Algorithms for L1 minimization

- 1 Homotopy Method
- 2 Iteratively Reweighted Least Squares
- 3 Chambolle and Pock's Primal-Dual Algorithm
- 4 Alternating Direction Method of Multipliers
- 5 Forward-Backward Splitting Method
- 6 Douglas-Rachford Splitting
- Reference

- Homotopy Method
 - Background Knowledge of Convex Analysis
 - Method
- 2 Iteratively Reweighted Least Squares
- 3 Chambolle and Pock's Primal-Dual Algorithm
- 4 Alternating Direction Method of Multipliers
- 5 Forward-Backward Splitting Method
- 6 Douglas-Rachford Splitting

Subdifferential

• The subdifferential of a convex function $F: \mathbb{R}^N \to (-\infty, \infty]$ at a point $x \in \mathbb{R}^N$ is defined by

$$\partial F(x) = \{ v \in \mathbb{R}^N : F(z) \ge F(x) + \langle v, z - x \rangle \text{ for all } z \in \mathbb{R}^N \}$$

• The elements of $\partial F(x)$ are called subgradients of F at x

• A vector x is a minimum of a convex function F if and only if $0 \in \partial F(x)$

- Homotopy Method
 - Background Knowledge of Convex Analysis
 - Method
- 2 Iteratively Reweighted Least Squares
- 3 Chambolle and Pock's Primal-Dual Algorithm
- 4 Alternating Direction Method of Multipliers
- 5 Forward-Backward Splitting Method
- 6 Douglas-Rachford Splitting

Fundamental Concepts

- Objective : $x^{\sharp} = \underset{x \in \mathbb{R}^N}{\operatorname{argmin}} \|x\|_1$ subject to Ax=y, $A \in \mathbb{R}^{m \times N}$ and $y \in \mathbb{R}^m$
- Basis pursuit denoising : $x_{\lambda} = \underset{x \in \mathbb{R}^N}{argmin} \frac{1}{2} \|Ax y\|_2^2 + \lambda \|x\|_1$
- $\bullet \lim_{\lambda \to 0^+} x_{\lambda} = x^{\sharp}$
- Iteratively construct λ_n and x_n such that $\lambda_n \to 0^+$ and $x_n = x_{\lambda_n}$ \to in this way, x_n will converge to x^{\sharp}
- Let $F_{\lambda_n} = \frac{1}{2} ||Ax y||_2^2 + \lambda_n ||x||_1$
- $x_n = \underset{x \in \mathbb{R}^N}{\operatorname{argmin}} F_{\lambda_n}(x) \Leftrightarrow 0 \in \partial F_{\lambda_n}(x_n) = A^*(Ax_n y) + \lambda_n \partial \|x_n\|_1$
 - $(A^*(Ax_n y))_{\ell} = -\lambda_n sgn((x_n)_{\ell}), \text{ if } (x_n)_{\ell} \neq 0 (1)$
 - $|(A^*(Ax_n-v))_{\ell}| < \lambda_n$, if $(x_n)_{\ell} = 0$ (2)

- Let $c^{(j)} = A^*(Ax_{j-1} y)$
- Initialization :

$$\ell_1 = \underset{\ell \in [N]}{\operatorname{argmax}} |c_{\ell}^{(1)}|, \ S_1 = \{\ell_1\}$$

- Step 1 :
 - $\textbf{0} \ \ \mathsf{compute} \ \ \textit{d}^{(1)} \Rightarrow \textit{d}^{(1)}_{\ell_1} = \frac{\mathit{sgn}((A^*y)_{\ell_1})}{\|\mathbf{a}_{\ell_1}\|_2^2} = \frac{-\mathit{sgn}(\mathbf{c}^{(1)}_{\ell_1})}{\|\mathbf{a}_{\ell_1}\|_2^2}, \ \ \textit{d}_{\ell} = 0, \ \ell \not \in S_1$
 - 2 $x_1 = x_0 + \gamma_1 d^{(1)} = \gamma_1 d^{(1)}$

Up to now, we have $(A^*(Ax_1-y))_\ell=(\lambda_0-\gamma_1) sgn(c_{\ell_1}^{(1)})$

• Step 1 :

$$\begin{split} &(A^*(Ax_1-y))_{\ell} = -(\lambda_0-\gamma_1) \textit{sgn}((x_1)_{\ell}), \ \ell \in S_1 \text{ - (1)} \\ &|(A^*(Ax_1-y))_{\ell}| \leq (\lambda_0-\gamma_1), \ \ell \not \in S_1 \text{ - (2)} \end{split}$$

should be satisfied

(1) is satisfied

$$\textbf{ § } \ell_2 = \underset{\ell \not \in S_1}{\operatorname{argmin}} \{ \frac{\lambda_0 + c_\ell^{(1)}}{1 - (A^* A d^{(1)})_\ell}, \frac{\lambda_0 - c_\ell^{(1)}}{1 + (A^* A d^{(1)})_\ell} \}$$

6
$$S_2 = \{\ell_1, \ell_2\}$$

- Step j=2,3,...:

 - 2 $x_j = x_{j-1} + \gamma_j d^{(j)}$

Up to now, we have
$$(A^*(Ax_j - y))_{\ell} = (\lambda_{j-1} - \gamma_j) sgn(c_{\ell}^{(j)}), \ \ell \in S_j$$

 $(A^*(Ax_j - y))_{\ell} = -(\lambda_{j-1} - \gamma_j) sgn((x_j)_{\ell}), \ \ell \in S_j$ - (1)
 $|(A^*(Ax_j - y))_{\ell}| \leq (\lambda_{j-1} - \gamma_j), \ \ell \not\in S_j$ - (2)
should be satisfied

• Step j=2,3,...:

$$\gamma_{-}^{(j)} = \min_{\ell \in S_{j}, d_{\ell}^{(j)} \neq 0} \{-(x_{j-1})_{\ell}/d_{\ell}^{(j)}\} \Rightarrow \text{ to satisfy (1)}$$

$$\gamma_{+}^{(j)} = \min_{\ell \notin S_{j}} \{\frac{\lambda_{j-1} + c_{\ell}^{(j)}}{1 - (A^{*}Ad^{(j)})_{\ell}}, \frac{\lambda_{j-1} - c_{\ell}^{(j)}}{1 + (A^{*}Ad^{(j)})_{\ell}}\} \Rightarrow \text{ to satisfy (2)}$$

$$\gamma = \min\{\gamma_{-}^{(j)}, \gamma_{+}^{(j)}\}$$

$$\ell_{-}^{(j)} = \underset{\ell \in S_{j}, d_{\ell}^{(j)} \neq 0}{\operatorname{argmin}} \{-(x_{j-1})_{\ell}/d_{\ell}^{(j)}\}$$

$$\ell_{+}^{(j)} = \underset{\ell \notin S_{j}}{\operatorname{argmin}} \{\frac{\lambda_{j-1} + c_{\ell}^{(j)}}{1 - (A^{*}Ad^{(j)})_{\ell}}, \frac{\lambda_{j-1} - c_{\ell}^{(j)}}{1 + (A^{*}Ad^{(j)})_{\ell}}\}$$

$$if \ell^{(j)} = \underset{\ell \in S_{j}}{\operatorname{argmin}} \{\gamma_{-}^{(j)}, \gamma_{+}^{(j)}\} = \ell_{-}^{(j)} \Rightarrow S_{j+1} = S_{j} \setminus \{\ell_{-}^{(j)}\}$$

$$if \ell^{(j)} = \underset{\ell \in S_{j}}{\operatorname{argmin}} \{\gamma_{-}^{(j)}, \gamma_{+}^{(j)}\} = \ell_{-}^{(j)} \Rightarrow S_{j+1} = S_{j} \setminus \{\ell_{-}^{(j)}\}$$

< ロ ト ∢ ┛ ト ∢ 差 ト ◆ 差 ・ 夕 Q (^)

Analysis

- Assume the minimizer of the origin ℓ_1 -minimization problem is unique and the minimizer $\ell^{(j)}$ in each step is unique
 - \Rightarrow The algorithm stops when $\lambda_j=\|c^{(j+1)}\|_{\infty}=0$, i.e., when the residual vanishes, and it outputs $x^{\sharp}=x_j$
- It is observed empirically in sparse recovery problems that the homotopy method merely removes elements from the active set
 - \to if we do not consider $\gamma_-^{(j)},$ then homotopy method reduces to the LARS (least angle regression) algorithm
- The homotopy and LARS methods are very efficient when the solution is very sparse. However, they only apply to the real case

- 1 Homotopy Method
- 2 Iteratively Reweighted Least Squares
- Chambolle and Pock's Primal-Dual Algorithm
- 4 Alternating Direction Method of Multipliers
- 5 Forward-Backward Splitting Method
- 6 Douglas-Rachford Splitting
- Reference

- 1 Homotopy Method
- Iteratively Reweighted Least Squares
 - Background Knowledge of Linear Algebra
 - Method
- 3 Chambolle and Pock's Primal-Dual Algorithm
- 4 Alternating Direction Method of Multipliers
- 5 Forward-Backward Splitting Method
- 6 Douglas-Rachford Splitting

Pseudo Inverse

$$A=U\Sigma V^*=\sum\limits_{j=1}^r\sigma_j(A)u_jv_j^*,\ A\in\mathbb{C}^{m imes N}$$
 is rank r $A^\dagger=V\Sigma^{-1}U^*=\sum\limits_{j=1}^r\sigma_j^{-1}(A)v_ju_j^*$

- A^{\dagger} is rank r
- If A is invertible $\Rightarrow A^{\dagger} = A^{-1}$
- $\sigma_{\max}(A^{\dagger}) = \|A^{\dagger}\|_{2 \to 2} = \sigma_r^{-1}(A)$
- If $A^*A \in \mathbb{C}^{n \times n}$ is invertible $(m \ge n) \Rightarrow A^{\dagger} = (A^*A)^{-1}A^*$
- If $AA^* \in \mathbb{C}^{m \times m}$ is invertible $(n \geq m) \Rightarrow A^\dagger = A^*(AA^*)^{-1}$

Least Squares Problem 1

- ullet Objective : $\displaystyle \mathop{\textit{minimize}}_{x} \|Ax y\|_{2}$, $A \in \mathbb{C}^{m \times n}$, $m \geq n$, full rank n
- Method 1 : Project y to range of A $\langle y - Ax, Ax \rangle = 0 \Rightarrow \langle A^*y - A^*Ax, x \rangle = 0$ $\Rightarrow A^*y = A^*Ax : x = (A^*A)^{-1}A^*y = A^\dagger y$
- Method 2 :

Least Squares Problem 2

- Objective : $\min_{x} \max \|x\|_2$ subject to Ax = y
- Method :

$$\begin{aligned} \mathbf{x}^{\sharp} &= \operatorname*{argmin}_{\mathbf{x}} \|\mathbf{x}\|_{2}^{2} + \lambda^{T} (A\mathbf{x} - \mathbf{y}) \Rightarrow \mathbf{x}^{\sharp} = -\frac{1}{2} A^{*} \lambda \\ & \therefore A\mathbf{x}^{\sharp} = \mathbf{y} \therefore -\frac{1}{2} A A^{*} \lambda = \mathbf{y} \Rightarrow \lambda = -2 (AA^{*})^{-1} \mathbf{y} \Rightarrow \mathbf{x}^{\sharp} = A^{\dagger} \mathbf{y} \end{aligned}$$

- 1 Homotopy Method
- 2 Iteratively Reweighted Least Squares
 - Background Knowledge of Linear Algebra
 - Method
- 3 Chambolle and Pock's Primal-Dual Algorithm
- 4 Alternating Direction Method of Multipliers
- 5 Forward-Backward Splitting Method
- 6 Douglas-Rachford Splitting

- Objective : $\displaystyle \mathop{minimize}_{x \in \mathbb{C}^N} \|x\|_1$ subject to Ax=y, $A \in \mathbb{C}^{m \times N}$ $m \leq N$
- Key : $|t| = |t|^2/|t|$ for $t \neq 0$
 - \rightarrow naive idea : $\underset{x}{\textit{minimize}} \sum_{j=1}^{N} |x_j|^2 |x_j^{\sharp}|^{-1}$ subject to Ax=y
 - ⇒ advantage : we can minimize a quadractic function disadvantage :
 - $\triangleright x^{\sharp}$ is unknown
 - x^{\sharp} is sparse \Rightarrow inverse will becomes infinity

Mature objective function :

$$J(x, w, \epsilon) = \frac{1}{2} \left[\sum_{j=1}^{N} |x_j|^2 w_j + \sum_{j=1}^{N} (\epsilon^2 w_j + w_j^{-1}) \right]$$

 \Rightarrow substitute the role of x^{\sharp} with w_j

$$ightarrow$$
 When $x^{\sharp}=0$, $w_{j}=|x_{j}^{\sharp}|^{-1}
ightarrow\infty$

 \Rightarrow we use $\epsilon^2 w_j$ to regularize w_j from being too large while also using the regularization term w_i^{-1} to prevent w_j from being too small

Iteratively reweighted least squares (IRLS)

Input: $\mathbf{A} \in \mathbb{C}^{m \times N}$, $\mathbf{y} \in \mathbb{C}^m$.

Parameter: $\gamma > 0, s \in [N]$.

Initialization: $\mathbf{w}^0 = [1, 1, \dots, 1]^{\mathsf{T}} \in \mathbb{R}^N, \varepsilon_0 = 1.$

Iteration: repeat until $\varepsilon_n = 0$ or a stopping criterion is met at $n = \bar{n}$:

$$\mathbf{x}^{n+1} := \underset{\mathbf{z} \in \mathbb{C}^N}{\operatorname{argmin}} \mathcal{J}(\mathbf{z}, \mathbf{w}^n, \varepsilon_n) \quad \text{subject to } \mathbf{A}\mathbf{z} = \mathbf{y},$$
 (IRLS₁)

$$\varepsilon_{n+1} := \min\{\varepsilon_n, \gamma(\mathbf{x}^{n+1})_{s+1}^*\},\tag{IRLS}_2$$

$$\mathbf{w}^{n+1} := \underset{\mathbf{w}>0}{\operatorname{argmin}} \mathcal{J}(\mathbf{x}^{n+1}, \mathbf{w}, \varepsilon_{n+1}). \tag{IRLS}_3)$$

Output: A solution $\mathbf{x}^{\sharp} = \mathbf{x}^{\bar{n}}$ of $\mathbf{A}\mathbf{x} = \mathbf{y}$, approximating the sparsest one.

•
$$IRLS_1: x^{n+1} = \underset{z}{argmin} J(z, w^n, \epsilon_n)$$
 subject to Az=y
$$\Rightarrow x^{n+1} = \underset{z}{argmin} \frac{1}{2} [\sum_{j=1}^N |z_j|^2 w_j^n] \text{ subject to Az=y}$$
 Let $D_{W^n} = diag[w_1^n, w_2^n, \cdots, w_n^n]$ and make a substitution $x = D_{W^n}^{1/2} z$
$$\Rightarrow D_{W^n}^{1/2} x^{n+1} = \underset{x}{argmin} \|x\|_2 \text{ subject to } AD_{W^n}^{-1/2} x = y$$

$$\Rightarrow x^{n+1} = D_{W^n}^{-1/2} (AD_{W^n}^{-1/2})^{\dagger} y$$

$$= D_{W^n}^{-1/2} A^* (AD_{W^n}^{-1/2})^{\dagger} y$$

$$= D_{W^n}^{-1} A^* (AD_{W^n}^{-1/2})^{\dagger} y$$

$$= D_{W^n}^{-1} v, \text{ where } (AD_{W^n}^{-1/2})^{\dagger} v = y$$

$$\rightarrow \text{ can use conjugate gradient method to solve}$$

$$\begin{split} \bullet \ \mathit{IRLS}_3: \ \mathit{w}^{n+1} &= \underset{w>0}{\operatorname{argmin}} \ \mathit{J}(\mathit{x}^{n+1}, \mathit{w}, \epsilon_{n+1}) \\ &= \underset{w>0}{\operatorname{argmin}} \ \tfrac{1}{2} [\sum_{j=1}^{\mathit{N}} |\mathit{x}_{j}^{n+1}|^2 \mathit{w}_{j} + \sum_{j=1}^{\mathit{N}} \epsilon_{n+1}^2 \mathit{w}_{j} + \mathit{w}_{j}^{-1}] \\ &\Rightarrow \mathit{w}_{j}^{n+1} = \tfrac{1}{\sqrt{|\mathit{x}_{i}^{n+1}|^2 + \epsilon_{n+1}^2}}, \ \mathit{j} \in [\mathit{N}] \end{split}$$

 \rightarrow we find that ϵ_{n+1} can effectively prevent w_j^{n+1} from exploding; however, we hope that ϵ_{n+1} can tend to zero

- $IRLS_2$: $\epsilon_{n+1} := \min\{\epsilon_n, \gamma(x^{n+1})_{s+1}^*\}$
 - ightharpoonup is nonincreasing
 - ▶ As x tends to s-sparse, ϵ can also decrease.

- Homotopy Method
- 2 Iteratively Reweighted Least Squares
- 3 Chambolle and Pock's Primal-Dual Algorithm
- 4 Alternating Direction Method of Multipliers
- 5 Forward-Backward Splitting Method
- 6 Douglas-Rachford Splitting
- Reference

- Homotopy Method
- 2 Iteratively Reweighted Least Squares
- 3 Chambolle and Pock's Primal-Dual Algorithm
 - Algorithm
 - Actual Cases
- 4 Alternating Direction Method of Multipliers
- 5 Forward-Backward Splitting Method
- 6 Douglas-Rachford Splitting

• Objective : $\min_{x \in \mathbb{R}^N} F(Ax) + G(x)$ $\equiv \min_{x \in \mathbb{R}^N, z \in \mathbb{R}^m} F(z) + G(x) \text{ subject to } Ax - z = 0$ $(A \in \mathbb{C}^{m \times N}; F : \mathbb{C}^m \to (-\infty, \infty], G : \mathbb{C}^N \to (-\infty, \infty] \text{ are two convex functions})$

Primal-Dual Algorithm

Input: $\mathbf{A} \in \mathbb{C}^{m \times N}$, convex functions F, G.

Parameters: $\theta \in [0,1], \tau, \sigma > 0$ such that $\tau \sigma \|\mathbf{A}\|_{2\to 2}^2 < 1$.

Initialization: $\mathbf{x}^0 \in \mathbb{C}^N, \boldsymbol{\xi}^0 \in \mathbb{C}^m, \bar{\mathbf{x}}^0 = \mathbf{x}^0.$

Iteration: repeat until a stopping criterion is met at $n = \bar{n}$:

$$\boldsymbol{\xi}^{n+1} := P_{F^*}(\sigma; \boldsymbol{\xi}^n + \sigma \mathbf{A} \bar{\mathbf{x}}^n), \tag{PD_1}$$

$$\mathbf{x}^{n+1} := P_G(\tau; \mathbf{x}^n - \tau \mathbf{A}^* \boldsymbol{\xi}^{n+1}), \tag{PD_2}$$

$$\bar{\mathbf{x}}^{n+1} := \mathbf{x}^{n+1} + \theta(\mathbf{x}^{n+1} - \mathbf{x}^n). \tag{PD_3}$$

Output: Approximation $\boldsymbol{\xi}^{\sharp} = \boldsymbol{\xi}^{\bar{n}}$ to a solution of the dual problem (15.16), Approximation $\mathbf{x}^{\sharp} = \mathbf{x}^{\bar{n}}$ to a solution of the primal problem (15.15).

Convex Conjugate

• Given a function $F: \mathbb{R}^N \to (-\infty, \infty]$, the convex conjugate function of F is the function $F^*: \mathbb{R}^N \to (-\infty, \infty]$ defined by

$$F^*(y) := \sup_{x \in \mathbb{R}^N} \{\langle x, y \rangle - F(x) \}$$

- The convex conjugate F^* is always a convex function
- By the definition of convex conjugate, we can get the Fenchel (or Young, or Fenchel-Young) inequality

$$\langle x, y \rangle \le F(x) + F^*(y) \ \forall x, y \in R^N$$

▶ If $x \in \partial F^*(y)$ (equivalently, $y \in \partial F(x)$), then equality holds

Primal-Dual Algorithm

Input: $\mathbf{A} \in \mathbb{C}^{m \times N}$, convex functions F, G.

Parameters: $\theta \in [0, 1], \tau, \sigma > 0$ such that $\tau \sigma \|\mathbf{A}\|_{2\to 2}^2 < 1$.

Initialization: $\mathbf{x}^0 \in \mathbb{C}^N, \boldsymbol{\xi}^0 \in \mathbb{C}^m, \bar{\mathbf{x}}^0 = \mathbf{x}^0.$

Iteration: repeat until a stopping criterion is met at $n = \bar{n}$:

$$\boldsymbol{\xi}^{n+1} := P_{F^*}(\sigma; \boldsymbol{\xi}^n + \sigma \mathbf{A} \bar{\mathbf{x}}^n), \tag{PD_1}$$

$$\mathbf{x}^{n+1} := P_G(\tau; \mathbf{x}^n - \tau \mathbf{A}^* \boldsymbol{\xi}^{n+1}), \tag{PD_2}$$

$$\bar{\mathbf{x}}^{n+1} := \mathbf{x}^{n+1} + \theta(\mathbf{x}^{n+1} - \mathbf{x}^n). \tag{PD_3}$$

Output: Approximation $\boldsymbol{\xi}^{\sharp} = \boldsymbol{\xi}^{\bar{n}}$ to a solution of the dual problem (15.16), Approximation $\mathbf{x}^{\sharp} = \mathbf{x}^{\bar{n}}$ to a solution of the primal problem (15.15).

Proximal Mapping

- $P_F(z) := \underset{x \in R^N}{\operatorname{argmin}} F(x) + \frac{1}{2} ||x z||_2^2$
 - \rightarrow the proximal mapping associated with F
- $x = P_F(z)$ if and only if $z \in x + \partial F(x) \Rightarrow P_F = (Id + \partial F)^{-1}$
- Moreau's identity : $P_F(z) + P_{F^*}(z) = z$
- $P_G(\tau; z) := P_{\tau G}(z); P_{F^*}(\sigma; z) := P_{\sigma F^*}(z)$

Primal-Dual Algorithm

Input: $\mathbf{A} \in \mathbb{C}^{m \times N}$, convex functions F, G.

Parameters: $\theta \in [0,1], \tau, \sigma > 0$ such that $\tau \sigma \|\mathbf{A}\|_{2\to 2}^2 < 1$.

Initialization: $\mathbf{x}^0 \in \mathbb{C}^N, \boldsymbol{\xi}^0 \in \mathbb{C}^m, \bar{\mathbf{x}}^0 = \mathbf{x}^0.$

Iteration: repeat until a stopping criterion is met at $n = \bar{n}$:

$$\boldsymbol{\xi}^{n+1} := P_{F^*}(\sigma; \boldsymbol{\xi}^n + \sigma \mathbf{A} \bar{\mathbf{x}}^n), \tag{PD_1}$$

$$\mathbf{x}^{n+1} := P_G(\tau; \mathbf{x}^n - \tau \mathbf{A}^* \boldsymbol{\xi}^{n+1}), \tag{PD_2}$$

$$\bar{\mathbf{x}}^{n+1} := \mathbf{x}^{n+1} + \theta(\mathbf{x}^{n+1} - \mathbf{x}^n). \tag{PD_3}$$

Output: Approximation $\boldsymbol{\xi}^{\sharp} = \boldsymbol{\xi}^{\bar{n}}$ to a solution of the dual problem (15.16), Approximation $\mathbf{x}^{\sharp} = \mathbf{x}^{\bar{n}}$ to a solution of the primal problem (15.15).

Optimization problems with a composite objective function

- Primal problem : $\min_{x \in \mathbb{R}^N} F(Ax) + G(x)$ $\equiv \min_{x \in \mathbb{R}^N, z \in \mathbb{R}^m} F(z) + G(x) \text{ subject to } Ax z = 0$
- Lagrange function : $L(x, z, \xi) = F(z) + G(x) + \langle \xi, Ax z \rangle$
- • Lagrange dual function : $H(\xi) = \inf_{x,z} L(x,z,\xi)$ $= -F^*(\xi) - G^*(-A^*\xi)$
- $\bullet \ \, \mathsf{Dual} \ \mathsf{problem} : \max_{\xi \in \mathbb{R}^m} (-F^*(\xi) G^*(-A^*\xi))$
- By strong duality : it is equivalent to solving a saddle-point problem $\min_{x \in \mathbb{R}^N} \max_{\xi \in \mathbb{R}^m} Re\langle Ax, \xi \rangle + G(x) F^*(\xi)$

Fixed-Point Interpretation

• Fix $x = x^{\sharp}$:

the saddle-point problem becomes

$$\max_{\xi \in \mathbb{R}^m} Re\langle Ax^{\sharp}, \xi \rangle + G(x^{\sharp}) - F^*(\xi) = \min_{\xi \in \mathbb{R}^m} -Re\langle Ax^{\sharp}, \xi \rangle + G(x^{\sharp}) + F^*(\xi)$$

$$\Rightarrow \xi^{\sharp}$$
 is a minimizer iff $0 \in -Ax^{\sharp} + \partial F^{*}(\xi^{\sharp})$

• Fix $\xi = \xi^{\sharp}$:

the saddle-point problem becomes

$$\min_{x \in \mathbb{R}^m} Re\langle Ax, \xi^{\sharp} \rangle + G(x) - F^*(\xi^{\sharp})$$

 $\Rightarrow x^{\sharp}$ is a minimizer iff $0 \in A^*\xi^{\sharp} + \partial G(x^{\sharp})$

Fixed-Point Interpretation

• Fixed $x = x^{\sharp}$ to iterate \mathcal{E} : $0 \in -Ax^{\sharp} + \partial F^{*}(\xi^{\sharp})$ $\Rightarrow \sigma A x^{\sharp} \in \sigma \partial F^*(\xi^{\sharp})$ $\Rightarrow \mathcal{E}^{\sharp} + \sigma A x^{\sharp} \in \mathcal{E}^{\sharp} + \sigma \partial F^{*}(\mathcal{E}^{\sharp})$ $\Rightarrow \xi^{n+1} := P_{F^*}(\sigma; \xi^n + \sigma A \bar{x}^n)$ • Fixed $\xi = \xi^{\sharp}$ to iterate x : $0 \in A^* \mathcal{E}^{\sharp} + \partial G(x^{\sharp})$ $\Rightarrow -\tau A^* \mathcal{E}^{\sharp} \in \tau \partial \mathcal{G}(x^{\sharp})$ $\Rightarrow x^{\sharp} - \tau A^* \mathcal{E}^{\sharp} \in x^{\sharp} + \tau \partial G(x^{\sharp})$ $\Rightarrow x^{n+1} := P_G(\tau; x^n - \tau A^* \xi^{n+1})$

Algorithm Settings

- Initialization : $\mathbf{x}^0 = \bar{\mathbf{x}}^0 = \mathbf{A}^*\mathbf{y}$, $\xi^0 = 0$
- $||A||_{2\to 2} = \sigma_{\max}(A)$: choose τ, σ such that $\tau\sigma < \sigma_{\max}(A)^{-2}$
- A practical stopping criterion can be based on the primal-dual gap $E(x,\xi)=F(Ax)+G(x)+G^*(-A^*\xi)+F^*(\xi)\geq 0$ i.e., stops when $E(x^n,\xi^n)\leq \eta$ for a prescribed tolerance $\eta>0$

- Homotopy Method
- 2 Iteratively Reweighted Least Squares
- 3 Chambolle and Pock's Primal-Dual Algorithm
 - Algorithm
 - Actual Cases
- 4 Alternating Direction Method of Multipliers
- 5 Forward-Backward Splitting Method
- 6 Douglas-Rachford Splitting

ℓ_1 -minimization problem

• Objective : $\min_{x \in \mathbb{C}^N} ||x||_1$ subject to Ax=y

- $F^*(\xi) = \langle y, \xi \rangle \Rightarrow P_{F^*}(\sigma, z) = z \sigma y$
- $P_G(\tau,z)=S_{\tau}(z)$, where $S_{\tau}(z)$ is the soft thresholding operator operated entrywise on z

$$S_{ au}(z_{\ell}) = egin{cases} sgn(z_{\ell})(|z_{\ell}- au|) & |z_{\ell}| \geq au \ 0 & otherwise \end{cases}$$

ℓ_1 -minimization problem

• The primal-dual algorithm :

$$\boldsymbol{\xi}^{n+1} = \boldsymbol{\xi}^n + \sigma(\mathbf{A}\bar{\mathbf{x}}^n - \mathbf{y}),$$

$$\mathbf{x}^{n+1} = \mathcal{S}_{\tau}(\mathbf{x}^n - \tau\mathbf{A}^*\boldsymbol{\xi}^{n+1}),$$

$$\bar{\mathbf{x}}^{n+1} = \mathbf{x}^{n+1} + \theta(\mathbf{x}^{n+1} - \mathbf{x}^n).$$

quadractically constrained ℓ_1 -minimization problem

• Objective : $\min_{\mathbf{x} \in \mathbb{C}^N} \|\mathbf{x}\|_1$ subject to $\|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2 \leq \eta$

$$\bullet \ \mathit{F}^*(\xi) = \mathit{Re}\langle \xi, \mathit{y} \rangle + \eta \| \xi \|_2$$

•
$$P_{F^*}(\sigma, \xi) = \begin{cases} 0 & \|\xi - \sigma y\|_2 \le \eta \sigma \\ (1 - \frac{\eta \sigma}{\|\xi - \sigma y\|_2})(\xi - \sigma y) & \text{otherwise} \end{cases}$$

quadractically constrained ℓ_1 -minimization problem

• The primal-dual algorithm :

$$\begin{split} \boldsymbol{\xi}^{n+1} &= P_{F^*}(\boldsymbol{\sigma}; \boldsymbol{\xi}^n + \boldsymbol{\sigma} \mathbf{A} \bar{\mathbf{x}}^n) \\ &= \begin{cases} 0 & \text{if } \|\boldsymbol{\sigma}^{-1} \boldsymbol{\xi}^n + \mathbf{A} \bar{\mathbf{x}}^n - \mathbf{y}\|_2 \leq \eta, \\ \left(1 - \frac{\eta \boldsymbol{\sigma}}{\|\boldsymbol{\xi}^n + \boldsymbol{\sigma} (\mathbf{A} \bar{\mathbf{x}}^n - \mathbf{y})\|_2}\right) (\boldsymbol{\xi}^n + \boldsymbol{\sigma} (\mathbf{A} \bar{\mathbf{x}}^n - \mathbf{y})) & \text{otherwise,} \end{cases} \\ \mathbf{x}^{n+1} &= \mathcal{S}_{\tau}(\mathbf{x}^n - \boldsymbol{\tau} \mathbf{A}^* \boldsymbol{\xi}^{n+1}), \\ \bar{\mathbf{x}}^{n+1} &= \mathbf{x}^{n+1} + \theta(\mathbf{x}^{n+1} - \mathbf{x}^n). \end{split}$$

ℓ_1 -regularized least squares problem

• Objective : $\min_{\mathbf{x} \in \mathbb{C}^N} \|\mathbf{x}\|_1 + \frac{\gamma}{2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2$

•
$$\begin{cases} F(z) = \frac{\gamma}{2} ||z - y||_2^2 \\ G(x) = ||x||_1 \end{cases}$$

- $\bullet \ \mathit{F}^*(\xi) = \mathit{Re}\langle \mathit{y}, \xi \rangle + \tfrac{\|\xi\|_2^2}{2\gamma}$
- $P_{F^*}(\sigma;\xi) = \frac{\gamma}{\gamma+\sigma}(\xi-\sigma y)$

ℓ_1 -regularized least squares problem

• The primal-dual algorithm :

$$\boldsymbol{\xi}^{n+1} = \frac{\gamma}{\gamma + \sigma} \left(\boldsymbol{\xi}^n + \sigma (\mathbf{A} \bar{\mathbf{x}}^n - \mathbf{y}) \right),$$

$$\mathbf{x}^{n+1} = \mathcal{S}_{\tau} (\mathbf{x}^n - \tau \mathbf{A}^* \boldsymbol{\xi}^{n+1}),$$

$$\bar{\mathbf{x}}^{n+1} = \mathbf{x}^{n+1} + \theta (\mathbf{x}^{n+1} - \mathbf{x}^n).$$

- Homotopy Method
- 2 Iteratively Reweighted Least Squares
- 3 Chambolle and Pock's Primal-Dual Algorithm
- 4 Alternating Direction Method of Multipliers
- 5 Forward-Backward Splitting Method
- 6 Douglas-Rachford Splitting
- Reference

- 1 Homotopy Method
- 2 Iteratively Reweighted Least Squares
- 3 Chambolle and Pock's Primal-Dual Algorithm
- 4 Alternating Direction Method of Multipliers
 - Algorithm
 - Actual Case
- 5 Forward-Backward Splitting Method
- 6 Douglas-Rachford Splitting

Objective

$$\min_{x \in \mathbb{R}^N} F(x) + G(Bx)$$

$$\equiv \min_{x,y \in \mathbb{R}^N} F(x) + G(y) \text{ subject to } y = Bx$$

- F and G are both lower semicontinuous and convex
- B*B is invertible

Augmented Lagrangian of index $\tau > 0$:

$$L_{\tau}(x, y, \xi) = F(x) + G(y) + \frac{1}{\tau} Re\langle \xi, Bx - y \rangle + \frac{1}{2\tau} ||Bx - y||_2^2$$

Iteration Rule

• Fix
$$y = y^{\sharp}$$
, $\xi = \xi^{\sharp}$, minimize over x

$$\Rightarrow 0 \in \tau \partial F(x) + B^*Bx + B^*(\xi^{\sharp} - y^{\sharp})$$
Let $P_F^B(\tau; y) = \underset{z}{\operatorname{argmin}} \{ \tau F(z) + \frac{1}{2} \|Bz - y\|_2^2 \}$

$$\Rightarrow x^n = P_F^B(\tau; y^n - \xi^n)$$

- ② Fix $x = x^{\sharp}$, $\xi = \xi^{\sharp}$, minimize over y $\Rightarrow 0 \in \tau \partial G(y) + y - \xi^{\sharp} - Bx^{\sharp}$ $\Rightarrow v^{n+1} = P_G(\tau; Bx^n + \xi^n)$
- Fix $x = x^{\sharp}$, $y = y^{\sharp}$, minimize over ξ $\Rightarrow 0 = Bx^{\sharp} - y^{\sharp}$ $\Rightarrow \xi^{n+1} = \xi^n + Bx^n - y^{n+1}$

- 1 Homotopy Method
- 2 Iteratively Reweighted Least Squares
- 3 Chambolle and Pock's Primal-Dual Algorithm
- 4 Alternating Direction Method of Multipliers
 - Algorithm
 - Actual Case
- 5 Forward-Backward Splitting Method
- 6 Douglas-Rachford Splitting

Basis Pursuit

• Objective : $\underset{x}{\operatorname{argmin}} \|x\|_1$ subject to Ax=y

• Iteration :

2
$$y^{n+1} = S_{\tau}(x^n + \xi^n)$$

3
$$\xi^{n+1} = \xi^n + x^n - y^{n+1}$$

ℓ_1 -regularized least squares problem

- $\bullet \ \ \mathsf{Objective}: \ \underset{x}{\mathit{minimize}} \ \tfrac{1}{2} \|\mathit{Ax} \mathit{y}\|_2^2 + \lambda \|x\|_1$
- $F(x) = \frac{1}{2} ||Ax y||_2^2$, $G(x) = \lambda ||x||_1$
- Iteration :
 - **1** $x^n = (A^*A + \tau^{-1}Id)^{-1}(A^*y + \tau^{-1}(y^n \xi^n))$
 - **2** $y^{n+1} = S_{\tau \lambda}(x^n + \xi^n)$

- Homotopy Method
- 2 Iteratively Reweighted Least Squares
- 3 Chambolle and Pock's Primal-Dual Algorithm
- 4 Alternating Direction Method of Multipliers
- 5 Forward-Backward Splitting Method
- 6 Douglas-Rachford Splitting
- Reference

- Homotopy Method Table of Contents
- 2 Iteratively Reweighted Least Squares
- 3 Chambolle and Pock's Primal-Dual Algorithm
- 4 Alternating Direction Method of Multipliers
- 5 Forward-Backward Splitting Method
 - Algorithm
 - Actual Case
- 6 Douglas-Rachford Splitting
- Reference

Objective

$$\mathop{\textit{minimize}}_{x} F(x) + G(x)$$

- F is differentiable and convex
- ∇F is L-Lipschitz $\Rightarrow \|\nabla F(x) \nabla F(y)\|_2 \le L\|x y\|_2 \ \forall x, y$
- G is lower semicontinuous and convex

Iteration Rule

- $x^{\sharp} = \underset{\mathbf{x}}{\operatorname{argmin}} \ \mathsf{F}(\mathbf{x}) + \mathsf{G}(\mathbf{x}) \Rightarrow 0 \in \nabla F(x^{\sharp}) + \partial G(x^{\sharp})$
 - To iterate x

$$\Rightarrow x^{\sharp} - \tau \nabla F(x^{\sharp}) \in x^{\sharp} - \tau \partial G(x^{\sharp})$$
$$\Rightarrow x^{n+1} := P_{G}(\tau; x^{n} - \tau \nabla F(x^{n}))$$

- Forward step : $z^n = x^n \tau \nabla F(x^n) \rightarrow \text{gradient method}$ (from x^n forward to z^n)
- Backward step : $x^{n+1} = P_G(\tau; z^n) \to \text{proximal point algorithm}$ $\Rightarrow z^n \in x^{n+1} + \tau \partial G(x^{n+1}) \to \text{subgradient step}$ (from x^{n+1} backward to z^n)
- ullet Convergence is guaranteed if au < 2/L

Accelerated Proximal Gradient Method

- Initialization : $x^0 = z^0$, $t_0 = 1$
- Iteration :

2
$$t_{n+1} = \frac{1+\sqrt{4t_n^2+1}}{2}$$
, $\lambda_n = 1 + \frac{t_n-1}{t_{n+1}}$

3
$$z^{n+1} = x^n + \lambda_n(x^{n+1} - x^n)$$

- 1 Homotopy Method
- 2 Iteratively Reweighted Least Squares
- 3 Chambolle and Pock's Primal-Dual Algorithm
- 4 Alternating Direction Method of Multipliers
- 5 Forward-Backward Splitting Method
 - Algorithm
 - Actual Case
- 6 Douglas-Rachford Splitting

ℓ_1 -regularized least squares problem

- Objective : $\min_{x} \frac{1}{2} ||Ax y||_{2}^{2} + \lambda ||x||_{1}$
 - ► $F(x) = \frac{1}{2} \|Ax y\|_2^2 \Rightarrow \nabla F(x) = A^* (Ax y)$ $\to \|\nabla F(x) - \nabla F(y)\|_2 = \|A^* A(x - z)\|_2 \le \|A^* A\|_{2 \to 2} \|x - z\|_2$ $\therefore \nabla F(x)$ is L-Lipschitz with $L \le \|A^* A\|_{2 \to 2} = \|A\|_{2 \to 2}^2$
 - $G(x) = ||x||_1$
- Forward-Backward Algorithm : $x^{n+1} := S_{\lambda \tau}(x^n \tau A^*(Ax^n y))$ \Rightarrow iterative shrinkage-thresholding algorithm (ISTA) or iterative soft-thresholding
- \bullet convergence is guaranteed if $\tau < 2/\|\textbf{\textit{A}}\|_{2\to 2}^2$

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)

2
$$t_{n+1} = \frac{1+\sqrt{4t_n^2+1}}{2}$$
, $\lambda_n = 1 + \frac{t_n-1}{t_{n+1}}$

3
$$z^{n+1} := x^n + \lambda_n(x^{n+1} - x^n)$$

- Homotopy Method
- 2 Iteratively Reweighted Least Squares
- 3 Chambolle and Pock's Primal-Dual Algorithm
- 4 Alternating Direction Method of Multipliers
- 5 Forward-Backward Splitting Method
- 6 Douglas-Rachford Splitting
- Reference

- Homotopy Method
- 2 Iteratively Reweighted Least Squares
- 3 Chambolle and Pock's Primal-Dual Algorithm
- 4 Alternating Direction Method of Multipliers
- 5 Forward-Backward Splitting Method
- 6 Douglas-Rachford Splitting
 - Algorithm
 - Actual Case

Objective

$$\mathop{\mathit{minimize}}_{x} \mathit{F}(x) + \mathit{G}(x)$$

• F and G are both convex, but not necessarily need to be differentiable

Iteration Rule

- $x^{\sharp} = \underset{\mathbf{x}}{\operatorname{argmin}} \ \mathsf{F}(\mathbf{x}) + \mathsf{G}(\mathbf{x}) \Rightarrow 0 \in \partial \mathit{F}(x^{\sharp}) + \partial \mathit{G}(x^{\sharp})$
- Introduce another variable z to separately consider F and G Let $z^{\sharp} \in x^{\sharp} + \tau \partial F(x^{\sharp}) \rightarrow x = P_F(\tau;z)$ $\Rightarrow z^{\sharp} x^{\sharp} \in \tau \partial F(x^{\sharp})$

$$\Rightarrow 2x^{\sharp} - z^{\sharp} \in x^{\sharp} + \tau \partial G(x^{\sharp}) \rightarrow x = P_F(\tau; z) = P_G(\tau; 2P_F(\tau; z) - z)$$

- Iteration :

 $0 \in \mathbf{z}^{\sharp} - \mathbf{x}^{\sharp} + \tau \partial \mathbf{G}(\mathbf{x}^{\sharp})$

2 $z^{n+1} = P_G(\tau; 2x^n - z^n) - x^n + z^n$

- 1 Homotopy Method
- 2 Iteratively Reweighted Least Squares
- 3 Chambolle and Pock's Primal-Dual Algorithm
- 4 Alternating Direction Method of Multipliers
- 5 Forward-Backward Splitting Method
- 6 Douglas-Rachford Splitting
 - Algorithm
 - Actual Case

Basis Pursuit

- Objective : $\min_{x} ||x||_1$ subject to Ax = y
 - $F(x) = \begin{cases} 0 & Ax = y \\ \infty & otherwise \end{cases}$ $\Rightarrow P_F(\tau; x) = \underset{z}{argmin} \{ \|z x\|_2 \text{ subject to Az=y } \} = x + A^{\dagger}(y Ax)$
 - $G(x) = ||x||_1$
- Iteration :

 - $z^{n+1} = S_{\tau}(2x^n z^n) x^n + z^n$

- Homotopy Method
- 2 Iteratively Reweighted Least Squares
- 3 Chambolle and Pock's Primal-Dual Algorithm
- 4 Alternating Direction Method of Multipliers
- 5 Forward-Backward Splitting Method
- 6 Douglas-Rachford Splitting
- Reference

Reference

Simon Foucart, Holger Rauhut, "A Mathematical Introduction to Compressive Sensing", chapter 15