Image Compression Tutorial

Chapter 3 Shape-Adaptive Image Compression Algorithm

The JPEG image compression standard can achieve great compression ratio, however, it does not take advantage of the local characteristics of the given image effectively. Therefore, the new image compression algorithm called shape-adaptive image compression algorithm, abbreviated SAIC, was proposed. Instead of segmenting the whole image into several square blocks and applying transform coding, quantization, and entropy coding to each block, the SAIC algorithm segments the whole image into several image segments, and each image segments has its own local characteristics. Because of the high correlation of the luma and chroma in each image segment, the SAIC can achieve higher compression ratio and better image quality than the conventional block-based image compression algorithm such as JPEG.
The flowchart of the shape-adaptive image compression adopted in this thesis is shown in Fig. 3.1. First, the input image is segmented into shape part and internal texture part. The shape part contains the contour information of the image segments, while the internal texture part contains the internal contents of the image segments such as luma and chroma. These two parts of the image segments is encoded separately, and they will be combined into the full bitstream finally.
 In this chapter, I will introduce several methods to encode the shape information and the internal texture.

[image: image1.emf]Image

Segmentation

Differential

Coding

Arbitrary-shaped

Transform

Entropy Coding

Quantization

And

Entropy Coding

Bit-stream

Shape

Interal texture

Boundary Descriptor

Coefficients of Transform Bases

Fig. 3.1 The block diagram of shape-adaptive image compression
3.1 Coding of Binary Shape Image
In shape-adaptive image compression, we must exploit some image segmentation algorithms to capture the shape information of the source image. After the shape information is obtained, we must use some shape compression methods to reduce the quantity of data. In this thesis, I adopt the method introduced in and run length coding to reduce the quantity of data.
3.1.1 Differential Coding of Binary Shape Image
 As we know, high correlation often exists between the neighboring pixels in the natural images. These high correlation characteristics still exist in the binary image, and we can apply some methods to reduce the correlation. Because there are only 2 levels in the binary shape image, it is not proper for us to use the common image compression methods such as JPEG, JPEG 2000 and so on. One method to reduce the correlation is the differential coding, which is introduced in section 3.1.2, and it is very efficient for the binary shape image. After differential coding, the probability of white pixel will be much less than that of the black pixel, so we can apply the coding algorithm in [33] or run length coding to achieve compression.
 If we apply the differential coding directly, which is defined in (3.1) GOTOBUTTON ZEqnNum174589 * MERGEFORMAT
, then the symbol set may become {-1,0,1}. For example, if aij=0 and ai,j-1=1, then the value of dij is -1.

[image: image2.wmf],1

0

1,2,...,

ij

ij

ijij

aj

d

aajM

-

=

ì

=

í

-=

î

 MACROBUTTON MTPlaceRef * MERGEFORMAT (3.1)

where aij is the pixel value of (i,j)th element in the binary image, and the size of the image is N×M
 Therefore, the differential method in (3.1) GOTOBUTTON ZEqnNum174589 * MERGEFORMAT
 cannot be applied to the binary shape image directly. In [32], the George et al. Proposed a new differential algorithm with XOR(Exclusive-OR) for the binary image. The differential coding method is defined in (3.2) GOTOBUTTON ZEqnNum521775 * MERGEFORMAT
.

[image: image3.wmf],1,1

0

1,2,...,

ij

ij

ijijijij

aj

d

aaaajM

--

=

ì

ï

=

í

-=Å=

ï

î

 MACROBUTTON MTPlaceRef * MERGEFORMAT (3.2)

where
[image: image4.wmf]Å

 means Exclusive-OR.
 We take the binary lena image for experiment. The original binary lena image and the binary difference image is shown in Fig. 3.1. It is worth noting that the differential coding is applied along the horizontal direction and along the vertical direction afterward. As can be seen from the simulation result, the probability of 1 is much less than that of 0, which makes us easier to process and compress it.
	[image: image5.png]

	[image: image6.png]

	(a) The original binary lena image
	(b) The binary difference image

Fig. 3.2 The binary Lena image before and after differential coding
 In the end of this section, I also perform some simulations on our binary shape image, and the simulation results are shown in Fig 3.3.
	[image: image7.png]

	[image: image8.png]

	(a) The binary shape image
	(b) The binary difference image

Fig. 3.3 The binary shape image before and after differential coding
3.1.2 Block Coding of Sparse Binary Image
 After differential coding, we can apply the probability characteristics to achieve compression. As we know, the data will become geometric distribution after differential coding. However, the symbol set contains 2 elements only, so the Golomb codes can not be applied. In [33], the coding method designed for the sparse binary image (most elements in the binary image are 0) was proposed. The method is called Block Coding method and the flow of this algorithm is as follows. One example is shown in Fig. 3.4.
	Block Coding Algorithm

1. Map the 2D image to 1D row-stacked form, and the number of elements must be modeled as
[image: image9.wmf]2

M

.

2. Define
[image: image10.wmf]log2

ln2

np

a

éù

æö

=

ç÷

êú

èø

êú

, where n is the total number of pixels in the binary image, and p is the probability of finding “1“.

3. Segment the 1D data string into
[image: image11.wmf]2

a

 blocks, and each block contains
[image: image12.wmf]2

b

 bits. Therefore, M=a+b.

4. We introduce a comma ‘0 ‘ to seperate the blocks.

5. There two conditions

5.1 If there is no 1 in one block, then no coding in needed for the block

5.2 If there are 1s in one block, then assign each 1 a prefix “1“ followed by b bits to indicate its location in the block.

[image: image13.emf]0 1 0 0

0 1 1 0

0 0 0 0

0 0 0 0

0100, 0110, 0000, 0000

101 101110

Step 3

0 0 0

A 1 in location 1(01

2

) A 1 in location 2(10

2

)

A 1 in location 1(01

2

)

101010111000 Final Bitstream

Step 4

Step 1, 2

Fig. 3.4 One example of block coding
 After differential coding the binary shape image, the probability of finding “1“ in the difference image (Fig. 3.3 (b)) is 0.024 and the probability of finding “0“ is 0.976. Therefore, we can exploit the block coding algorithm to compress the difference image. The data quantity of the difference image after block coding is 228 bytes. If we encode each image segemnt in the shape image separately, the quantity of data after block coding is 154 bytes as shown in Fig. 3.5. As can seen from the simulation result, the lower the probability of finding “1“, the higher the compression ratio.
	Object
	[image: image14.png]

	[image: image15.png]

	[image: image16.png]

	[image: image17.png]

	[image: image18.png]

	[image: image19.png]

	Diff img
	[image: image20.png]

	[image: image21.png]

	[image: image22.png]

	[image: image23.png]

	[image: image24.png]

	[image: image25.png]

	Storage
	35 bytes
	2 bytes
	54 bytes
	13 bytes
	33 bytes
	19 bytes

	CR
	2.578755
	40.00000
	2.222222
	3.676768
	2.155894
	2.395973

	Prob(1)
	0.0597
	0.0025
	0.0813
	0.0385
	0.0705
	0.0672

Fig. 3.5 The data quantity and compression ratio of each element

 Although this coding method cannot achieve high coding efficiency than that of the Fourier descriptor, the contour of all image segments can be perfectly reconstructed because this is a lossless compression algorithm.
3.2 Coding of Internal Texture
 In block-based transform coding algorithms, the source image is segmented into several small blocks with fixed N(N size. In each block, all the pixel values are fully defined, and the DCT can be used to encode these blocks efficiently. However, for the image segments in shape-adaptive image compression, only a portion of pixel values is defined. One straight method to solve this problem is to fill zero values outside the contour and treat the filled contour block as a rectangular block. However, padding zeros will introduce unnecessary high frequency components across the object boundary, so the high-frequency transform coefficients increase and the compression performance seriously degrade. We show one example of the padding method in Fig. 3.6.

[image: image26.emf]0

105

0

0

98

100

0

99

97

0

101

89

75

73

94

96

85

87

0

66

64

0

60

55

0

0

0

0

0

0

84

93

0

94

86

86

90

94

86

81

81

81

71

70

72

66

0

0

0

0

0

0

0

0

98

105

97

104

78

0

0

0

0

0

395.1-57.5-205.836.519.32.2-4.7-10.7

82.018.269.7-5.8-68.3-31.442.47.0

-83.240.417.944.652.3-40.1-10.9-24.9

-71.2-31.8-8.776.8-14.715.219.6-1.1

-72.6-28.0-24.0-2.8

-57.3-50.6-21.018.7

-43.8-27.9-9.46.5

-14.3

15.15.121.937.1

6.2-31.419.4-16.8

-16.4-21.6-31.72.0

13.5-30.1-2.0-28.0-27.56.43.8



























2D-DCT

Fig. 3.6 Arbitrary DCT Transform by padding zeros outside the boundary

Instead of filling data outside the image boundary and applying rectangular transform, we can focus on the defined image contents only, i.e. P(x, y) values within region B. Mathematically, let’s define SR as the linear space spanned over the whole square block R, SB as the subspace spanned over the irregular region B only. For example, in Fig. 3.7 (a), space SR has a dimension equals to 9, while the dimension of subspace SB equals to 6. One possible basis for subspace SB is shown in Fig. 3.7 (b). Each basis matrix has a single non-zero element only.

[image: image27.emf]0 0 0

1

0

0

0

0

0

0 1 0

0

0

0

0

0

0

0 0 0

0

0

1

0

0

0

0 0 1

0

0

0

0

0

0

0 0 0

0

0

0

0

1

0

0 0 0

0

0

0

0

0

1

S

B

S

R

Image Segment

3

х

3 pixel

Fig. 3.7 (a) An irregular-shape image segment in a 3(3 block area
(b) A canonical basis of the subspace

Every arbitrary-shape image segment, P(x, y), can be considered as a vector in SB. To represent this vector completely, we can find a set of independent vectors, say bi, in SB and describe P(x, y) as a linear combination of bi’s. The distinction between this approach and that in the previous section is that the whole problem domain now is confined in the subspace SB only. We don’t have to worry about the redundant data outside the image boundary, i.e. vector component outside subspace SB. If we still want to use traditional block-based transform bases, say fi (e.g. DCT basis), we can project these basis functions into subspace SB,

[image: image28.wmf]ˆ

Project(,)

iiB

ffS

=

 MACROBUTTON MTPlaceRef * MERGEFORMAT (3.3)

and describe vector P(x, y) as a linear combination of
[image: image29.wmf]ˆ

i

f

’s. Actually, the above projection is very simple. It just removes the components of fi outside subspace SB.

An important issue remains now is how to find optimal basis functions in subspace SB such that we can use the least number of coefficients to reconstruct the image segment vector with satisfactory errors. The above formulation does provide a very flexible platform to derive new transform bases and evaluate their performance.

3.2.1 Arbitrary-Shape transform based on Gram-Schmidt Process

In this subsection, we introduce the proposed transform method to remove correlation based on the Gram-Schmidt process. To compare with the 8(8 DCT, we use the same image segment in Fig. 3.8 whose height and width are both eight, as shown in Fig. 3.8 (a). Fig. 3.8 (b) is its binary shape image by filling with one’s in the position inside the boundary of the shape and filling with zeroes otherwise.

[image: image30.emf]0

105

0

0

98

100

0

99

97

0

101

89

75

73

94

96

85

87

0

66

64

0

60

55

0

0

0

0

0

0

84

93

0

94

86

86

90

94

86

81

81

81

71

70

72

66

0

0

0

0

0

0

0

0

98

105

97

104

78

0

0

0

0

0

0

1

0

0

1

1

0

1

1

0

1

1

1

1

1

1

1

1

0

1

1

0

1

1

0

0

0

0

0

0

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

1

1

1

1

1

0

0

0

0

0

Fig. 3.8
(a) An arbitrary-shape image segment f and (b) its shape matrix

Similar to the 8(8 DCT, we can get the H(W bases of the image segment f. We multiplying the original H(W DCT basis by the shape matrix shown in Fig. 3.8 (b) and the result is shown in Fig. 3.9. Because the point number M of is less than H(W, we can know that the H(W bases are not orthogonal. Before we use the Gram-Schmidt process to reduce the bases to M orthogonal ones, we reorder the H(W bases by the zigzag reordering matrix. The reason to reorder is that the low frequency components concentrate on the left-top position and is more important to the high frequency components which concentrate on the right-bottom position. After zigzag scan reordering, we reserve the front 37 basis and discard all the remaining bases which are shown in Fig. 3.11.
	i\j
	0
	1
	2
	3
	4
	5
	6
	7

	0
	
[image: image31.png]

	
[image: image32.png]

	
[image: image33.png]

	
[image: image34.png]

	
[image: image35.png]

	
[image: image36.png]

	
[image: image37.png]

	
[image: image38.png]

	1
	
[image: image39.png]

	
[image: image40.png]

	
[image: image41.png]

	
[image: image42.png]

	
[image: image43.png]

	
[image: image44.png]

	
[image: image45.png]

	
[image: image46.png]

	2
	
[image: image47.png]

	
[image: image48.png]

	
[image: image49.png]

	
[image: image50.png]

	
[image: image51.png]

	
[image: image52.png]

	
[image: image53.png]P

	
[image: image54.png]

	3
	
[image: image55.png]

	
[image: image56.png]

	
[image: image57.png]

	
[image: image58.png]

	
[image: image59.png]

	
[image: image60.png]L

	
[image: image61.png]._.:.

	
[image: image62.png]

	4
	
[image: image63.png]

	
[image: image64.png]

	
[image: image65.png]

	
[image: image66.png]

	
[image: image67.png]

	
[image: image68.png]

	
[image: image69.png]

	
[image: image70.png]

	5
	
[image: image71.png]

	
[image: image72.png]

	
[image: image73.png]

	
[image: image74.png]‘L

	
[image: image75.png]

	
[image: image76.png]S

	
[image: image77.png]

	
[image: image78.png]

	6
	
[image: image79.png]

	
[image: image80.png]

	
[image: image81.png]

	
[image: image82.png]e

	
[image: image83.png]

	
[image: image84.png]

	
[image: image85.png]

	
[image: image86.png]

	7
	
[image: image87.png]

	
[image: image88.png]

	
[image: image89.png]

	
[image: image90.png]

	
[image: image91.png]

	
[image: image92.png]'-EE-

	
[image: image93.png]

	
[image: image94.png]

Fig. 3.9 The 8(8 DCT bases with the shape of f

[image: image95.emf]0

0

2

2

3

3

1

1

4

4

8

8

5

5

7

7

12

12

6

6

13

13

17

17

14

14

16

16

25

25

15

15

26

26

30

30

27

27

29

29

41

41

28

28

42

42

43

43

9

9

10

10

20

20

11

11

19

19

22

22

18

18

23

23

33

33

24

24

32

32

38

38

31

31

39

39

46

46

40

40

45

45

51

51

44

44

52

52

55

55

53

53

54

54

61

61

21

21

35

35

34

34

36

36

37

37

48

48

47

47

49

49

50

50

57

57

56

56

58

58

59

59

62

62

61

61

63

63

Fig. 3.10 Zig-zag reordering matrix
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	
[image: image96.png]

	
[image: image97.png]

	
[image: image98.png]

	
[image: image99.png]

	
[image: image100.png]

	
[image: image101.png]N

	
[image: image102.png]

	
[image: image103.png]

	
[image: image104.png]

	
[image: image105.png]

	11
	12
	13
	14
	15
	16
	17
	18
	19
	20

	
[image: image106.png]

	
[image: image107.png]

	
[image: image108.png]

	
[image: image109.png]

	
[image: image110.png]

	
[image: image111.png]

	
[image: image112.png]

	
[image: image113.png]

	
[image: image114.png]

	
[image: image115.png]

	21
	22
	23
	24
	25
	26
	27
	28
	29
	30

	
[image: image116.png]

	
[image: image117.png]

	
[image: image118.png]

	
[image: image119.png]

	
[image: image120.png]

	
[image: image121.png]

	
[image: image122.png]ey

	
[image: image123.png]

	
[image: image124.png]

	
[image: image125.png]

	31
	32
	33
	34
	35
	36
	37
	
	
	

	
[image: image126.png]

	
[image: image127.png]

	
[image: image128.png]

	
[image: image129.png]

	
[image: image130.png]

	
[image: image131.png]

	
[image: image132.png]

	
	
	

Fig. 3.11 The reordered 37 arbitrary-shape DCT bases
 Finally we apply the Gram-Schmidt process to get the M orthogonal bases for the image segment f. The Gram-Schmidt process can be computed by means of QR decomposition method. We represent each of the above arbitrary DCT bases in row-stacked vector form and combined these vectors to form the matrix A with size M-by-M (M=37 for this example).

[image: image133.wmf][

]

12

=

L

M

aaa

A

 MACROBUTTON MTPlaceRef * MERGEFORMAT (3.4)

We define
[image: image134.wmf]e

,

Proj

,

ea

ee

=

a

 where
[image: image135.wmf],

=

T

VWVW

Then

[image: image136.wmf]1

1

111

1

2

2222

2

k

k

k

, e=

||||

Proj, e=

||||

Proj, e=

||||

j

e

kkek

=

=-

=-

u

ua

u

u

uaa

u

u

uaa

u

M

 MACROBUTTON MTPlaceRef * MERGEFORMAT (3.5)

 We then rearrange the equations above so that the
[image: image137.wmf]i

a

s are on the left, producing the following equations.

[image: image138.wmf]1

111

2222

1

kk

1

e||||

Proj+e||||

Proj+e||||

j

e

k

kek

j

-

=

=

=

=

å

au

aau

aau

M

 MACROBUTTON MTPlaceRef * MERGEFORMAT (3.6)

Because
[image: image139.wmf]i

e

s are unit vector, we have the following

[image: image140.wmf]111

21222

1

jkk

1

e||||

e,+e||||

e,+e||||

k

kk

j

-

=

=

=

=

å

au

aau

aau

M

 MACROBUTTON MTPlaceRef * MERGEFORMAT (3.7)

The right side can be expressed as

[image: image141.wmf][

]

11213

213

1M

3

||||e,e,

0||||e,

e||e

00||||

éù

êú

êú

êú

êú

ëû

L

L

K

L

MMMO

uaa

ua

u

 MACROBUTTON MTPlaceRef * MERGEFORMAT (3.8)

 From (3.8)

, we can conclude that the Gram-Schmidt can be computed from QR-decomposition method. We define the Q and R matrix as

[image: image142.wmf][

]

1M

e||e

=

K

Q

 MACROBUTTON MTPlaceRef * MERGEFORMAT (3.9)

[image: image143.wmf]11213

213

3

||||e,e,

0||||e,

00||||

éù

êú

êú

=

êú

êú

ëû

L

L

L

MMMO

uaa

ua

R

u

 MACROBUTTON MTPlaceRef * MERGEFORMAT (3.10)

[image: image144.wmf]=

AQR

 MACROBUTTON MTPlaceRef * MERGEFORMAT (6.11)

 Thus, all orthonormal basis Q is obtained. We reorder the input image object f in row-stacked form also and take the arbitrary transform.

[image: image145.wmf]=

FQf

 MACROBUTTON MTPlaceRef * MERGEFORMAT (3.12)

[image: image146.wmf][

]

(0) (1)(1)

=-

L

FFFM

F

 MACROBUTTON MTPlaceRef * MERGEFORMAT (3.13)

The M transform coefficients of f in this example are show in Fig. 3.12.
[image: image147.png]600

500

400

300

200

100

-100
0

g

10

15

Eil

E3

Eil

E3

0

Fig. 3.12
The 37 arbitrary-shape DCT coefficients of f
3.3 Quantizer
After the transform coefficients are obtained, we quantize the coefficients to compress the data. Because the length of the coefficients of the arbitrary shape is not fixed, the quantization table for JPEG must be modified. I define the unfixed quantization array as follows:

[image: image148.wmf](), for 1,2,...,

ac

QkQkQkM

=+=

 MACROBUTTON MTPlaceRef * MERGEFORMAT (3.14)

where the two parameters Qa and Qc are the slope and the intercept of the line, respectively. And M is the length of the DCT coefficients.
Each DCT coefficient F(k) is divided by the corresponding quantization array Q(k) and rounded to the nearest integer as:

[image: image149.wmf]()

(), where 1,2,...,

()

q

Fk

FkRoundkM

Qk

æö

==

ç÷

èø

 MACROBUTTON MTPlaceRef * MERGEFORMAT (3.15)

[image: image150.emf]0 100 200 300 400 500 600

5

10

15

20

25

30

35

40

45

Fig. 3.13 Quantization level
3.4 The Full Compression Algorithm Flow
After transforming and quantizing the internal texture, we can encode the quantized coefficients and combine these encoded internal texture coefficients with the encoded boundary bit-stream. The full encoding procedure is shown in Fig. 3.14.

[image: image151.emf]M1

M2

M3

Segmenta

tion and

S.A. DCT

Segmentation

and boundary

Extraction

10011101010 EOB

11001011101100 EOB

1011011110010 EOB

11010110110001111

10011101010 EOB 11001011101100 EOB

1011011110010 EOB 11010110110001111

Quantization

and Encoding

Boundary

Compression

and Encoding

Combine the internal texture and

the boundary bitstream

Image

Segments

Boundary of the

image segments

The DCT

coefficients

The internal texture

bitstream

The boundary

bitstream

Fig. 3.14 Procedure of the Shape-Adaptive Coding Method

1
12

_1319613755

_1319613788

_1319613804

_1319613812.unknown

_1319613816.unknown

_1319613820.unknown

_1319613822.unknown

_1319613824.unknown

_1319613825.vsd
Segmentation and S.A. DCT

Segmentation and boundary Extraction

10011101010

EOB

11001011101100

EOB

1011011110010

EOB

11010110110001111

10011101010

EOB

11001011101100

EOB

1011011110010

EOB

11010110110001111

Quantization and Encoding

Boundary Compression and Encoding

Combine the internal texture and the boundary bitstream

M1

M2

M3

Image Segments

Boundary of the image segments

The DCT coefficients

The internal texture bitstream

The boundary bitstream

_1319613823.unknown

_1319613821.unknown

_1319613818.unknown

_1319613819.unknown

_1319613817.unknown

_1319613814.unknown

_1319613815.unknown

_1319613813.unknown

_1319613808

_1319613810.unknown

_1319613811.unknown

_1319613809.unknown

_1319613806

_1319613807

_1319613805

_1319613796

_1319613800

_1319613802

_1319613803

_1319613801

_1319613798

_1319613799

_1319613797

_1319613792

_1319613794

_1319613795

_1319613793

_1319613790

_1319613791

_1319613789

_1319613772

_1319613780

_1319613784

_1319613786

_1319613787

_1319613785

_1319613782

_1319613783

_1319613781

_1319613776

_1319613778

_1319613779

_1319613777

_1319613774

_1319613775

_1319613773

_1319613764

_1319613768

_1319613770

_1319613771.vsd
0

6

13

17

14

16

25

15

26

2

3

1

4

8

5

7

12

30

27

29

41

28

42

43

9

10

20

11

19

22

18

23

33

24

32

38

31

39

46

40

45

51

44

52

55

53

54

61

21

35

34

36

37

48

47

49

50

57

56

58

59

62

61

63

_1319613769

_1319613766

_1319613767

_1319613765

_1319613759

_1319613761

_1319613763

_1319613760

_1319613757

_1319613758

_1319613756

_1319613723

_1319613739

_1319613747

_1319613751

_1319613753

_1319613754

_1319613752

_1319613749

_1319613750

_1319613748

_1319613743

_1319613745

_1319613746

_1319613744

_1319613741

_1319613742

_1319613740

_1319613731

_1319613735

_1319613737

_1319613738

_1319613736

_1319613733

_1319613734

_1319613732

_1319613727

_1319613729

_1319613730

_1319613728

_1319613725

_1319613726

_1319613724

_1319613707

_1319613715

_1319613719

_1319613721

_1319613722

_1319613720

_1319613717

_1319613718

_1319613716

_1319613711

_1319613713

_1319613714

_1319613712

_1319613709

_1319613710

_1319613708

_1319613699.unknown

_1319613703.unknown

_1319613705.vsd
0

0

101

89

75

73

94

96

85

0

1

0

0

105

1

1

0

1

0

0

98

100

0

99

97

87

0

66

64

0

60

55

0

0

0

0

0

0

84

93

0

94

86

86

90

94

86

81

81

81

71

70

72

66

0

0

0

0

1

0

0

0

0

0

1

98

105

1

97

104

1

78

0

1

0

0

1

0

0

1

1

1

0

1

1

0

1

1

0

0

0

0

0

0

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

1

1

1

1

1

0

0

0

0

0

_1319613706

_1319613704.unknown

_1319613701.vsd

_1319613702.vsd
0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

SB

SR

Image Segment

3х3 pixel

_1319613700.vsd
0

1

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0100,

0110,

0000,

0000

0

101

101110

Step 3

0

0

A 1 in location 1(012)

A 1 in location 2(102)

A 1 in location 1(012)

101010111000

Final Bitstream

Step 4

Step 1, 2

_1319613695.unknown

_1319613697.unknown

_1319613698.unknown

_1319613696.unknown

_1319613693.unknown

_1319613694.unknown

_1319613692.vsd
Shape

Interal texture

Image Segmentation

Boundary Descriptor

Coefficients of Transform Bases

Differential Coding

Arbitrary-shaped Transform

Entropy Coding

Quantization
And
Entropy Coding

Bit-stream

