
丁建均 JianJiun Ding 國立台灣大學電信工程學研究所助理教授
實驗室： 明達531實驗室
研究領域： DigitalSignalProcessing
(especially for Fractional Fourier Transform DigitalImageProcessing Integer Transform and Fast Algorithm Number Theory Quaternion
授課：
聯絡方式： 電話: (02)33669652 辦公室：明達館 723室 電子郵件: djj@cc.ee.ntu.edu.tw , djj1@ms63.hinet.net
個人網頁：
著作： (A) Full Papers [1] S. C. Pei and J. J. Ding, “Closed form discrete fractional and affine Fourier transforms,” IEEE Trans. Signal Processing, vol. 48, no. 5, pp. 13381353, May 2000. [2] S. C. Pei and J. J. Ding, “The integer transforms analogous to discrete trigonometric transforms,” IEEE Trans. Signal Processing, vol. 48, no. 12, pp. 33453364, Dec. 2000. [3] S. C. Pei and J. J. Ding, “Simplified fractional Fourier transforms,” J. Opt. Soc. Am. A, vol. 17, no. 12, pp. 23552367, Dec. 2000. [4] S. C. Pei and J. J. Ding, “Twodimensional affine generalized fractional Fourier transform,” IEEE Trans. Signal Processing, vol. 49, no. 4, pp. 878897, Apr. 2001. [5] S. C. Pei and J. J. Ding, “Relations between the fractional operations and the Wigner distribution, ambiguity function,” IEEE Trans. Signal Processing, vol. 49, no. 8, pp. 16381655, Aug. 2001. [6] S. C. Pei, J. J. Ding, and J. H. Chang, “Efficient implementation of quaternion Fourier transform, convolution, and correlation by 2D complex FFT,” IEEE Trans. Signal Processing, vol. 49, no. 11, pp. 27832797, Nov. 2001. [7] S. C. Pei and J. J. Ding, “Fractional, canonical, and simplified fractional cosine, sine and Hartley transforms,” IEEE Trans. Signal Processing, vol. 50, no. 7, pp. 16111680, Jul. 2002. [8] S. C. Pei and J. J. Ding, “Eigenfunctions of linear canonical transform,” IEEE Trans. Signal Processing, vol. 50, no. 1, pp. 1126, Jan. 2002. [9] S. C. Pei and J. J. Ding, “Eigenfunctions of the offset Fourier, fractional Fourier, and linear canonical transforms,” J. Opt. Soc. Am. A, vol. 20, no. 3, pp. 522532, March 2003. [10] S. C. Pei, J. H. Chang, and J. J. Ding, “Commutative reduced biquaternions and their Fourier transform for signal and image processing,” IEEE Trans. Signal Processing, vol. 52, no. 7, pp. 20122031, July 2004. [11] S. C. Pei and J. J. Ding, “Generalized eigenvectors and fractionalization of offset DFTs and DCTs,” IEEE Trans. Signal Processing, vol. 52, no. 7, pp. 20322046, July 2004. [12] S. C. Pei and J. J. Ding, “Generalized prolate spheroidal wave functions for optical finite fractional Fourier and linear canonical transforms,” J. Opt. Soc. Am. A, vol. 22, no. 3, pp. 460474, March 2005. [13] S. C. Pei, W. L. Hsue, and J. J. Ding, “Discrete fractional Fourier transform based on new nearly tridiagonal commuting matrices,” accepted by IEEE Trans. Signal Processing. (B) Conference Papers [1] S. C. Pei, C. C. Tseng, M. H. Yeh, and J, J, Ding, "A new definition of continuous fractional Hartley transform'', 1998 IEEE Int'l Conference on Acoust. Speech, Signal Processing. Seattle, USA, pp.14851488., May 1998. [2] J. J. Ding and S. C. Pei, “2D affine generalized fractional Fourier transform,” ICASSP’99, vol. 6, pp. 31813184, 1999. [3] J. J. Ding and S. C. Pei, “Integer Fourier transform,” 一九九九民生電子研討會: 數位視訊及多媒體通訊, Oct. 1999. [4] S. C. Pei and J. J. Ding, “Integer discrete Fourier transform and its extension to integer trigonometric transforms,” ICASSP’00, vol. 5, pp. 513516, 2000. [5] S. C. Pei and J. J. Ding, “Eigenfunctions of the canonical transform and the selfimaging problems in optical system,” ICASSP’00, vol. 1, pp. 7376, 2000. [6] S. C. Pei, J. J. Ding, and J. H. Chang, “Color pattern recognition by quaternion correlation,” ICIP 2001, vol. 1, pp. 894897, 2001. [7] S. C. Pei and J. J. Ding, “Fractional, canonical, and simplified fractional cosine transforms,” ICASSP’01, vol. 6, pp. 35453548, 2001. [8] S. C. Pei and J. J. Ding, “Saving the bandwidth in the fractional domain by generalized Hilbert transform pair relation,” ISCAS 2003, vol. 4, pp. 8992, May 2003. [9] S. C. Pei and J. J. Ding, “The generalized radial Hilbert transform and its applications to 2D edge detection (any direction or specified directions),” ICASSP 2003, vol. 3, pp. 357360, Apr. 2003. [10] S. C. Pei, C. L. Wu, and J. J. Ding, “Simplified structures for twodimensional adaptive notch filters,” ISCAS 2003, vol. 4, pp. 416419, May 2003. [11] S. C. Pei, J. H. Chang, and J. J. Ding, “Quaternion matrix singular value decomposition and its applications for color image processing,” International Conference on Image Processing 2003, vol. 1, pp. 805808, Sep. 2003. [12] 貝蘇章, 丁建均, “相位金匙及影像的編碼、轉換、加密解密,” 國防工業訓儲制度九十二年度研發成果發表展, 2003. [13] S. C. Pei, J. H. Chang, and J. J. Ding, “2D Quaternion Fourier Spectral Analysis and Its Applications”, ISCAS 2004, May 2004, vol. 3, pp. 241244. [14] 貝蘇章, 丁建均, “偏移傅式、分數傅式、線性完整轉換的固有函數”, 國防工業訓儲制度九十二年度研發成果發表展, 2004. [15] J. J. Ding and S. C. Pei, “Reducing sampling error by prolate spheroidal wave functions and fractional Fourier transform”, Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., vol. 4, pp. 217220, 2005. [16] S. C. Pei, W. L. Hsue, and J. J. Ding, “Discrete fractional Fourier transform based on new nearly tridiagonal commuting matrices”, Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., vol. 5, pp. 385388, 2005. [17] S. C. Pei and J. J. Ding, “Reversible Integer Color Transform with BitConstraint” , International Conference on Image Processing, vol. 3, pp. 964967, 2005. [18] S. C. Pei and J. J. Ding, “New Corner Detection Algorithm by Tangent and Vertical Axes and Case Table”, International Conference on Image Processing, vol. 1, pp. 365368, 2005. [19] J. J. Ding and S. C. Pei, “Fractional Fourier transforms and Wigner distribution functions for stationary and nonstationary random process”, accepted by ICASSP2006. [20] S. C. Pei and J. J. Ding, “Improved reversible integer transform”, accepted by ISCAS2006. [21] S. C. Pei and J. J. Ding, “Relations between Gabor transforms and fractional Fourier transforms and their applications for signal processing”, accepted by EUSIPCO 2006. [22] Y. C. Zeng, S. C. Pei and J. J. Ding, “DCTbased image protection using dualdomain biwatermarking algorithm”, accepted by ICIP 2006. [23] Y. C. Zeng, S. C. Pei and J. J. Ding, “Color images enhancement using weighted histogram separation” , accepted by ICIP 2006. [24] S. C. Pei, J. J. Ding, and Y. C. Zeng, “Improved Harris’ algorithm for corner and edge detection,” accepted by CVGIP 2006. (C) Theses [1] J. J. Ding, Derivation and Properties of Orthogonal Transform, Master Thesis, NationalTaiwanUniversity, 1997. [2] J. J. Ding, Research of Fractional Fourier Transform and Linear Canonical Transform, Doctoral Dissertation, NationalTaiwanUniversity, 2001. (D) Books [1] A. V. Oppenheim and R. W. Schafer, DiscreteTime Signal Processing (離散時間訊號處理), 2nd Ed., Prentice Hall, New Jersey, 1999, 曾建誠，陳常侃，王鵬華，丁建均翻譯，全華印行，台北市, 2000.
Copyright © 2007 DISP Lab, Graduate Institute of Electrical Engineering, NTU
10617 臺北市羅斯福路四段一號 明達館531室 TEL: 33663662 