Image Compression Tutorial

                                          

Chapter 3  Shape-Adaptive Image Compression Algorithm

The JPEG image compression standard can achieve great compression ratio, however, it does not take advantage of the local characteristics of the given image effectively. Therefore, the new image compression algorithm called shape-adaptive image compression algorithm, abbreviated SAIC, was proposed. Instead of segmenting the whole image into several square blocks and applying transform coding, quantization, and entropy coding to each block, the SAIC algorithm segments the whole image into several image segments, and each image segments has its own local characteristics. Because of the high correlation of the luma and chroma in each image segment, the SAIC can achieve higher compression ratio and better image quality than the conventional block-based image compression algorithm such as JPEG.
The flowchart of the shape-adaptive image compression adopted in this thesis is shown in Fig. 3.1. First, the input image is segmented into shape part and internal texture part. The shape part contains the contour information of the image segments, while the internal texture part contains the internal contents of the image segments such as luma and chroma. These two parts of the image segments is encoded separately, and they will be combined into the full bitstream finally.
    In this chapter, I will introduce several methods to encode the shape information and the internal texture.
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Fig. 3.1 The block diagram of shape-adaptive image compression
3.1 Coding of Binary Shape Image
In shape-adaptive image compression, we must exploit some image segmentation algorithms to capture the shape information of the source image. After the shape information is obtained, we must use some shape compression methods to reduce the quantity of data. In this thesis, I adopt the method introduced in and run length coding to reduce the quantity of data.
3.1.1 Differential Coding of Binary Shape Image
    As we know, high correlation often exists between the neighboring pixels in the natural images. These high correlation characteristics still exist in the binary image, and we can apply some methods to reduce the correlation. Because there are only 2 levels in the binary shape image, it is not proper for us to use the common image compression methods such as JPEG, JPEG 2000 and so on. One method to reduce the correlation is the differential coding, which is introduced in section 3.1.2, and it is very efficient for the binary shape image. After differential coding, the probability of white pixel will be much less than that of the black pixel, so we can apply the coding algorithm in [33] or run length coding to achieve compression.
    If we apply the differential coding directly, which is defined in (3.1) GOTOBUTTON ZEqnNum174589  \* MERGEFORMAT 
, then the symbol set may become {-1,0,1}. For example, if aij=0 and ai,j-1=1, then the value of dij is -1.
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  MACROBUTTON MTPlaceRef \* MERGEFORMAT (3.1)

where aij is the pixel value of (i,j)th element in the binary image, and the size of the image is N×M
    Therefore, the differential method in (3.1) GOTOBUTTON ZEqnNum174589  \* MERGEFORMAT 
 cannot be applied to the binary shape image directly. In [32], the George et al. Proposed a new differential algorithm with XOR(Exclusive-OR) for the binary image. The differential coding method is defined in (3.2) GOTOBUTTON ZEqnNum521775  \* MERGEFORMAT 
.
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  MACROBUTTON MTPlaceRef \* MERGEFORMAT (3.2)

where 
[image: image4.wmf]Å

 means Exclusive-OR.
    We take the binary lena image for experiment. The original binary lena image and the binary difference image is shown in Fig. 3.1. It is worth noting that the differential coding is applied along the horizontal direction and along the vertical direction afterward. As can be seen from the simulation result, the probability of 1 is much less than that of 0, which makes us easier to process and compress it.
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	(a) The original binary lena image
	(b) The binary difference image


Fig. 3.2 The binary Lena image before and after differential coding
    In the end of this section, I also perform some simulations on our binary shape image, and the simulation results are shown in Fig 3.3.
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	(a) The binary shape image
	(b) The binary difference image


Fig. 3.3 The binary shape image before and after differential coding
3.1.2 Block Coding of Sparse Binary Image
    After differential coding, we can apply the probability characteristics to achieve compression. As we know, the data will become geometric distribution after differential coding. However, the symbol set contains 2 elements only, so the Golomb codes can not be applied. In [33], the coding method designed for the sparse binary image (most elements in the binary image are 0) was proposed. The method is called Block Coding method and the flow of this algorithm is as follows. One example is shown in Fig. 3.4.
	Block Coding Algorithm

1. Map the 2D image to 1D row-stacked form, and the number of elements must be modeled as 
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, where n is the total number of pixels in the binary image, and p is the probability of finding “1“.

3. Segment the 1D data string into 
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 blocks, and each block contains 
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 bits. Therefore, M=a+b.

4. We introduce a comma ‘0 ‘ to seperate the blocks.

5. There two conditions

5.1 If there is no 1 in one block, then no coding in needed for the block

5.2 If there are 1s in one block, then assign each 1 a prefix “1“ followed by b bits to indicate its location in the block.
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Fig. 3.4 One example of block coding
    After differential coding the binary shape image, the probability of finding “1“ in the difference image ( Fig. 3.3 (b) ) is 0.024 and the probability of finding “0“ is 0.976. Therefore, we can exploit the block coding algorithm to compress the difference image. The data quantity of the difference image after block coding is 228 bytes. If we encode each image segemnt in the shape image separately, the quantity of data after block coding is 154 bytes as shown in Fig. 3.5. As can seen from the simulation result, the lower the probability of finding “1“, the higher the compression ratio.
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Fig. 3.5 The data quantity and compression ratio of each element

    Although this coding method cannot achieve high coding efficiency than that of the Fourier descriptor, the contour of all image segments can be perfectly reconstructed because this is a lossless compression algorithm.
3.2 Coding of Internal Texture
    In block-based transform coding algorithms, the source image is segmented into several small blocks with fixed N(N size. In each block, all the pixel values are fully defined, and the DCT can be used to encode these blocks efficiently. However, for the image segments in shape-adaptive image compression, only a portion of pixel values is defined. One straight method to solve this problem is to fill zero values outside the contour and treat the filled contour block as a rectangular block. However, padding zeros will introduce unnecessary high frequency components across the object boundary, so the high-frequency transform coefficients increase and the compression performance seriously degrade. We show one example of the padding method in Fig. 3.6.
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Fig. 3.6 Arbitrary DCT Transform by padding zeros outside the boundary


Instead of filling data outside the image boundary and applying rectangular transform, we can focus on the defined image contents only, i.e. P(x, y) values within region B. Mathematically, let’s define SR as the linear space spanned over the whole square block R, SB as the subspace spanned over the irregular region B only. For example, in Fig. 3.7 (a), space SR has a dimension equals to 9, while the dimension of subspace SB equals to 6. One possible basis for subspace SB is shown in Fig. 3.7 (b). Each basis matrix has a single non-zero element only.
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Fig. 3.7 (a) An irregular-shape image segment in a 3(3 block area
(b) A canonical basis of the subspace

Every arbitrary-shape image segment, P(x, y), can be considered as a vector in SB. To represent this vector completely, we can find a set of independent vectors, say bi, in SB and describe P(x, y) as a linear combination of bi’s. The distinction between this approach and that in the previous section is that the whole problem domain now is confined in the subspace SB only. We don’t have to worry about the redundant data outside the image boundary, i.e. vector component outside subspace SB. If we still want to use traditional block-based transform bases, say fi (e.g. DCT basis), we can project these basis functions into subspace SB, 
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  MACROBUTTON MTPlaceRef \* MERGEFORMAT (3.3)

and describe vector P(x, y) as a linear combination of 
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i

f

’s. Actually, the above projection is very simple. It just removes the components of fi outside subspace SB. 

An important issue remains now is how to find optimal basis functions in subspace SB such that we can use the least number of coefficients to reconstruct the image segment vector with satisfactory errors. The above formulation does provide a very flexible platform to derive new transform bases and evaluate their performance.

3.2.1 Arbitrary-Shape transform based on Gram-Schmidt Process

In this subsection, we introduce the proposed transform method to remove correlation based on the Gram-Schmidt process. To compare with the 8(8 DCT, we use the same image segment in Fig. 3.8 whose height and width are both eight, as shown in Fig. 3.8 (a). Fig. 3.8 (b) is its binary shape image by filling with one’s in the position inside the boundary of the shape and filling with zeroes otherwise. 

[image: image30.emf]0

105

0

0

98

100

0

99

97

0

101

89

75

73

94

96

85

87

0

66

64

0

60

55

0

0

0

0

0

0

84

93

0

94

86

86

90

94

86

81

81

81

71

70

72

66

0

0

0

0

0

0

0

0

98

105

97

104

78

0

0

0

0

0

0

1

0

0

1

1

0

1

1

0

1

1

1

1

1

1

1

1

0

1

1

0

1

1

0

0

0

0

0

0

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

1

1

1

1

1

0

0

0

0

0


Fig. 3.8
(a) An arbitrary-shape image segment f and (b) its shape matrix

Similar to the 8(8 DCT, we can get the H(W bases of the image segment f. We multiplying the original H(W DCT basis by the shape matrix shown in Fig. 3.8 (b) and the result is shown in Fig. 3.9. Because the point number M of is less than H(W, we can know that the H(W bases are not orthogonal. Before we use the Gram-Schmidt process to reduce the bases to M orthogonal ones, we reorder the H(W bases by the zigzag reordering matrix. The reason to reorder is that the low frequency components concentrate on the left-top position and is more important to the high frequency components which concentrate on the right-bottom position. After zigzag scan reordering, we reserve the front 37 basis and discard all the remaining bases which are shown in Fig. 3.11.
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Fig. 3.9 The 8(8 DCT bases with the shape of f
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Fig. 3.10 Zig-zag reordering matrix
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	
[image: image96.png]



	
[image: image97.png]



	
[image: image98.png]



	
[image: image99.png]



	
[image: image100.png]



	
[image: image101.png]N




	
[image: image102.png]



	
[image: image103.png]



	
[image: image104.png]



	
[image: image105.png]




	11
	12
	13
	14
	15
	16
	17
	18
	19
	20

	
[image: image106.png]



	
[image: image107.png]



	
[image: image108.png]



	
[image: image109.png]



	
[image: image110.png]



	
[image: image111.png]



	
[image: image112.png]



	
[image: image113.png]



	
[image: image114.png]



	
[image: image115.png]




	21
	22
	23
	24
	25
	26
	27
	28
	29
	30

	
[image: image116.png]



	
[image: image117.png]



	
[image: image118.png]



	
[image: image119.png]



	
[image: image120.png]



	
[image: image121.png]



	
[image: image122.png]ey




	
[image: image123.png]



	
[image: image124.png]



	
[image: image125.png]




	31
	32
	33
	34
	35
	36
	37
	
	
	

	
[image: image126.png]



	
[image: image127.png]



	
[image: image128.png]



	
[image: image129.png]



	
[image: image130.png]



	
[image: image131.png]



	
[image: image132.png]



	
	
	


Fig. 3.11 The reordered 37 arbitrary-shape DCT bases
    Finally we apply the Gram-Schmidt process to get the M orthogonal bases for the image segment f. The Gram-Schmidt process can be computed by means of QR decomposition method. We represent each of the above arbitrary DCT bases in row-stacked vector form and combined these vectors to form the matrix A with size M-by-M (M=37 for this example).
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    We then rearrange the equations above so that the 
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s are on the left, producing the following equations.
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Because 
[image: image139.wmf]i
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s are unit vector, we have the following
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The right side can be expressed as
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    From (3.8)

, we can conclude that the Gram-Schmidt can be computed from QR-decomposition method. We define the Q and R matrix as
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    Thus, all orthonormal basis Q is obtained. We reorder the input image object f in row-stacked form also and take the arbitrary transform.
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The M transform coefficients of f in this example are show in Fig. 3.12.
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Fig. 3.12
The 37 arbitrary-shape DCT coefficients of f
3.3 Quantizer
After the transform coefficients are obtained, we quantize the coefficients to compress the data. Because the length of the coefficients of the arbitrary shape is not fixed, the quantization table for JPEG must be modified. I define the unfixed quantization array as follows:
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where the two parameters Qa and Qc are the slope and the intercept of the line, respectively. And M is the length of the DCT coefficients.
Each DCT coefficient F(k) is divided by the corresponding quantization array Q(k) and rounded to the nearest integer as:
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Fig. 3.13 Quantization level
3.4 The Full Compression Algorithm Flow
After transforming and quantizing the internal texture, we can encode the quantized coefficients and combine these encoded internal texture coefficients with the encoded boundary bit-stream. The full encoding procedure is shown in Fig. 3.14.
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Fig. 3.14 Procedure of the Shape-Adaptive Coding Method
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