
Chapter 3 Shape-Adaptive Techniques for Image and Video compression

3.1 Introduction

An orthogonal transform such as DCT is widely used to reduce the spatial redundancy in order to achieve the goal of image compression. However, the conventional DCT is a block-based transformation. It has the following disadvantages while applying to image compression procedure:

1.
Cause severe block effect when the image is compressed with low bit-rate (high compression rate).

2.
Image is compressed without consideration of the characteristics in an image segment.

Therefore, for many image and video coding algorithms, the separation of the contents into segments or objects has become a considerable key to improve the image/video quality for very low bit rate applications [1]

 REF _Ref240777982 \r \h
[2].

Moreover, the functionality of making visual objects available in the compressed form has become an important part in the next generation visual coding standards such as MPEG-4. Users can create arbitrarily-shaped objects and manipulate or composite these objects manually [3]

 REF _Ref240777993 \r \h
[4]

 REF _Ref240777994 \r \h
[5]. There are two aspects of coding an arbitrarily shaped visual object. The first part is to code the shape of the object and the second part is to code the texture of the object (pixels contained inside the object region). In this chapter we basically pay attention on the texture coding of still objects.
3.2 Traditional Shape-Adaptive Transformation using Padding Algorithm

Because there are a lot of researches making efforts on coding rectangular-shaped images and video such as discrete cosine transform (DCT) coding and wavelet transform coding, it is the simplest way to just pad values into the pixel positions out of image segment until filling the bounding box of itself. After this process, the block-based transformation can be applied on the rectangular region directly.
Although many padding algorithm has been proposed to improve the coding efficiency [3], this method still has some problems. Padding values inside the bounding box increases the high-order transformation coefficients which are later truncated, in other words, the number of coefficients in the transformation domain is not identical to the number of pixels in the image domain. Thus it leads to serious degradation of the compression performance. Furthermore, the padding process actually produces some redundancy which has to be removed. Fig. 3‑1 shows an example of padding zeros into the pixel positions out of the image segment. The hatched region represents the image region. The block then can be used to the posterior block-based transformation such as DCT and wavelet transform.

[image: image1.emf]0 0 0 0 75 96 0 0

105 98 99 101 73 85 66 60

100 97 0

89 94 87 64 55

0 0 84

0 0 0

0 0 93

0 0 0 105104 0 0 0

0 0 0

94 90 81 71 66

86 86 81 72 0

86 94 81 70 0

98 97 78 0 0

Fig. 3‑1
Padding zeros into the pixel positions out of the image segment
3.3 Transform Using Arbitrarily-Shaped DCT Bases
Because the shape-adaptive transform using padding algorithm in the previous section produce lots of redundant data, we are eager to find a way to obtain transformed coefficients with identical number to the pixel of image segment.

Consider an image segment shown in Fig. 3‑1. The hatched region represents the image region. Let SR be the linear space spanned over the whole square block, P(x, y) be the values within the image region B and SB is defined as the subspace spanned over the arbitrarily region B only. The arbitrarily-shaped image segment P(x, y) can be viewed as a vector in subspace SB. Then vector P(x, y) can be represented by linear combination of a set of independent bases bi in SB. Then we only concentrate on the values inside the image boundary, that is, the redundant data outside the image segment does not take into consideration [3].

In order to use traditional block-based transform bases, say fi (such as DCT bases), we can project the basis functions into the subspace SB by the project operation:

[image: image2.wmf]ˆ

Project(,)

iiB

ffS

=

 MACROBUTTON MTPlaceRef * MERGEFORMAT (3.1)

The projection operation is very simple. It just removes the components of fi outside the subspace SB.

In direct contrast to the mathematical definition of DCT for an N(N image block, the height and width of an arbitrarily-shaped image segment are usually not the same. Therefore, we have to redefine the forward DCT as

[image: image3.wmf]11

00

2()()(21)(21)

(,)(,)coscos

22

*

WH

xy

CuCvxuyv

Fuvfxy

WH

HW

pp

--

==

++

éùéù

=

êúêú

ëûëû

åå

 MACROBUTTON MTPlaceRef * MERGEFORMAT (3.2)

for
[image: image4.wmf]0,...,1

uW

=-

 and
[image: image5.wmf]0,...,1

vH

=-

, where

[image: image6.wmf]1/2 for 0

()

 1 otherwise

k

Ck

=

=

ì

ï

í

ï

î

 MACROBUTTON MTPlaceRef * MERGEFORMAT (3.3)

Similarly, the inverse DCT can be re-written as

[image: image7.wmf]11

00

2(21)(21)

(,)()()(,)coscos

22

*

WH

uv

xuyv

fxyCuCvFuv

WH

HW

pp

--

==

++

éùéù

=

êúêú

ëûëû

åå

 MACROBUTTON MTPlaceRef * MERGEFORMAT (3.4)

for
[image: image8.wmf]0,...,1

xW

=-

 and
[image: image9.wmf]0,...,1

yH

=-

, where

[image: image10.wmf]1/2 for 0

()

 1 otherwise

k

Ck

=

=

ì

ï

í

ï

î

 MACROBUTTON MTPlaceRef * MERGEFORMAT (3.5)

The W and H denote the width and height of the image segment respectively. The F(u, v) is called the DCT coefficient, and the DCT basis can be expressed as

[image: image11.wmf]2()()(21)(21)

(,)coscos

,

22

*

CuCvxuyv

uv

xy

WH

HW

pp

w

++

=

éùéù

êúêú

ëûëû

 MACROBUTTON MTPlaceRef * MERGEFORMAT (3.6)

Then we can then rewrite (3.4)

 as

[image: image12.wmf]11

,

00

(,)(,)(,)

WH

xy

uv

fxyFuvuv

w

--

==

=

åå

 MACROBUTTON MTPlaceRef * MERGEFORMAT (3.7)

for
[image: image13.wmf]0,...,1

xW

=-

 and
[image: image14.wmf]0,...,1

yH

=-

.

[image: image15.emf]0 0 0 0 1 1 0 0

1 1 1 1 1 1 1 1

1 1 0

1 1 1 1 1

0 0 1

0 0 0

0 0 1

0 0 0 1 1 0 0 0

0 0 0

1 1 1 1 1

1 1 1 1 0

1 1 1 1 0

1 1 1 0 0

Fig. 3‑2
The shape matrix of Fig. 3‑1.
Now we give an example for the projection operation using DCT basis functions, as shown in Fig. 3‑1, we use an arbitrarily-shaped image segment which has the height and width both equaled to eight in order to compare with the 8(8 DCT. Fig. 3‑2 is the shape matrix of Fig. 3‑1 formed by filling 1’s in the pixel position inside the contour of the arbitrary shape, whereas zeros are filled in the pixel position outside the contour.

[image: image16.emf]0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Fig. 3‑3
The 8x8 DCT bases with the shape of Fig. 3‑2.

[image: image17.emf]0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Fig. 3‑4
The ordinary 8x8 DCT bases.
As mentioned, the projection operation just removes the components outside the subspace SB, that is, outside the contour of the arbitrary shape. The resulting bases of this shape using DCT basis functions are depicted in Fig. 3‑3. Compare to the ordinary 8x8 DCT bases in Fig. 3‑4, we can find that the arbitrarily-shaped DCT bases can be obtained by setting the values outside the contour to zero. an important issue remains now is how to find optimal basis functions in subspace SB such that we can use the least number of coefficients to reconstruct the image segment vector with acceptable errors.
3.3.1 Orthogonalization of the Shape-Projected Bases
According to last section, the shape-projected DCT bases are not optimal by reason of existence of reconstruction errors. If a linear representation can reconstruct the original function without errors, it is called a perfect-reconstruction representation. In contrast, it is called a non-perfect-reconstruction representation. Based on the theory of linear algebra, the number of the representation bases M of the shape in Fig. 3‑2 can be less than H(W (Here, both H and W equal to 8), because the rank of the subspace SB is less than the dimension of the entire block region. Therefore, some of the basis functions in Fig. 3‑4 are actually redundant, that is, some of them are mutually dependent and the number of the representation bases can be reduced to the minimum number which equals to the rank of the subspace SB. The computations for finding the coefficients in the linear representation of the image segment can be simplified if the basis functions form an orthogonal set. According to these reasons, we have to make the shape-projected bases orthogonal and reduce the number of basis functions to minimum.
One of the methods to obtain orthogonal basis functions in the subspace SB is to use Gram-Schmidt algorithm [2]

 REF _Ref240777991 \r \h
[3]

 REF _Ref240945722 \r \h
[6]

 REF _Ref240945723 \r \h
[7]. The Gram-Schmidt algorithm can extract an orthogonal subset of functions out of a larger set of arbitrary functions and it has flexibility in choosing different orthogonal subset from a larger set of functions. Before we use the Gram-Schmidt process to reduce the bases to M orthogonal ones, we reorder the H(W shape-projected bases by the zig-zag reordering matrix [8] shown in Fig. 3‑5.
The reason to reorder is that we would like to make the low frequency components to concentrate on the top-left corner while moving the less important high frequency components to concentrate on the bottom-right corner of the matrix. This is because the low frequency components contain a significant fraction of the total image energy [9].
After the zig-zag reordering, the bases are changed into vector form. Then after the Gram-Schmidt process, we obtain the M orthogonal bases
[image: image18.wmf],

'

xy

w

 for the image segment shown in Fig. 3‑6. The forward DCR for an arbitrarily-shaped image segment can be redefined as:

[image: image19.wmf]11

,

00

()(,)'()

WH

xy

xy

Fkfxyk

w

--

==

=

åå

 MACROBUTTON MTPlaceRef * MERGEFORMAT (3.8)

[image: image20.emf]

0 1 5 6 14 15 27 28

2 4 7 13 16 26 29 42

8 12 3

17 25 30 41 43

9 11 18

20 22 33

10 19 23

35 36 48 49 57 58 62 63

21 34 37

24 31 40 44 53

38 46 51 55 60

32 39 45 52 54

47 50 56 59 61

Fig. 3‑5
Zig-zag reordering matrix [8].
for
[image: image21.wmf]0,...,

kM

=

.

[image: image22.emf]1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37

Fig. 3‑6
The 37 arbitrarily-shape orthogonal DCT bases
Also, the inverse DCT for an arbitrarily-shaped image segment is:

[image: image23.wmf],

1

(,)()'()

M

xy

k

fxyFkk

w

=

=

å

 MACROBUTTON MTPlaceRef * MERGEFORMAT (3.9)

[image: image24.emf]0 5 10 15 20 25 30 35 40

-100

0

100

200

300

400

500

600

Fig. 3‑7
The 37 arbitrarily-shaped DCT coefficients of Fig. 3‑1.
for
[image: image25.wmf]0,...,1

xW

=-

 and
[image: image26.wmf]0,...,1

yH

=-

. The values of the M DCT coefficients of the image segment in Fig. 3‑1 are demonstrated in Fig. 3‑7. Fig. 3‑8 and Fig. 3‑9 shows another example of an image with six image segments and exhibits its DCT coefficients.
[image: image27.png]

Fig. 3‑8
An example image contains six arbitrarily-shaped image segments.

[image: image28.emf]0 100 200 300 400 500

-400

-200

0

200

400

0 100 200 300 400 500

-400

-200

0

200

400

0 100 200 300 400 500

-400

-200

0

200

400

0 100 200 300 400 500

-400

-200

0

200

400

0 100 200 300 400 500

-400

-200

0

200

400

0 100 200 300 400 500

-400

-200

0

200

400

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3‑9
The arbitrarily-shaped DCT coefficients of Fig. 3‑8.
3.3.2 Quantization of the Arbitrarily-Shaped DCT Coefficients
Unlike the conventional DCT and the compression technique with padding method we introduced in 3.2, the number of the arbitrarily-shaped DCT coefficients depends on the area of the arbitrarily-shaped image segment. Therefore, the block-based quantization used in JPEG is not useful in this situation. In JPEG, the 8(8 DCT coefficients are divided by a quantization matrix which contains the corresponding image quantization step size for each DCT coefficient [8]

 REF _Ref240949070 \r \h
[9]. The compression technique with padding method also uses the same way to quantize coefficients as the JPEG standard does. Instead of using block-based quantizer, we define an extendable and segment shape-dependent quantization array Q(k) as a linearly increasing line:

[image: image29.wmf]()

ac

QkQkQ

=+

 MACROBUTTON MTPlaceRef * MERGEFORMAT (3.10)

for
[image: image30.wmf]1,2,...,

kM

=

. The two parameter Qa and Qc denote the slope and the intercept of the line respectively, and M is the number of the DCT coefficients within the arbitrarily-shaped segment. The resulting arbitrarily-shaped DCT coefficients are individually divided by the corresponding quantization value of Q(k) and rounded to the nearest integer:

[image: image31.wmf]()

()

()

q

Fk

FkRound

Qk

æö

=

ç÷

èø

 MACROBUTTON MTPlaceRef * MERGEFORMAT (3.11)

where
[image: image32.wmf]1,2,...,

kM

=

. The Qc affects the quantization quantity of the DC term and the slope Qa affects the rest of the coefficients. Because the high frequency components of image segments are not visually significant to human vision, they are usually discarded in compression. By choosing Qa appropriately, we can reduce the high frequency components without having impact of human sight.

In our simulation, we quantize the DCT coefficients of the six image segments in Fig. 3‑9 by using the quantization array Q(k) shown in Fig. 3‑10 with the parameter Qa and Qc are set as 0.06 and 8 respectively. The quantization process of the DCT coefficients is carried out according to (3.11)

 and the result depicts in .

We can find that most of the high frequency components are reduced to zeros. This is benefic to the posterior coding process of image compression process.

[image: image33.emf]0 100 200 300 400 500 600

5

10

15

20

25

30

35

40

45

Fig. 3‑10
Quantization array Q(k) with Qa = 0.06 and Qc = 8.

[image: image34.emf](a)

(b)

(c)

(d)

(e)

(f)

0 100 200 300 400 500 600

-100

0

100

0 50 100 150 200 250 300 350 400

-100

0

100

0 50 100 150 200 250 300 350 400

-100

0

100

0 50 100 150 200 250 300 350

-100

0

100

0 50 100 150 200 250 300 350 400 450 500

-100

0

100

0 50 100 150 200 250 300 350

-100

0

100

Fig. 3‑11
The quantized DCT coefficients of Fig. 3‑8 (a) ~ (f).
3.3.3 Complexity Issues and Proposed Solution

The arbitrarily-shaped DCT bases employs Gram-Schmidt orthogonal process which has a complexity of O(n2). If the number of points of an image segment is too large, the computation time will increase in exponential rate. In order to avoid high computation complexity, we can segment the image in more detail such that the number of points of an image segment is confined in an acceptable range. However, making image segmented into smaller segments may reduce the coding performance. That is to say, if the number of points in a segmented shape is large, this implies that the color values of points inside the segment are similar and they cannot be segmented in a more detailed way else it may cause degradation of coding performance. It is a tradeoff between the computation complexity and the coding performance.
3.4 Shape-Adaptive Discrete Cosine Transform (SA-DCT)
Because the coding processing time extremely long while the number of points in an image segment is too large, it is not practical for video streaming or other real-time applications to use the method we have mentioned in section 3.3. T. Sikora and B. Makai proposed a shape-adaptive DCT algorithm which is based on predefined orthogonal sets of DCT basis functions [1]

 REF _Ref241053165 \r \h
[10][11]

 REF _Ref241053624 \r \h
[12]

 REF _Ref241053625 \r \h
[13]. The SA-DCT has transform efficiency similar to that of the shape-adaptive Gilge DCT which we mentioned in section 3.3, but it performs with a much lower computational complexity especially when the number of points in an image segment is large. Moreover, compared with the traditional shape-adaptive transformation using padding algorithm in section 3.2, the number of transformed coefficients of SA-DCT is identical to the number of points in an image segment. This object-based coding of images is backward compatible to existing block-based coding standard.
3.4.1 Shape-Adaptive DCT Algorithm

As mentioned, the shape-adaptive DCT algorithm is based on predefined orthogonal sets of DCT basis functions. The algorithm flushes and transforms the arbitrarily-shaped image segments in horizontal and vertical directions separately. The overall process is illustrated in Fig. 3‑12. The image block in Fig. 3‑12(a) is segmented into two regions, foreground (dark) and background (light). The shape-adaptive DCT contains of two parts: (i) the vertical SA-DCT transformation and (ii) the horizontal SA-DCT transformation. To perform the vertical SA-DCT transformation of the foreground, the length of each column
[image: image35.wmf]j

 of the foreground segment is first calculated and then the columns are shifted and aligned to the upper border of the 8 by 8 reference block (Fig. 3‑12(b)). The variable length (N-point) 1-D DCT transform matrix DCT-N

[image: image36.emf]x

y

x x

y'

u

x

u

x' v

u

u

D

C

T

-

1

D

C

T

-

2

D

C

T

-

3

D

C

T

-

4

D

C

T

-

3

D

C

T

-

6

DCT-6

DCT-5

DCT-4

DCT-2

DCT-1

DCT-1

(a) (b)

(c)

(d) (e)

(f)

DC values

DC coefficients

 Fig. 3‑12 Successive steps of SA-DCT performed on an arbitrarily shaped image segment.

[image: image37.wmf]0

1

DCT-N(,)cos,,01

2

pkcpkkpN

N

p

éù

æö

=×+×=®-

ç÷

êú

èø

ëû

 MACROBUTTON MTPlaceRef * MERGEFORMAT (3.12)

containing set of N DCT-N basis vectors is chosen. Note that
[image: image38.wmf]0

12

c

=

 if
[image: image39.wmf]0

p

=

, and
[image: image40.wmf]0

1

c

=

 otherwise;
[image: image41.wmf]p

 denotes the
[image: image42.wmf]th

p

 DCT basis vector. The N vertical DCT coefficients
[image: image43.wmf]j

c

 can then be calculated according to the formula

[image: image44.wmf](2/)DCT-N

jj

cNx

=××

 MACROBUTTON MTPlaceRef * MERGEFORMAT (3.13)

In Fig. 3‑12(b), the foreground segments are shifted to the upper boarder and each column is transformed using DCT-N basis vectors. As a result DC values for the segment columns are concentrated on the upper border of the reference block as shown in Fig. 3‑12(c). Again, as depicted in Fig. 3‑12(e), before the horizontal DCT transformation, the length of each row is calculated and the rows are shifted to the left border of the reference block. A horizontal DCT adapted to the size of each row is then found using (3.13)

. Note that the horizontal SA-DCT transformation is performed along the vertical SA-DCT coefficients with the same index. (3.12)

 and
Finally the layout of the resulting DCT coefficients is obtained as shown in Fig. 3‑12(f). The DC coefficient is located in the upper left border of the reference block. In addition, we can find that the number of SA-DCT coefficients equal to the number of pixels inside the image segment. The resulting coefficients are concentrated around the DC coefficient in accordance with the shape of the image segment.
The overall processing steps are shown below:
Step 1. The foreground pixels are shifted and aligned to the upper border of the 8 by 8 reference block.
Step 2. A variable length 1-D DCT is performed in the vertical direction according to the length of each column.

Step 3. The resulting 1-D DCT coefficients of step 2 are shifted and aligned to the left border of the 8 by 8 reference block.
Step 4. A variable length 1-D DCT is performed in the horizontal direction according to the length of each row.

As mentioned, the SA-DCT is backward compatible. Therefore, after performing SA-DCT, the coefficients are then quantized and encoded by methods used by the 8 by 8 2-D DCT.
Because the contour of the segment is first transmitted to the receiver, the decoder can perform the inverse shape adaptive DCT as the reverse operation

[image: image45.wmf]DCT-N

T

jj

xc

¢

=×

 MACROBUTTON MTPlaceRef * MERGEFORMAT (3.14)

in both the horizontal and vertical direction.

3.5 Representations of Arbitrarily Shaped Image Segments Using Matching Pursuit Algorithm
Recall from section 3.3, the transform using arbitrarily-shaped DCT basis obtains the appropriate DCT basis functions by project the predefined
[image: image46.wmf]88

´

 DCT basis functions onto the subspace of the arbitrarily shaped image segment. Because the projected basis vectors form an over-complete set for the arbitrarily-shaped image segment, we use the Gram-Schmidt algorithm in order to achieve minimum mutually independent vectors that can form the complete subspace.
U. Y. Desai proposed another approach in order to provide compact description of objects by using the over-complete set [14]. In the matching pursuit algorithm, the input image segment is decomposed into a set of masked DCT basis functions which are obtained by projection operation in 3.3(3.1)

. Differ from the transform using arbitrarily-shaped DCT basis in section GOTOBUTTON ZEqnNum316490 * MERGEFORMAT , the main idea of the matching pursuit algorithm is to represent the image segment by an over-complete set. Be aware that it is not unique to decompose signals into over-complete set.
For higher compression ratio, the set of coefficients must have good energy compaction. Therefore, the matching pursuit algorithm tries to obtain a decomposition that has near optimal compaction. Each stage of iteration selects the coefficient that minimizes the energy of the residue. The algorithm is shown as follows:
Let
[image: image47.wmf]f

 be the input signal and
[image: image48.wmf]Rf

be the residue and
[image: image49.wmf]{

}

1264

,,...,

Bbbb

¢¢¢

=

 be the set of projected basis functions.

[image: image50.wmf](

)

initialization

Rff

=

[image: image51.wmf]repeat

[image: image52.wmf](

)

(

)

Fine the that best approximate

i

i

i

b

RfcibRf

b

¢

¢

=

¢

%

[image: image53.wmf](

)

Update , get residue

RfRfRfRf

=-

%

[image: image54.wmf](

)

(

)

until check energy with threshold

RfT

<

where
[image: image55.wmf](

)

T

i

i

Rfb

ci

b

¢

=

¢

and
[image: image56.wmf]i

 is given by
[image: image57.wmf]argmax

T

j

j

j

Rfb

i

b

¢

=

¢

The receiver can perform inverse DCT on this set of coefficients to obtain the reconstruction image. The main idea of matching pursuit is to find the basis function (vector) that matches the residue the most. That is why it is called matching pursuit algorithm.
The matching pursuit algorithm is also suitable for wavelet transform. Because the wavelet basis functions are smoother than the DCT basis functions [15], using the wavelet-based matching pursuit algorithm has better energy compaction. A slightly change is made for the wavelet-based matching pursuit algorithm. The basis functions
[image: image58.wmf]i

b

 are now chosen to be the orthogonal discrete basis functions [15].
3.6 Object Wavelet Transform (OWT)
The wavelet-based matching pursuit algorithm mentioned in section 3.5 uses an exhaustive search among the predefined basis functions to find the most matching basis function. However, the computation complexity is quite large during exhaustive search especially for larger image segment. H. Katata, N. Ito, T. Aono and H. Kusao proposed an algorithm called object-based wavelet transform (OWT) [16]. The OWT is simple to implement because it is based on the padding techniques. It consists of two parts. One is the shape adaptive wavelet transform (SAWT) and the other is coding coefficient selection (CCS).
3.6.1 Shape Adaptive Wavelet Transform (SAWT)

[image: image59.png]

Fig. 3‑13 An arbitrary shaped object image.
Fig. 3‑13 shows an example of arbitrarily-shaped object image. The image consists of foreground and background (black region) part. Because the conventional wavelet transform is only applicable to a rectangular block, we have to construct rectangular region for the arbitrarily-shaped region. Thus we have to fill the background area with a certain value. It is called the extrapolation process.

[image: image60.emf]16

16

Object region

Extrapolated

region

Average value

Fig. 3‑14 A construction of coding block by extrapolation

[image: image61.emf]1 2 3

4 5 6

7 8 9

Fig. 3‑15 An extrapolation procedure between blocks
The arbitrarily-shaped object image is first divided into
[image: image62.wmf]1616

´

 image blocks. The extrapolation process is then applied to every single block. In Fig. 3‑14, the hatched region represents a portion of the image object. The average value of the hatched region is used for the extrapolation. Therefore, the mean values are different in each image block. However, some image block may not contain any object, so we cannot find the extrapolation value. In this situation, the extrapolation value is calculated by referring to the eight adjacent blocks around the current block. If no block which has already been extrapolated can be found among the eight blocks, the current block is skipped and the extrapolation process is moved to the next.
The extrapolation process is proceeded from the top-left block to the bottom-right block of the image as shown in Fig. 3‑15 and is repeated until all the blocks are extrapolated. For the example in Fig. 3‑15, while the block 5 is processed, the extrapolation value is computed by the average of blocks which have been already extrapolated. In this case, blocks 1-4 have been already extrapolated but the blocks 6-9 have not. Finally, all of the extrapolated blocks are low-pass filtered in order to reduce the block distortions and high frequency component between the extrapolated blocks.

However, it still remains lots of redundancy after the low-pass filtering process. This redundancy is reduced by the coding coefficient selection (CCS) which is discussed in the next section.
3.6.2 Coding Coefficient Selection (CCS)

[image: image63.emf]Preserved Coefficients

Fattened

region

Original

region

Fig. 3‑16 An example of coding coefficient selection.
After performing the SAWT in last section, in fact, not all of the coefficients are needed for decoding the image object even if they have some nonzero values. We can replace the needless coefficients with zeros. The strategy of deleting coefficient selection is important because it influences the quality of the decoded image. Fig. 3‑16 shows the most typical selected region for wavelet coefficients. In this figure, only the hatched coefficients are preserved and the others are set to be zero.
The preserved coefficients should not have exact the same shape as the original image object because a long-tap filter affects the coefficients outside the region. CSS with exact shape of the original image object may degrade the quality of decoded image. Therefore, as shown in Fig. 3‑16, a bigger shape is chosen in order to resolve this problem.
Preserving more coefficients can achieve better image quality whereas more data should be encoded at the same time. This comes with a trade-off.
3.7 Shape Adaptive Wavelet Coding
In the last section, we introduce a shape adaptive wavelet transform using padding algorithm. However, the padding algorithm actually causes blurring edges of the arbitrarily shaped objects and results in more coefficients to be encoded than the number of the pixels contained in the arbitrarily shaped object. It just tries to make improvement on the padding methods but is does not solve the fundamental problem of how to find more efficient signal representation of the objects with just enough wavelet coefficients.
To resolve these problems, Li et al. proposed an efficient coding of arbitrarily shaped texture [17]-[21]. The shape adaptive wavelet coding contains the shape adaptive discrete wavelet transforms (SA-DWT) and extensions of zerotree entropy (ZTE) coding and embedded zerotree wavelet (EZW) coding.
There are two main advantages of the SA-DWT [17]:
1. The number of coefficients after performing SA-DWT is identical to the number of pixels contained inside the arbitrarily shaped object.

2. The spatial correlation, locality properties of wavelet transforms, and self-similarity across subbands are well preserved.

For a rectangular region, the SA-DWT becomes to the conventional wavelet transform. It is the most efficient way to encode a rectangular image object with a variable size.

The extensions of ZTE and EZW coding treat the “don’t care” nodes in the wavelet tress carefully in order to encode image objects efficiently.
We will introduce the SA-DWT and the extensions of ZTE and EZW in the following sections.
3.7.1 The Shape Adaptive Discrete Wavelet Transform (SA-DWT)

The shape adaptive discrete wavelet transform consists of two parts: one is the way to handle wavelet transforms for arbitrarily shaped image segments, the other one is the subsampling for arbitrarily shaped image segments at arbitrarily location. The SA-DWT allows odd length or small length input image object to be decomposed into the transform domain in a similar way to the even or long length images. The total number of transform coefficients is identical to the number of pixels in the image domain. We discuss the two steps of SA-DWT in the following pages.
(1) Arbitrary Length Wavelet Decomposition
Depending on the wavelet filters used, the methods to obtain the wavelet decomposition of an arbitrary length segment may be different. There are many categories of wavelet filters such as orthogonal wavelets, odd symmetric biorthogonal wavelets and even symmetric biorthogonal wavelets. The orthogonal wavelets have orthogonal lowpass and highpass filters with an even number of taps for each filter. The odd symmetric biorthogonal wavelets have biorthogonal and symmetric lowpass and highpass filters with an odd number of taps for each filter. The even symmetric biorthogonal wavelets have biorthogonal lowpass and anti-symmetric high pass filters with an even number of taps for each filter. In this section, we discuss the SA-DWT uses the same wavelet filter as in the regular wavelet transform. The rest of the condition can be found in [17]. The default filter used in MPEG-4 is the following (9,3) biorthogonal filter:

[image: image64.wmf](

)

{

}

(

)

{

}

2

3,6,16,38,90,38,16,6,3

128

2

32,64,32

128

hn

gn

ì

=----

ï

ï

í

ï

=--

ï

î

 MACROBUTTON MTPlaceRef * MERGEFORMAT (3.15)

where the index of
[image: image65.wmf](

)

hn

 is from 0 to 8 and the index of
[image: image66.wmf](

)

gn

 is from 0 to 2. The analysis filtering operation can be written as the following equations:

[image: image67.wmf](

)

(

)

(

)

4

4

Low-pass:4

j

Lnxnjhj

=-

=++

å

 MACROBUTTON MTPlaceRef * MERGEFORMAT (3.16)

[image: image68.wmf](

)

(

)

(

)

1

1

High-pass:1

j

Hnxnjgj

=-

=++

å

 MACROBUTTON MTPlaceRef * MERGEFORMAT (3.17)

[image: image69.emf]a b c d .. x y z a b c x y z

Periodic extension

Fig. 3‑17 Periodic extensions at leading and trailing boundaries of a finite length signal segment.
where
[image: image70.wmf]0,1,2,...,1

nN

=-

 and
[image: image71.wmf](

)

xn

 has the index range from
[image: image72.wmf]4

-

 to
[image: image73.wmf]3

N

+

. Because the input data only has the values from 0 to
[image: image74.wmf]1

N

-

, we need to obtain the values out of the index range. This is called the boundary extensions.
There are two types of boundary extensions: periodic extension and symmetric extension. Fig. 3‑17 shows an example of periodic extension of a finite length signal segment. The periodic extension considers the finite length signal segment as one period of a periodic signal.

[image: image75.emf]a b c d .. x y z z y x c b a

Leading boundary

a b c d .. x y z y x d c b ..

a b c d .. x y z ..

Type A

Type B

Type C

..

.. -y-x -b -c -d

Trailing boundary

symmetric point symmetric point

symmetric point symmetric point

symmetric point symmetric point

Fig. 3‑18 Three types of symmetric extension.

There are three types of symmetric extensions (Type A, Type B and Type C). Fig. 3‑18 depicts the three types of symmetric extensions. The arrow in each figure points to the symmetric point of the corresponding extension type.
If the signal segment is shorter than the filter length, we can perform the symmetric extension several times by alternately extending the values at the leading and trailing boundary. Fig. 3‑19 illustrates how to alternately extend the leading and trailing boundaries for a short signal segment.
On the other hand, if the signal segment is long, the correlation between the end of the signal and the start of the signal is small. In this case, using periodic extension causes a sharp change at the transition from the end of previous signal period to the start of the next signal period.

[image: image76.emf]a b b a a b b a

leading symmetric point

trailing symmetric point

b a a a

Fig. 3‑19 Symmetric extensions (type A) for a short signal segment.
After performing the boundary extension, the finite length signal segment can be regarded as an infinite length signal segment. For symmetric biorthogonal wavelet transforms, symmetric extensions are only possible to ensure perfect reconstruction. The filtering process is then applied by using (3.17)

.(3.16)

 and
(2) Subsampling Strategies in SA-DWT
In order to improve the coding efficiency of zerotree coding (ZTE), the better subsampling strategy is to always allocate more valid wavelet coefficients in the lower subbands. Therefore, more insignificant or zeros or don’t-cares can be skipped while the ZTC coding process.
Li, et al. [21] observed that if the lowpass subsampling is locally fixed to even subsampling and the highpass subsampling is locally fixed to odd subsampling, we can guarantee that the number of the lowpass band wavelet coefficients are less than the high pass band wavelet coefficients. That is, the subsampling operation is as the following equations:

[image: image77.wmf](

)

(

)

Low-pass:2

l

xnLns

=+

 MACROBUTTON MTPlaceRef * MERGEFORMAT (3.18)

where
[image: image78.wmf](

)

1

0,1,2,...,1

2

Ns

n

+-

=-

 and
[image: image79.wmf](

)

Ln

 is the result from (3.16)

.

[image: image80.wmf](

)

(

)

High-pass:21

h

xnHns

=+-

 MACROBUTTON MTPlaceRef * MERGEFORMAT (3.19)

where
[image: image81.wmf](

)

0,1,2,...,1

2

Ns

n

+

=-

 and
[image: image82.wmf](

)

Hn

 is the result from (3.17)

.
Note that “/” means division and truncation. The parameter
[image: image83.wmf]s

 denotes whether it is even subsampling or odd subsampling. When even subsampling is performed, the parameter
[image: image84.wmf]s

 is set to be 0. In addition, the parameter
[image: image85.wmf]s

 is set to be 1 when odd subsampling is performed. For the special case of a single data point (
[image: image86.wmf]1

N

=

), the parameter
[image: image87.wmf]s

 is always set to be 0. The filtering and the subsampling process can be combined in an implementation to reduce the complexity.
The overall analysis and synthesis processes of an odd length signal segment using odd symmetric biorthogonal wavelets is shown in Fig. 3‑20.

[image: image88.emf]a b c d e f g f e d c d c b

a b c d e f g

a b c d e f g f e d c d c b

Input Signal

DC B AB C D

DC B ABC D

DC BAB C D

DC B AB C D

k l m n m l l m ..

S S -T -T -R

S S -T -T -R

S S -T -T -R

t u v v u u t

Channel

D B B D

D B B D

DC B AB C D

..

0 t 0 u 0 v 0 v 0 u u 0 t k 0 l 0 m0 n 0 m0 l 0 l 0 m ..

-C -A -C

-C -A -C

T S R S T

T S R S T

δ χβαβχδεφγφεδχ νμλκλμνοπθπον

T S R S T

a b c d e f g

Reconstructed Signal

Fig. 3‑20 The analysis and synthesis processes of an odd length signal segment using odd symmetric biorthogonal wavelet transforms.

[鍵入文件的引文或重點的摘要。您可以將文字方塊放在文件中的任何位置。使用 [文字方塊工具] 索引標籤以變更重要引述文字方塊的格式。]

1
21

_1318861821.unknown

_1318965210.unknown

_1319562572.unknown

_1319566619.vsd
a

b

c

d

..

x

y

z

z

y

x

c

b

a

..

..

Leading boundary

a

b

c

d

..

x

y

z

y

x

..

d

c

b

..

a

b

c

d

..

x

y

z

..

-y

..

-x

symmetric point

Type A

Type B

Type C

-b

-c

-d

Trailing boundary

symmetric point

symmetric point

symmetric point

symmetric point

symmetric point

_1319576774.unknown

_1319576855.unknown

_1319577177.unknown

_1319577391.unknown

_1319577904.vsd
a

b

c

d

e

f

g

f

e

d

c

d

c

b

..

..

a

b

c

d

e

f

g

a

b

c

d

e

f

g

f

e

d

c

d

c

b

..

..

Input Signal

D

C

B

A

B

C

D

D

C

B

A

B

C

D

D

C

B

A

B

C

D

D

C

B

A

B

C

D

k

l

m

n

m

l

l

m

..

S

S

-T

-T

-R

S

S

-T

-T

-R

S

S

-T

-T

-R

t

u

v

v

u

u

t

..

..

Channel

k

0

l

0

m

0

n

0

m

0

l

0

l

0

m

..

0

t

0

u

0

v

0

v

0

u

u

0

t

..

..

-C

D

B

B

D

D

B

B

D

-A

-C

-C

-A

-C

T

S

D

C

B

A

B

C

D

..

..

R

S

T

T

S

R

S

T

δ χ β α β χ δ ε φ γ φ ε δ χ

ν μ λ κ λ μ ν ο π θ π ο ν

T

S

R

S

T

a

b

c

d

e

f

g

..

..

Reconstructed Signal

_1319576877.unknown

_1319576800.unknown

_1319576576.unknown

_1319576773.unknown

_1319567305.vsd
a

b

b

a

a

a

b

a

a

b

b

a

..

..

leading symmetric point

trailing symmetric point

_1319562936.unknown

_1319563008.unknown

_1319563802.vsd
a

b

c

d

..

x

y

z

a

b

c

x

y

z

..

..

Periodic extension

_1319562943.unknown

_1319562883.unknown

_1319562910.unknown

_1319562658.unknown

_1319009850.vsd

_1319562515.unknown

_1319562529.unknown

_1319562454.unknown

_1318970419.vsd

_1319007549.unknown

_1318969649.vsd

_1318960502.unknown

_1318961532.unknown

_1318961619.unknown

_1318962959.unknown

_1318961607.unknown

_1318960694.unknown

_1318961071.unknown

_1318960509.unknown

_1318943601.unknown

_1318960439.unknown

_1318960466.unknown

_1318960426.unknown

_1318868033.vsd
x

y

x

x

y'

u

x

u

x'

v

u

u

DCT-1

DCT-2

DCT-3

DCT-4

DCT-3

DCT-6

(a)

DCT-6

DCT-5

DCT-4

DCT-2

DCT-1

DCT-1

(b)

(c)

(d)

(e)

(f)

DC values

DC coefficients

_1318936156.unknown

_1318861872.unknown

_1314559107.vsd
0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

_1314710931.unknown

_1318852615.unknown

_1318861269.unknown

_1318861304.unknown

_1318861370.unknown

_1318852635.unknown

_1318849789.unknown

_1318850593.unknown

_1314712479.vsd
(a)

(b)

(c)

(d)

(e)

(f)

_1314702048.unknown

_1314710719.unknown

_1314710753.unknown

_1314703529.vsd
(a)

(b)

(c)

(d)

(e)

(f)

_1314701005.unknown

_1314701999.unknown

_1314693030.vsd
0

1

5

6

14

15

27

28

2

4

7

13

16

26

29

42

8

12

3

17

25

30

41

43

9

11

18

20

22

33

10

19

23

35

36

48

49

57

58

62

63

21

34

37

24

31

40

44

53

38

46

51

55

60

32

39

45

52

54

47

50

56

59

61

_1314692452.vsd
8

1

2

3

4

5

6

7

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

_1314552168.unknown

_1314554585.vsd
0

0

0

0

1

1

0

0

1

1

1

1

1

1

1

1

1

1

0

1

1

1

1

1

0

0

1

0

0

0

0

0

1

0

0

0

1

1

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

0

1

1

1

1

0

1

1

1

0

0

_1314558732.vsd
0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

_1314552199.unknown

_1314552233.unknown

_1314552240.unknown

_1314552207.unknown

_1314552186.unknown

_1314463138.unknown

_1314463266.unknown

_1314463321.unknown

_1314463366.unknown

_1314463179.unknown

_1314462952.unknown

_1314463137.unknown

_1314462116.vsd
73

85

66

60

0

0

0

0

75

96

0

0

0

105

0

0

84

94

90

81

71

66

98

99

101

89

94

87

64

55

0

0

0

86

86

81

72

0

100

0

0

93

86

94

81

70

0

97

0

0

0

105

104

0

0

0

0

0

0

98

97

78

0

0

_1301232485.unknown

