Algorithms for L1 minimization

=] & = E A
Algorithms for L1 minimization

Table of Contents
o Homotopy Method

=] & = E A
Algorithms for L1 minimization

Q Homotopy Method

Table of Contents
@ Background Knowledge of Convex Analysis

=] & = E DAl
Algorithms for L1 minimization

Subdifferential

o The subdifferential of a convex function F: RN — (—o0, 00| at a
point x € RV is defined by

OF(x) ={veRN: F(z2) > F(x) + (v, z— x) for all ze RN}

@ The elements of OF(x) are called subgradients of F at x

Ol = {{sgn(x)} /:fxf 0
[—1,1] ifx=0

@ A vector x is a minimum of a convex function F if and only if
0 € OF(x)

Algorithms for L1 minimization 4/64

0 Homotopy Method

Table of Contents
@ Method

=] & = E A
Algorithms for L1 minimization

Fundamental Concepts

o Objective : X = argmin||x||; subject to Ax=y, A€ R™N and y € R™
xeRN

e Basis pursuit denoising : x) = argmin 3|/ Ax — y||3 + AlIx]1

xRN
o lim x\, =X
A—0+
e lteratively construct A, and x, such that A\, — 0" and x, = x,,

— in this way, x, will converge to x*

Let F, = 3[[Ax = ylI3 + Aallxi1

xp = argmin Fy,(x) < 0 € OF),(xn) = A" (Axn — y) + A\n0||xn||1
xRN

> (AT (Axp — ¥))e = —Ansgn((xn)e), if (xa)e # 0 - (1)
> [(A(Axy = y))el < An, if (Xp)e =0-(2)

Algorithms for L1 minimization 6 /64

Algorithms

o Let V) = A*(Axji_1 — y)
@ Initialization :
Q x=0= o= [[AYw
Q (= argmax|c§1)|, S ={4}
Le[N]

o Step 1:

—sgn()
lla

 de=0,0&5

1 1) _ sen((A"y)ey) _
Q@ compute dP) = dél = f) —

2,13 1112

Q@ x1 = xo +7d?) = y,dP)
Q@ Mi=X—m
Up to now, we have (A*(Ax; — y))e = (Ao — 71)5gn(c2))

Algorithms for L1 minimization 7/64

Algorithms

@ Step 1:
(A*(Ax1 = y))e = — (Ao — 11)sgn((x1)e), £ € S1 - (1)
(A (Axi =)l € o =), £ S1 - (2)
should be satisfied
(1) is satisfied

(1) (1)
()+C Ao— <,
o 1= mln{l A*Ad(l))) 1+(A*Ad(1) } = to SatISfy ()
Q ly=ar m/n{ dote! Ao—c, }
2= g = (A*Ad(l))g’ 1T (A AdD),

Q S = {51752}

Algorithms for L1 minimization

8/64

Algorithms

@ Step j=2,3,... :
Q compute d¥) = A;‘J_Asjdg) = —sgn(cg)), dp=0,0¢&5;
@ =1 + yd”
Q N=XN1—7
Up to now, we have (A*(Ax; —y))r = (Ajm1 — ’yj)sgn(céj)), lteS;
(A"(Ax; = ¥))e = =(Aj-1 — j)sgn((x)e), € € 55 - (1)
[(A"(Ax; = y))el < (Aj-1 =), €€ 55 - (2)
should be satisfied

Algorithms for L1 minimization 9/64

Algorithms

o Step j=2,3,... :
Q 7@ mm {- (xj_l)g/dg)} = to satisfy (1)
Zesj,d #0
j + A
7(J:) — %1?{1 EA}FAZQ))[, 1+2A1A;(J) } = to satisfy (2)

v =min{y?, 77} _
@ (Y = argmin {~(xi-1)¢/d)}

0e5;,d9 #0

E(J Aj— 1+C@)\j_l—cg) }

= argm’”{l (A*AdDY, 11 (A*AdD),

Q if (U = argmm{v) A0y =09 = 50 = S\{e9y
if (0 = argmin{y ,7+)} = K = Sjp1=S5;U {KU }

Algorithms for L1 minimization 10/ 64

Analysis

@ Assume the minimizer of the origin ¢1-minimization problem is unique
and the minimizer /Y in each step is unique
= The algorithm stops when \; = ||cU* |, = 0, i.e., when the
residual vanishes, and it outputs x* = x;

o |t is observed empirically in sparse recovery problems that the

homotopy method merely removes elements from the active set
— if we do not consider 'y(_j), then homotopy method reduces to the
LARS (least angle regression) algorithm

@ The homotopy and LARS methods are very efficient when the
solution is very sparse. However, they only apply to the real case

Algorithms for L1 minimization 11/64

Table of Contents

@ Iteratively Reweighted Least Squares

=] & = E A
Algorithms for L1 minimization

Table of Contents

@ Iteratively Reweighted Least Squares

@ Background Knowledge of Linear Algebra

=] & = E DAl
Algorithms for L1 minimization

Pseudo Inverse

r
A=USV =) oi(Auvi, A€ C™N s rank r
=1

,
At = Ve Ly :J; o M (A)vjuy

Al is rank r

If A'is invertible = AT = A~1

Tmax(AT) = [|AT||252 = o7 (A)

If A*A € C™" is invertible (m > n) = Al = (A*A)~1A*

If AA* € C™ ™ is invertible (n > m) = Al = A*(AA*)~!

Algorithms for L1 minimization 14 /64

Least Squares Problem 1

o Objective : minimize ||Ax — yl[2 , A€ C™*", m > n, full rank n
X

@ Method 1 :
Project y to range of A
(y—Ax, Ax) =0 = (A*y — A*Ax,x) =0
= A*y = A*Ax . x = (A*A)T1A*y = Aly
@ Method 2 :
argmin || Ax — y|lo = argmin(A*Ax, x) — 2(Ax, y)

= 2A*Ax — 2A%y = 0 = x = (A*A) 1A%y = Aty

Algorithms for L1 minimization 15 /64

Least Squares Problem 2

@ Objective : minimize ||x||2 subject to Ax=y
X
o Method :
< — argmin |3 + AT(Ax — y) = x = —LA"A
X

AR =y —FAATA =y = A= —2(AAY) Ly = X = Aly

Algorithms for L1 minimization 16 /64

Table of Contents

@ Iteratively Reweighted Least Squares
@ Method

=] & = E A
Algorithms for L1 minimization

@ Objective : mininkize||x||1 subject to Ax=y, Ac C™N m< N
xeC
o Key : |t| = [t|?/|t] for t # 0

N

— naive idea : minimize) |xj|2|xjj-|_1 subject to Ax=y
X J:]-

= advantage : we can minimize a quadractic function

disadvantage :

» x! is unknown

» x! is sparse = inverse will becomes infinity

Algorithms for L1 minimization 18 /64

o Mature objective function :
Jox, w,€) = 2[2 i[> w; + Z(e wj+w;)]

= substitute the role of xﬂ with w;
— When x* =0, wj = |xﬁ|

= we use €2 w; to regularlze w; from being too large while also using
the regularization term w; ! to prevent w; from being too small

Algorithms for L1 minimization 19/64

Iteratively reweighted least squares (IRLS)

Tupiity Ko TR sy (055,

Parameter: v > 0, s € [N].

Initialization: w° = [1,1,...,1]T € RN, go = 1.

Iteration: repeat until £,, = 0 or a stopping criterion is met at n = 7:

x"*! .= argmin J(z. w",s,) subjectto Az =y, (IRLSy)
zcCN

s = miinfen apa™ 1 a4 T, (IRLSy)

w1l .= argmin j(x"'Hj W, Ept1). (IRLSs3)
w>>0

Output: A solution x* = x" of Ax = y. approximating the sparsest one.

Algorithms for L1 minimization 20 /64

o IRLS; : x" = argmin J(z,w", ¢,) subject to Az=y

z

+1_ i1
= X" = argmin 5|,
z

=

|z1/>wf] subject to Az=y

—

Let Dwn» = diag[w], w5, - -+, w)] and make a substitution x = D

n

= D%,?x”“ = argmin ||x]|2 subject to AD;Vl,,/Qx =y
X

= X1 = D, (AD)y
= Dy A*(ADy A*) "Ly
= Dy;v, where (ADjn A*)v =y

— can use conjugate gradient method to solve

Algorithms for L1 minimization

wnZ

21/64

o IRLS; : w™ = argmin J(x"1, w, €,41)
w>0

= argmin Q[E 2w+ Z Epi W+ W]
= WJ{1+1 _ |4+11\—2+e§+1'j€ [V
— we find that ¢,41 can effectively prevent mé’“ from exploding;
however, we hope that €,41 can tend to zero
® IRLS; : €py1 :=min{en, v(x™)2 1}
> € is nonincreasing

» As x tends to s-sparse, € can also decrease.

Algorithms for L1 minimization 22 /64

Table of Contents

© Chambolle and Pock's Primal-Dual Algorithm

=] & = E A
Algorithms for L1 minimization

Table of Contents

© Chambolle and Pock's Primal-Dual Algorithm
o Algorithm

=] & = E A
Algorithms for L1 minimization

e Objective : min F(Ax) + G(x)

xERN
= min_ F(z) + G(x) subject to Ax—z=10
XERN zeRm
(Ac C™N. F:C™ — (—00,00],G: CN — (—00,00] are two convex

functions)

Algorithms for L1 minimization 25 /64

Primal-Dual Algorithm

Input: A € C™*N convex functions I, G.

Parameters: § € [0, 1], 7,0 > 0 such that 7o ||A[|3_, < 1.
Initialization: x° € CN,£° € C™, x° = x°,

lteration: repeat until a stopping criterion is met at n = 7:

En-ﬁ-l = Pps(0;€" + 0 AX™), (PD1)
Xn+1 5 PG (7_: x" — TA*E'ﬂJrl), (PDQ)
= Q(XTLH —x"). (PD3)

Output: Approximation Ej = £" to a solution of the dual problem (15.16),
Approximation x* = x™ to a solution of the primal problem (15.15).

Algorithms for L1 minimization 26 /64

Convex Conjugate

e Given a function F: RN — (—o0, 00], the convex conjugate function
of F is the function F*: RN — (—o0, 00| defined by

F(y) == sup {{x,y) — F(x)}

xRN

@ The convex conjugate F* is always a convex function

@ By the definition of convex conjugate, we can get the Fenchel (or
Young, or Fenchel-Young) inequality

(% y) < F(x) + F(y) ¥x y € RY
> If x € OF*(y) (equivalently, y € OF(x)), then equality holds

Algorithms for L1 minimization 27 /64

Primal-Dual Algorithm

Input: A € C™*N convex functions I, G.

Parameters: § € [0, 1], 7,0 > 0 such that 7o ||A[|3_, < 1.
Initialization: x° € CN,£° € C™, x° = x°,

lteration: repeat until a stopping criterion is met at n = 7:

En-ﬁ-l = Pps(0;€" + 0 AX™), (PD1)
Xn+1 5 PG (7_: x" — TA*E'ﬂJrl), (PDQ)
= Q(XTLH —x"). (PD3)

Output: Approximation Ej = £" to a solution of the dual problem (15.16),
Approximation x* = x™ to a solution of the primal problem (15.15).

Algorithms for L1 minimization 28 /64

Proximal Mapping

o Pr(z) := argmin F(x) + %||x — Z||3
xERN
— the proximal mapping associated with F

e x= Pg(z) if and only if z€ x+ OF(x) = Pr= (Id+ 0F)~!
e Moreau's identity : Pg(z) + Pp<(2) = z

o Pg(7;2) := Prg(2); Pr(0;2) := Pyp+(2)

Algorithms for L1 minimization 29 /64

Primal-Dual Algorithm

Input: A € C™*N convex functions I, G.

Parameters: § € [0, 1], 7,0 > 0 such that 7o ||A[|3_, < 1.
Initialization: x° € CN,£° € C™, x° = x°,

lteration: repeat until a stopping criterion is met at n = 7:

En-ﬁ-l = Pps(0;€" + 0 AX™), (PD1)
Xn+1 5 PG (7_: x" — TA*E'ﬂJrl), (PDQ)
= Q(XTLH —x"). (PD3)

Output: Approximation Ej = £" to a solution of the dual problem (15.16),
Approximation x* = x™ to a solution of the primal problem (15.15).

Algorithms for L1 minimization 30/64

Optimization problems with a composite objective function

o Primal problem : min F(Ax) + G(x)
x€R

= F G bject to Ax—z=10
XERn’Vf’,Iz,éR"’ (z) + G(x) subject to Ax— z
Lagrange function : L(x, z,&) = F(z) + G(x) + (§, Ax— 2)
Lagrange dual function : H(§) = infL(x, z,§)
= P () - G'(-A)

Dual problem : grgﬁfg(F () — G (=A%)

By strong duality : it is equivalent to solving a saddle-point problem

min max Re(Ax, &) + G(x) — F*(€)

Algorithms for L1 minimization 31/64

Fixed-Point Interpretation

e Fixx=x!:
the saddle-point problem becomes
ma Re(AxX, £) + Gx) — F(€) = min ~Re({Ax €) + G¥) + F/(¢)

ée
= ¢! is a minimizer iff 0 € —Axt + OF(¢¥)
o Fix¢t =¢t:

the saddle-point problem becomes
min Re(Ax, &%) + G(x) — F*(&F)
x€RmM

= x* is a minimizer iff 0 € A*¢t + 9G(xF)

Algorithms for L1 minimization 32 /64

Fixed-Point Interpretation

o Fixed x = x* to iterate ¢ :
0 € —AX + OF(¢F)
= gAxt € cOF* (&%)
= 4 0 AXE € €8+ oOF (¢)
= €M1 1= Pp (036" + 0AX")
o Fixed ¢ = ¢F to iterate x :
0 € A*¢H + 9G(x)
= —TA*¢! € TOG(X)
= X — 7A€t € X+ TOG(X)
= X" = Pg(1;x™ — TA*EMTL)

Algorithms for L1 minimization 33 /64

Algorithm Settings

e Initialization : X0 =X? = A*y, €0 =0

o ||All2s2 = dmax(A) .. choose 7, such that 7o < 0max(A) 2

@ A practical stopping criterion can be based on the primal-dual gap
E(x,€) = F(AX) + G(x) + G*(—A*¢) + F*(§) > 0
i.e., stops when E(x",£") < 7 for a prescribed tolerance n > 0

Algorithms for L1 minimization 34 /64

Table of Contents

@ Actual Cases

=] & = E DAl
Algorithms for L1 minimization

© Chambolle and Pock's Primal-Dual Algorithm

¢1-minimization problem

Objective : min ||x||; subject to Ax=y
x€CN

B)0, z=y
° F2) =xin(2) = {oo otherwise
G(x) = [Ix1
o F (&) = (y,&) = Pp(0,2) =z— 0y

Pg(T,z) = S5:(2), where 5;(2) is the soft thresholding operator
operated entrywise on z

5. (z) = {sgn(zf)('zf)zl =7

0 otherwise

Algorithms for L1 minimization 36 /64

¢1-minimization problem

@ The primal-dual algorithm :
€n+1 = 611 —|—O'(A)_{n . Y)e
X'n+l . ST (Xﬂ' o TA*E'H_I)

in+l s i Xn—i—l Y H(X'n+l _Xn)*

Algorithms for L1 minimization 37/64

quadractically constrained /;-minimization problem

Objective : min ||x||; subject to ||[Ax—yll2 <n
x€CN

— <
Fa) = {o, lz =yl <7

° oo otherwise
G(x) = [Ix1
o F(&) = Rel&,y) +nl€]2
o 1€ —oyll2 < no
o Pp(0,8) = {(1 _ |I£—ng>’|_|2)(£ —oy) otherwise

Algorithms for L1 minimization 38 /64

quadractically constrained /;-minimization problem

@ The primal-dual algorithm :
£n+1 o PF‘ (J;sn +0,A}—(n)

{0 if [c7'€" + AX" —y|2 < n,
11

no - - _
1€ + o(Axn — y)||2) (" +o(AX" —y)) otherwise,

P =B AN

}—('nJrl — Xn+1 Nt G(Xn+1 . Xﬂ').

Algorithms for L1 minimization 39 /64

(1-regularized least squares problem

. . . . 1 _ 2
Objective :)EIEI(%:I%/HXHl + 3 |Ax — yll5

. {F<z>=%uz—yu§
G(x) =[xl

F (&) = Rely.&) + 152

Pr(0:6) = m(f—ay)

Algorithms for L1 minimization 40 /64

(1-regularized least squares problem

@ The primal-dual algorithm :

EH = —— (€" +o(AX" - y)),

X:r1+1 = ST(XR o TA*&?‘I—I—I)?

)—(n+1 - X'n,—l—l + 9(Xn+1 = X'n,)'

Algorithms for L1 minimization 41 /64

Table of Contents

@ Alternating Direction Method of Multipliers

=] & = E A
Algorithms for L1 minimization

Table of Contents

o Alternating Direction Method of Multipliers
@ Algorithm

=] & = E A
Algorithms for L1 minimization

Objective

min F(x) + G(Bx)

xERN

= min F(x) 4+ G(y) subject to y = Bx
x,y€RN

@ F and G are both lower semicontinuous and convex

@ B*Bis invertible

Augmented Lagrangian of index 7 > 0 :

Lr(x,y,€) = F(x) + G(y) + 1 Re(&, Bx — y) + o[Bx — yI3

Algorithms for L1 minimization 44 /64

[teration Rule

@ Fix y =, € = &%, minimize over x
= 0 € TOF(x) + B*Bx+ B*(&* — %)
Let PE(T;_)/) = argmin{TF(z) + %HBZ— y||%}
= X" = PE(r;) — €7)
@ Fix x=x!, £ = £, minimize over y
= 0€70G(y) +y— & — Bx
=y = P(r; Bx" + €7)
© Fix x=xf, y = y* minimize over ¢
= 0=Bx—
— gl = gn By

Algorithms for L1 minimization

45 /64

Table of Contents

@ Actual Case

=] & = E A
Algorithms for L1 minimization

o Alternating Direction Method of Multipliers

Basis Pursuit

@ Objective : argmin||x||1 subject to Ax=y
X

0, Ax=y

° 00 otherwise

F(x) = xqyy(2) = {
G(X) = ||X“1 = B= /d

@ lteration :

Q X"=(y—¢&") — A(AA) LAY - £") —)
Q@ ytl =5 (x"+¢")

e gn—i—l:gn_'_xn_yn-i-l

Algorithms for L1 minimization 47 /64

(1-regularized least squares problem

o Objective : minimize £||Ax — y||3 + Al|x|l1

° F(x) = 3 Ax—yl3, G(x) = Allxlh

@ lteration :
Q X" = (AA+ 7 Hd) T Ay + 77 (Y = £")
Q Yyl =Su(x"+¢"
e €n+1:§n+xn_yn+1

Algorithms for L1 minimization 48 /64

Table of Contents

© Forward-Backward Splitting Method

=] & = E A
Algorithms for L1 minimization

Table of Contents

© Forward-Backward Splitting Method
@ Algorithm

=] & = E A
Algorithms for L1 minimization

Objective

minimize F(x)+G(x)

o F is differentiable and convex
e VFis L-Lipschitz = |[VF(x) — VF(y)|l2 < L||x — yll2 Vx, y

@ G is lower semicontinuous and convex

Algorithms for L1 minimization 51/64

[teration Rule

o xf = argmin F(x)+G(x) = 0 € VF(x*) + 9G(x)
To iterate x
= x —7VF(x) € ¥ — 70G(x)
= x" = Pg(1;x" — TV F(x"))
e Forward step : 2" = x" — TVF(x") — gradient method
(from x" forward to z")
e Backward step : x™ = Pg(7;2") — proximal point algorithm
= 2" € X"t + 70G(x"T1) — subgradient step
(from x™1 backward to z")

e Convergence is guaranteed if 7 < 2/L

Algorithms for L1 minimization 52 /64

Accelerated Proximal Gradient Method

o Initialization : XX =2, tp =1
o lteration :
Q X"t = Pg(L71; 2" — VF(Z"))
@ty = VG gyl

tht1

Q 1 = X"+ A, (X" — x)

Algorithms for L1 minimization 53 /64

Table of Contents

© Forward-Backward Splitting Method

@ Actual Case

=] & = E A
Algorithms for L1 minimization

(1-regularized least squares problem

e Objective : min 3||Ax — y||3 + Al[x]1
X

> F(0) = 3llAx— ¥} = VF(x) = A*(Ax—y)
= [IVFO) = VEW)l2 = [|A*Alx = 2)[|2 < [[A"Alla2lx = 2]]2
. VF(x) is L-Lipschitz with L < [|A*Alla—2 = ||All3_5
> Glx) = |Ixlh
o Forward-Backward Algorithm : x"™! := S, (x" — TA*(Ax" — y))
= iterative shrinkage-thresholding algorithm (ISTA) or iterative
soft-thresholding

@ convergence is guaranteed if 7 < 2/||Al|3_,

Algorithms for L1 minimization 55 /64

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)

O X" = Sy, (27— AT(AZ —)
Q thi1 = SAA'AL AR ;t%H, An=1+ i”n—;l

Q L= X7+ A\, (x" — x7)

Algorithms for L1 minimization 56 /64

Table of Contents

@ Douglas-Rachford Splitting

=] & = E A
Algorithms for L1 minimization

Table of Contents

o Algorithm

=] & = E A
Algorithms for L1 minimization

@ Douglas-Rachford Splitting

Objective

minimize F(x) + G(x)
X

@ F and G are both convex, but not necessarily need to be differentiable

Algorithms for L1 minimization 59 /64

[teration Rule

o x* = argmin F(x)+G(x) = 0 € OF(x*) + 0G(x*)

@ Introduce another variable z to separately consider F and G
Let 2 € x* + TOF(X) — x= Pg(1; 2)
= 7 —x* € TOF(X¥)
S 0eZd — X+ 10G(xX)
= 2% — 2 € X+ 70G(x*) = x = Pe(1;2) = Pg(7;2PF(T; 2) — 2)
@ lteration :
Q X" = Pe(7;2")
Q@ 't = Pg(1;2x" — 2") — X"+ 2"

Algorithms for L1 minimization 60 /64

Table of Contents

@ Douglas-Rachford Splitting

@ Actual Case

=] & = E A
Algorithms for L1 minimization

Basis Pursuit

@ Objective : min ||x|[1 subject to Ax =y
" P = {go /:;e_rvf//ise
= Pg(7;x) = argmin{||z — x||2 subject to Az=y } = x+ Af(y — Ax)
6=l
@ lteration :

Q x'=2"+ Al(y— Az
Q71 =502x"—-2)—x"+2

Algorithms for L1 minimization 62 /64

Table of Contents

@ Reference

=] & = E A
Algorithms for L1 minimization

Reference

Compressive Sensing” , chapter 15

Simon Foucart , Holger Rauhut, “ A Mathematical Introduction to

=] & = E A
Algorithms for L1 minimization

	Homotopy Method
	Background Knowledge of Convex Analysis
	Method

	Iteratively Reweighted Least Squares
	Background Knowledge of Linear Algebra
	Method

	Chambolle and Pock's Primal-Dual Algorithm
	Algorithm
	Actual Cases

	Alternating Direction Method of Multipliers
	Algorithm
	Actual Case

	Forward-Backward Splitting Method
	Algorithm
	Actual Case

	Douglas-Rachford Splitting
	Algorithm
	Actual Case

	Reference

