N 2N

TA A

T
i i iA Av vμ=                      (6.2-4) 

Premultiplying both sides by A, we have 

( ) (T
i i i )iAA Av C Av Avμ= =                 (6.2-5) 

from which we see that  are the eigenvectors of C, and iAv iμ are the eigenvectors 
of C. Following this analysis, we can simplify the eigenvalue computation from the 
order of the number of pixels in the images ( ) to the order of the number of images 
in the training set (M). In practice, training set of face images will be relatively small 
(

2N

2M N ), and the calculations become quite manageable. Fig.6.2-3 shows the 
corresponding eigenfaces of the training set shown in Fig.6.2-1. 

A new face image ( Г ) is transformed into its eigenface components ( projected 
into “eigenspace”) by a simple inner product, 

(T
k kw u )= Γ−Ψ                      (6.2-6) 

for k = 1,…., M’, where M’ is the number of most significant eigenvalue to 
sufficiently represent the set of face images. Selecting the number M’ to improve the 
dimensional reduction is recommendable to apply a given criterion for neglect the 
components with small projection variance. If we just ignore a number of components, 
the mean square error of the given representation is the sum of the eigenvalues not 
used in the representation. Therefore a good criterion would be to choose only M’ 
components, obtained by the Normalized Residual Mean Square Error  
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∑

∑
                   (6.2-7) 

 
Considering  M’ given by RMSE(M’) < 5% will be good for standard applications. 

The weights form a vector that describes the contribution 
resenting th enfaces as a 

basis for face images. The vector mat then be used in a standard pattern recognition 
algorithm to find which of a number of predefined face classes, if any, best describes 
the face. The simplest method for  
determining which face class provid

1 2 '[ , ,..., ]M
T w w wΩ =  

of each eigenface in rep e input face image, treating the eig

es the best description of an input image face is to 
find the face class k that minimizes the Euclidian distance. We need to compare two 
metrics to obtain the final decision. One is εk , where 

2 2( )kε = Ω −Ωk                     (6.2-8) 

measures the distance between input and the prototype weight of class k. 
The other is ε, where 

2 2( )fε = Φ −Φ                     (6.2-9) 

measures the distance between the image and the face space, where Φ = Γ−Ψ  and 
'M

1
f i iw uΦ =∑ . 

i=

Fig. 6.2-4 shows the geometric relationship between kε and ε, where p , and 

our possibilities for an input image and its pattern vector : 

ace class. 

ace class. 
he second case, an 

dard eigenspace-based methods uses PCA as projection approach ,Euclidean 
dista

[ ]k kΩ = Λ

p = {ui}.  

There are f
(1) Near face space and near a face class. 
(2) Near face space but not near a known f
(3) Distant from face space and near a face class. 
(4) Distant from face space and not near a known f

In the first case, an individual is recognized and identified. In t
unknown individual is present. The last two cases indicate that the image is not a face 
images. 

Stan
nce as metric function. However, there are other kinds of eigenspace-based 

approach which mostly differ from projection methods or metric functions. We 
introduce a so-called FLD projection method in the rest of the section. 
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         Fig. 6.2-3 eigenfaces 
                                 
 

 

Fig.6.2-4 Geometric relationship between kε and ε. 
 

LD eigenspace-based approach 

 FLD(Fisher Linear Discriminant) is another projection method that searches 
r th  pr

F
 
 
fo e ojection axes on which the face images of different classes are far from each 
other (similar to PCA), and at the same time where the images of a same class are 
close from each other. The advantage of FLD against PCA is that the information kept 
in the dimensional reduction is better for recognition purposes. Fig.6.2-5 shows the 
comparison between PCA and FLD. 
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Fig. 6.2-5 Comparison between PCA and FLD 

 In order to define the mathematical rst we define the 
 
 structure under FLD, fi

parameter ϒ(u) to be maximized on the successive projection axes as: 
 

( )( )
( )

b

w

s uu
s u

γ =                        (6.2-10) 

 
ith u represents any projection unitary vector in the image space, and sb(u) and sw(u) 

               (6.2-11) 

             (6.2-12) 

 
where m is the global mean vector, P(Ci) are the probabilities associated to each class 

              (6.2-13) 

w
given by: 
 

2

1
( )( ) ( ){( ) }b

NC

i

i

is u P C m m u
=

−=∑

2

1
( ) ( ) [{( ( ) ( )) } ]

NC

w i

i

s u P C E x i m i u
=

−=∑

Ci, NC is the number of class, m(i) are the average vectors of Ci, and x(i) are the 
vectors associated to Ci . sb(u) measures the separation between the individual class 
means respect to the global mean face, and sw(u) measures the separation between 
vectors of each class respect to their own class mean. Alternative we define the scatter 
matrices: 
 

1
( )( ( ) )( ( ) )

NC
T

b i

i

S P C m i m m i m
=

− −=∑
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1
( ) [( ( ) ( ))( ( ) ( )

NC

w i

i

S P C E x i m i x i m i
=

− −=∑ ) ]T            (6.2-14) 

 
then : 
 

( )
T

b

T
w

u S uu
u S u

γ =                       (6.2-15) 

 
Therefore, the solution for our problem is the solution of the generalized eigensystem: 

 
Then wk would be the fisherfaces and 

 
k k

b k wS u S uλ=                      (6.2-16) 

kλ  are the  
with each fisherface. 

 
ewed the main operation of four basic pattern recognition models 

ciples of eigenspace-based face recognition approach. We concluded these 
ur 

n space 
m

]  J.T.Tou,R.C.Gonzalez,”Pattern Recognition Principles”,Addison-Wesley 
g Company,1974. 

3-750. 

 successive ϒ parameters associated

 
7 Conclusions 
 
 We have revi
and the prin
fo models’ characteristics as follows, template matching is simple to implement but 
the template size must be small to decrease computational delay, statistical methods 
highly depends on the assumption of distribution, neural networks can adaptively 
refine the classifier and the decision surface in principle can be arbitrarily 
implemented, syntactic methods concerned structural sense to encode but additional 
process to define primitives are required. Different applications adopted different 
models, there was no prototype model adapted for all recognition problems.  
 In our future work, we would like to focus our attention on face recognition 
problems. Seeking to find a new way by using frequency domain rather tha
do ain, applying image compression method to face recognition, considering 
video-based face recognition problems, and adding color factor into face recognition 
problems where we only treated intensity face images in this paper. 
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