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Motivation
Suppose that a robot moves along a line. Our objective is to estimate its
location at each time.

Suppose we have prior knowledge about the motion of the robot. We
can use it to predict the location. However, the real behavior of the
robot may deviate from that ideal prediction.

Suppose we have observation data from sensors. These data may be
the locations or the velocities of the robot at each time. We can use
them to estimate the location. However, these data may be noisy.
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Motivation

Suppose that a robot moves along a line. Our objective is to estimate its
location at each time.

Can we take into account the motion model and observation data at
the same time for prediction?

Is there a good mechanism so that we can strike a good balance
between the weight of motion model and observation data under the
uncertainty of motion noise and sensor noise?
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Motivation

Suppose that a robot moves along a line. Our objective is to estimate its
location at each time.

Can we take into account the motion model and observation data at
the same time for prediction? → state prediction and update

Is there a good mechanism so that we can strike a good balance
between the weight of motion model and observation data under the
uncertainty of motion noise and sensor noise? → Kalman gain
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Methodology

1 State Prediction : we predict the state value (e.g. the location) at
time t, based on its estimated value at time t-1 using a state
propagation/extrapolation model.

2 State Update : we compare the prediction from state prediction with
the observation data (both for time t) and update/adjust its final
estimate for time t based on the difference.

Essentially, we use state prediction and update to combine our
knowledge about how the state should mathematically evolve and
measurement values. Both steps are crucial for good estimation.
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Mathematical Problem Formulation

Variables
1 z : sensor observation (e.g. antenna measurements)
2 u : control data (e.g. external force)
3 x : state of the system (e.g. location and velocity)

Question : How likely is the state of the system to be x, given the
sensor observation z and the control data u?

Formal Objective : find bel(xt) := p(xt|z1:t, u1:t)
⇒ find the belief about the current state at time t, bel(xt), given the

set of all observations, z1:t, and the set of all controls, u1:t
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Derivation
1 Bayes rule

bel(xt) = p(xt|z1:t, u1:t) = p(xt|zt, z1:t−1, u1:t)

=
p(xt, zt|z1:t−1, u1:t)

p(zt|z1:t−1, u1:t)
= ηp(zt|xt, z1:t−1, u1:t)p(xt|z1:t−1, u1:t)

2 Markov assumption

bel(xt) = ηp(zt|xt)p(xt|z1:t−1, u1:t)

Since z1:t−1 and u1:t are used to produce xt and we have already
known xt, we do not need z1:t−1 and u1:t
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Derivation
3 The law of total probability

bel(xt) = ηp(zt|xt)

∫
xt−1

p(xt|xt−1, z1:t−1, u1:t)p(xt−1|z1:t−1, u1:t)dxt−1

4 Markov assumption

bel(xt) = ηp(zt|xt)

∫
xt−1

p(xt|xt−1, ut)p(xt−1|z1:t−1, u1:t−1)dxt−1

▶ Since z1:t−1 and u1:t−1 are used to produce xt−1 and we have already
known xt−1, we do not need z1:t−1 and u1:t−1

▶ To produce xt−1, only z1:t−1 and u1:t−1 are necessary
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Bayes Filter

bel(xt) = ηp(zt|xt)

∫
xt−1

p(xt|xt−1, ut)bel(xt−1)dxt−1

1 State Prediction

bel(xt) =

∫
xt−1

p(xt|xt−1, ut)bel(xt−1)dxt−1

▶ We take into account the belief about the previous state of the system
and the control data (action to take the system from the previous state
to the current one), to get the belief about the current state.

▶ Motion model : p(xt|xt−1, ut)
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Bayes Filter

bel(xt) = ηp(zt|xt)

∫
xt−1

p(xt|xt−1, ut)bel(xt−1)dxt−1

2 State Update
bel(xt) = ηp(zt|xt)bel(xt)

▶ We rely on the predicted belief and the sensor observation to estimate
the current updated belief.

▶ Observation model : p(zt|xt)
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Bayes Filter

The Bayes filter is a general recursive update framework that allows
us to estimate the state of the system, based on the previous state,
the control data (current motion), and the current sensor observation,
using the motion and observation models.

In practice, directly computing the integral can be computationally
expensive or even infeasible for high-dimensional systems.
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Bayes Filter

The Kalman filter serves as a special case of the Bayes filter for linear
dynamic systems with Gaussian noise. It assumes that both the
motion and observation models are linear and that the noise follows a
Gaussian distribution with known statistics.

With these two assumptions, the Kalman filter can estimate the state
of the system more efficiently

There are other variations of the Bayes filter that extend the Kalman
filter to handle nonlinear systems or non-Gaussian noise. For example,
the extended Kalman filter (EKF) and the unscented Kalman filter
(UKF) are commonly used for nonlinear systems.
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Methodology

Kalman Filter = Bayes Filter + Linear model assumption + Gaussian
distribution assumption
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Linear Model Assumption

1 Motion model : xt = Atxt−1 + Btut + ϵt

▶ At : describes how the system state evolves from t-1 to t without
controls or noise. It is a (n× n) matrix, where n is the dimension of the
state vector.

▶ Bt : describes how the control ut changes the state from t-1 to t. It is
an (n × ℓ) matrix, where ℓ is the dimension of the control command
vector.

▶ ϵt : a normal random vector with mean 0 and covariance Rt,
representing the process (motion) noise.
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Linear Model Assumption

2 Observation model : zt = Ctxt + δt

▶ Bt : describes how to map the state xt to an observation zt. It is a
(k × n) matrix, where k is the dimension of the observation vector.

⇒ What should I expect to observe given that the world is in its
current state?

▶ δt : a normal random vector with mean 0 and covariance Qt,
representing the measurement noise. Note that ϵt and δt are assumed
to be independent.
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Gaussian Distribution Assumption

1 Motion model : ϵt is normally distributed

p(xt|xt−1, ut) = det(2πRt)
− 1

2 exp{−1

2
(xt − Atxt−1 − Btut)

TR−1
t

(xt − Atxt−1 − Btut)}

2 Observation model : δt is normally distributed

p(zt|xt) = det(2πQt)
− 1

2 exp{−1

2
(zt − Ctxt)

TQ−1
t (zt − Ctxt)}
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Kalman Filter
1 Putting all together into the two equations of the Bayes filter.

bel(xt) =

∫
xt−1

p(xt|xt−1, ut)bel(xt−1)dxt−1

bel(xt) = ηp(zt|xt)bel(xt)

2 Both equations involve Gaussian distributions and the combination of
Gaussian distributions. ⇒ bel(xt) and bel(xt) are also Gaussian
distributions.

3 Since a Gaussian distribution can be fully characterized by its mean
vector and covariance matrix, what we need is the mean vector and
covariance matrix of bel(xt) at each iteration.
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Kalman Filter
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Kalman Gain
Kt = ΣtCT

t (CtΣtCT
t + Qt)

−1

Case 1 : Qt = 0 ⇒ perfect sensors
⇒ Kt = C−1

t
⇒ µt = C−1

t zt, Σt = 0
⇒ completely trust the observation data

Case 2 : Qt → ∞ ⇒ terrible sensors
⇒ Kt = 0
⇒ µt = µt, Σt = Σt
⇒ completely discard the observation data

Thus, the Kalman gain can control the weight of the prediction by
the motion model and the observation data from the sensors.
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Kalman Filter Example

Objective : estimate the true location of a moving robot

Variables
▶ zt : the sensor measurement
▶ xt : the state of the system, represented as xt = [xt, ẋt, yt, ẏt] and

denoting the location and velocity of the robot in the 2D plane
▶ ut = 0
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Kalman Filter Example
Linear model assumption and Gaussian distribution assumption

▶ motion model : constant velocity model
⋆ xt = xt−1 + ẋt−1∆t, ẋt = ẋt−1, yt = yt−1 + ẏt−1∆t, ẏt = ẏt−1

∴ At =


1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1


⋆ Bt is not necessary since ut = 0
⋆ Rt is a (4× 4) covariance matrix, representing the motion noise

▶ observation model : the sensors only measure the location of the robot
⋆ Ct =

[
1 0 0 0
0 0 1 0

]
⋆ Qt is a (2× 2) covariance matrix, representing the measurement noise
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Kalman Filter Visualization

The bold curves in the first / second column are the Gaussian
distributions produced by the motion / observation model.
The bold curves in the third column are the Gaussian distributions of
updated state.
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Kalman Filter Visualization

When two Gaussian distributions are employed to estimate the state,
the resulting Gaussian distribution will have its mean closer to the
mean of the more certain one. And the resulting distribution will be
more certain than both input distributions, which is the contribution
of the Kalman gain.
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Summary

The Bayes filter and the Kalman filter can dynamically balance the
information from the prediction and the measurement, iteratively
improving the state estimation with each update.

The Bayes filter and the Kalman filter offer a robust foundation for
accurate and dynamic state estimation whenever we want to track the
location of an object, estimate the state of a system or navigate
through uncertain environments.
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Motivation

Recall that the Bayes filter is a general powerful framework, which is
the following recursive equation

bel(xt) = ηp(zt|xt)

∫
xt−1

p(xt|xt−1, ut)bel(xt−1)dxt−1

The Kalman filter incorporates the linear model assumption and the
Gaussian distribution assumption so that we can practically solve the
equation and come up with a viable implementation.
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Motivation

However, in the real world, these two assumptions may be too naive
or ideal. That is, the models could probably be non-linear and the
probability distribution could probably be non-Gaussian. Then it
could be highly difficult or even impossible to compute the integral.
So how can we apply the Bayes filter in this tough scenario?
→ Use Mote-Carlo simulation to approximate the integral!

⇒
∫

f(xk)p(xk)dxk ≈ 1
N

N∑
i=1

f(x(i)k ), where x(i)k is sampled from the

probability distribution p(xk)
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Methodology

With each sample x(i)t−1, we generate a new sample x(i)t from the
probability distribution p(xt|x(i)t−1, ut). In this way, we can obtain a
new sample set

Xt = {x(i)t , i = 1, ...,N}

We collect all unique values of Xt to form the set

Vt = {xt,j, j = 1, ..., J}

where x(i)t ∈ Vt and each element of Vt is unique.
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Methodology

bel(xt,j) = η
N∑

i=1
p(zt|x(i)t )bel(x(i)t−1)δ(x

(i)
t = xt,j), j = 1, ..., J

Since
J∑

j=1
bel(xt,j) should be 1, η = 1/

N∑
i=1

p(zt|x(i)t )bel(x(i)t−1)

In practice, the particle filter calls each sample x(i)t a particle and the
belief of each particle bel(x(i)t ) the importance weight w(i)

t .
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Sequential Importance Sampling

Input: {x(i)t−1,w
(i)
t−1)}N

i=1, zt, ut

wsum = 0

for i = 1, ...,N do

propagate particle : draw sample x(i)t ∼ p(xt|x(i)t−1, ut)

update weight : w(i)
t = w(i)

t−1 ∗ p(zt|x(i)t )

cumulate weight : wsum = wsum + w(i)
t

end
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Sequential Importance Sampling

for i = 1, ...,N do

normalize weight : w(i)
t = w(i)

t /wsum

end

Output: {x(i)t ,w(i)
t )}N

i=1
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Sequential Importance Sampling
Empirically, there is a degeneracy problem - after a few iterations the
weight of one particle will be very close to one and that of all other
particles will be almost zero.
The consequences of the degeneracy problem are

▶ almost all computational effort will be put into computations related to
particles that have negligible or no contribution to the overall estimate

▶ the number of effective particles is only one.
In this way, the expressiveness of the filter will be highly limited since
a single particle can only represent one point in the state space rather
than pdfs of arbitrary shapes. Thus, the filter will fail to approximate
the true state and give rise to unacceptably large estimation errors.
A solution to the degeneracy problem → resampling
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Resampling

Resampling is performed directly after the update step. In the
resampling step, new particles are randomly selected, with
replacement, from the set of weighted particles.

The probability of selecting a particle is proportional to its weight and
the number of particles remains unchanged.
⇒ Particles with higher weights are likely to be chosen more than

once, whereas those with low weights are likely to be ignored.

After resampling the weights are reset to 1/N
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Resampling

Bayes Filter, Kalman Filter and Particle Filter 29 / 38



Resampling
Although resampling effectively avoids the degeneracy problem, it is
computationally costly and resampling at every time instant is a
conservative way to avoid particle degeneracy. That is, particle
degeneracy could still be prevented even we resample less frequently.
Furthermore resampling at every time instant usually reduces the
diversity in the particle set.
We can use the following measure to indicate particle degeneracy.

Neff = 1/

N∑
i=1

(w(i)
t )2

If Neff < Nthr, where Nthr is a pre-defined threshold, a relatively small
subset of particles gather a relatively large proportion of the total
weight. Thus, we perform resampling.
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Sequential Importance Resampling / Particle Filter

Input: {x(i)t−1,w
(i)
t−1)}N

i=1, zt, ut

wsum = 0

for i = 1, ...,N do

propagate particle : draw sample x(i)t ∼ p(xt|x(i)t−1, ut)

update weight : w(i)
t = w(i)

t−1 ∗ p(zt|x(i)t )

cumulate weight : wsum = wsum + w(i)
t

end
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Sequential Importance Resampling / Particle Filter

for i = 1, ...,N do

normalize weight : w(i)
t = w(i)

t /wsum

end
If Neff < Nthr then

Resample N particles with replacement
Reset weights : w(i)

t = 1/N
end
Output: {x(i)t ,w(i)

t )}N
i=1
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Particle Filter

Finally, there are two questions remained to be solved.
1 How do we draw sample x(i)t from the probability distribution

p(xt|x(i)t−1, ut)?
2 How do we compute p(zt|x(i)t )?

For the first question, we resort to the motion model.

For the second question, we resort to the observation model.
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Motion Model
A motion model describes how the robot’s pose (position and
orientation) is likely to change from one time instant to the next,
given the control inputs (e.g. wheel speeds or motor commands).
The motion model can be visual odometry (based on data estimated
from images or point clouds), velocity model (based on linear and
angular velocities), dynamic model (based on wheel slippage, inertia,
or external forces), etc.
In the prediction step, we apply the the robot’s motion data to
propagate the particles so that they move as the robot has moved.
Recall that in the Kalman filter, it assumes that this model is a linear
model with additive Gaussian noise.
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Observation Model

An observation model describes how the robot’s sensors (e.g.
cameras, lidar or other perception devices) would observe the
environment at a given pose.
The observation model can measure the distances between the robot
and certain landmarks in the environment, the angles between the
robot’s orientation and known landmarks, etc.
In the updating step, we update the weight of each particle using the
observation model.
Recall that in the Kalman filter, it assumes that this model is a linear
model with additive Gaussian noise.
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Additional Notes of The Particle Filter

Because of the adoption of Monte-Carlo simulation, the particle filter
is also known as Sequential Monte Carlo (SMC). Furthermore, since it
is widely used in the localization problem of moving robots, it is also
known as Monte Carlo Localization (MCL)

When initializing, we often generate particles uniformly. However, we
can generate particles more precisely if we know a-priori that which
region is more likely to be the initial states.
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Additional Notes of The Particle Filter

The resampling step plays a crucial role in reducing the number of
particle groups. Particles within the ”correct” region have higher
weights than those in other areas, and the resampling step replaces
lightly weighted particles with their more substantial counterparts.
Thus, the set of particles tends to converge to a small cloud of
particles centered at the most likely state of the system .

For complex nonlinear systems, implementing the particle filter can be
easier than the Kalman filter since deriving linearised models for the
Kalman filter may be cumbersome.
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