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Nyquist theorem

The expansion of a signal

𝑓 𝑡 = ෍

𝑛=−∞

∞

𝑓 𝑛 𝑠𝑖𝑛𝑐(𝑡 − 𝑛)

is global in nature, because it requires samples of the signal at integers 

of arbitrarily large absolute value.
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Taylor series

𝑓 𝑡 = ෍

𝑛=0

∞

𝑓(𝑛)(0)
𝑡𝑛

𝑛!

The Taylor expansion is of local nature.

Such a series converges uniformly on every finite interval, and its truncations 

provide good local signal approximations. 
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Motivation

However, unlike the Shannon expansion, the Taylor expansion has found very 

limited use in signal processing.

Disadvantage of Taylor series:

 its truncations have rapid error accumulation.

 Numerical evaluation of higher order derivatives of a function given by its 

samples is very noise sensitive.

 Compare to Shannon expansion, lose linear shift invariant operator.

𝐴[𝑓] 𝑡 = ෍

𝑛=−∞

∞

𝑓 𝑛 𝐴[𝑠𝑖𝑛𝑐](𝑡 − 𝑛)
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Chromatic Derivatives

Consider normalizing and scaling the Legendre polynomials

1

2𝜋
න

−𝜋

𝜋

𝑃𝑛 𝑤 𝑃𝑚 (𝑤)𝑑𝑤 = 𝛿(𝑛 − 𝑚)

Define operator polynomials

𝐾𝑛 𝑤 = (−𝑗)𝑛𝑃𝑛
𝐿 𝑗

𝑑

𝑑𝑡

We call operators 𝐾𝑛 the chromatic derivatives associated with the Legendre 

polynomials.

𝐾𝑛 [𝑒𝑖𝑤𝑡] = (𝑗)𝑛𝑃𝑛
𝐿 𝑤 𝑒𝑖𝑤𝑡
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Numerical differentiation of band 

limited signals

differentiation in Fourier domain

7(normalized) derivatives chromatic derivatives 

𝑓(𝑛) 𝑡 =
1

2𝜋
න

−𝜋

𝜋

(𝑗𝑤)𝑛 መ𝑓 𝑤 𝑒𝑗𝑤𝑡𝑑𝑤 𝐾𝑛 [𝑓] 𝑡 =
1

2𝜋
න

−𝜋

𝜋

(𝑗)𝑛𝑃𝑛
𝐿 𝑤 መ𝑓 𝑤 𝑒𝑖𝑤𝑡𝑑𝑤

n=15 to n=18 



Chromatic Expansion

Chromatic expansion of associated with the Legendre polynomials

𝑓 𝑡 = ෍

𝑛=0

∞

𝐾𝑛 𝑓 𝑢 𝐾𝑛 𝑠𝑖𝑛𝑐 𝑡 − 𝑢 = ෍

𝑛=0

∞

𝐾𝑛 𝑓 𝑢 2𝑛 + 1𝑗𝑛(𝜋 𝑡 − 𝑢 )

Where 𝑗𝑛(. ) is the spherical Bessel function of the first kind of order n.

Chromatic expansion

𝑓 𝑡 = ෍

𝑛=0

∞

𝐾𝑛 𝑓 0 2𝑛 + 1𝑗𝑛(𝜋𝑡)

The coefficients of the Nyquist expansion of a signal

𝐾𝑛 𝑓 0 = ෍

𝑛=−∞

∞

𝑓 𝑡 2𝑛 + 1𝑗𝑛(𝜋𝑡)
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Chromatic Expansions and 

Approximations in General

Consider families of orthonormal polynomials 𝑝𝑛 𝑤 𝑑𝑤 with weight function w(ω)

𝑑𝜇 = w 𝑤 𝑑𝑤

𝐾𝑛 𝑤 = (−𝑗)𝑛𝑝𝑛 𝑗
𝑑

𝑑𝑡
,  𝐾𝑛 [𝑒𝑖𝑤𝑡] = (𝑗)𝑛𝑝𝑛 𝑤 𝑒𝑖𝑤𝑡

We define that

𝐵0 𝑡 = න

ℝ

𝑒𝑗𝑤𝑡𝑑𝜇 = න 𝑒𝑗𝑤𝑡w 𝑤 𝑑𝑤

𝑓 𝑡 = ෍

𝑛=0

∞

(−1)𝑘𝐾𝑛 𝑓 𝑢 𝐾𝑛 𝐵0 𝑡 − 𝑢

𝑎𝑝𝑝 𝑓, 𝑛, 𝑢 𝑡 = ෍

𝑛=0

∞

−1 𝑘𝐾𝑛 𝑓 𝑢 𝐾𝑛 𝐵0 𝑡 − 𝑢
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Chromatic Expansion Examples

Chebyshev polynomials of the first kind

𝐵0 𝑡 = න𝑒𝑗𝑤𝑡
2

𝜋2 −𝑤2
𝑑𝑤 = 𝐽0(𝜋𝑡)

Where 𝐽0(. ) the Bessel function of the first kind and of order 0.

Since 

𝐾𝑛 𝐽0(𝜋(𝑡)) = (−1)𝑛 2𝐽𝑛(𝜋𝑡)

The corresponding chromatic expansion is the Neumann series

𝑓 𝑡 = 𝑓(𝑢) 𝐽0(𝜋(𝑡 − 𝑢)) + 2෍

𝑛=1

∞

𝐾𝑛 𝑓 𝑢 𝐾𝑛 𝐽𝑛(𝜋(𝑡 − 𝑢))
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Chromatic Expansion Examples

Hermite polynomials

𝐵0 𝑡 = න𝑒𝑗𝑤𝑡𝑒−𝑤
2
𝑑𝑤 = 𝑒−𝑡

2/4

Since 

𝐾𝑛 𝑒−𝑡
2/4 =

(−1)𝑛𝑡𝑛

2𝑛𝑛!
𝑒−𝑡

2/4

The corresponding chromatic expansion is back to Taylor expansion of 𝑓 𝑡 𝑒𝑡
2/4, 

multiplied by 𝑒−𝑡
2/4.
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Recurrence Relation

Since families of orthonormal polynomials satisfy a recurrence of the form

𝑝𝑛+1 𝑤 =
𝑤

𝛾𝑛
𝑝𝑛 𝑤 −

𝛾𝑛+1
𝛾𝑛

𝑝𝑛+1 𝑤

corresponding differential operators 𝐾𝑛 satisfy the recurrence

𝐾𝑛+1 =
1

𝛾𝑛

𝑑

𝑑𝑡
°𝐾𝑛 +

𝛾𝑛−1
𝛾𝑛

𝐾𝑛−1

where the recursion coefficients for a given Weight

 Change of basis of chromatic derivatives

𝐾𝑝2
𝑛−1 =෍𝐶 𝛾 𝐾𝑝1

𝑛−1

 Computation 
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Filter Bank 

Since orthogonality of  provide perfect reconstruction

𝐻𝑘 𝑒𝑗𝜔 = (𝑗)𝑘𝑃𝑘
𝐿 𝑤
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Approximation Result

Top: Taylor’s approximation of 

order 31 (orange) of a band 

limited signal (red) and its 

chromatic approximation of the 

same order (blue);

Bottom: the corresponding 

errors of the Taylor 

approximation (orange) and of 

chromatic approximation (blue).
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Conclusion 

chromatic approximation provide

 Robust to noise 

 Bounded

 Good local performance 

 linear shift invariant operator
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