
 1

Cryptography
Cheng-Jing Kuo

E-mail: jimkuo@aa.nctu.edu.tw

Graduate Institute of Communication Engineering

National Taiwan University, Taipei, Taiwan, ROC

Abstract

Not until several decades ago cryptology became science. For many centuries, it

was a kind of secret technology practiced in black chamber by some special parties or

governments. Secret key cryptography and public key cryptography are two main

ideas to do encryptions. For the secret key system, we introduce two basic techniques.

And we also introduce several important modes to show how we implement block

ciphers. We also give an LFSR example for showing how the stream cipher works.

We make a figure to compare the advantages and the drawbacks between the block

cipher modes, and hope this comparison would help people who first contact this field

to get some useful background sense quickly. In the middle of this article, we talk a

little about the cryptanalysis, considering things on the attacker side. In there, we list

some typical main ways that we can choose to do cryptanalysis. Then we mention

some useful encryption examples for image and video encryption. In the end, we post

the simulation result from three typical encryptions.

 2

1 Introduction

 In this section we are going to introduce some important nouns and basic sense

in this field we are discussing.

Cryptography is the study of mathematical techniques related to information

security aspects such as confidentiality, data integrity, entity authentication, and data

authentication.

Cryptology is the study of cryptography and cryptanalysis.

Cipher is the way to encrypt data.

Plaintext is the original data before being encrypted and the data of the encryption

output is called ciphertext or cryptogram. The methods which used to encrypt

plaintext is called ciphers.

encryptionPlaintext � �ciphertext

key�

Fig.1

Figure.1 Plaintext and Ciphertext

Cryptanalysis is the study of methods of breaking ciphers. And the way to attack

the cipher can be simply divided into two parts described below.

˙exhaustive attack: Also called Brute-force attack which is an attack that would try

all possible keys until the attacker hits the right key.

For example: encrypting by a 3-digits-number key, the exhaustive attack for the

encryption is trying from 000 to 999 until the right key hit.

˙statistics attack: Comparing to the exhaustive attack, statistics attack is a kind of

systematical attack after observing input and output or some other effects.

For example: power consuming.

We will discuss cryptanalysis later.

(2)Family of Alice and Bob：

When cryptologists talk about encryptions, there are some roles involved inside

such as message sender, receiver or attackers. There is a simple way to distinct these

roles by naming the roles. Starting with the alphabet are Alice and Bob, two parties

wanting to communicate in a secure manner. When more people are in the

communication group, Carol and Dave will be used. Eve is a passive attacker who can

get the information from Alice and Bob. Mallory is another attacker who can get the

information and even modify the data between Alice and Bob. Trent is a person who

is trusted by all involved parties. Walter is a man who would protect Alice and Bob

with some aspect. This is the basic sense about the communication family. For more

information and detail about this, we can go checking out the reference [1] and [3].

 3

(3) Some basic sense of Data Encryption：

There are three main purposes in cryptography listed as following: First, creating

confidentiality. Second, giving authentication which is used to recognize if the

message sender is the legal one or not. And the third is integrity.

Modern cryptography relies on Kerckhoff Principle: we should always assume

that all details about the cipher are known to the enemy, the exact algorithm and all its

inner workings, except one small piece of data called key. We will mention it after in

the cryptanalysis section.

2 Secret Key & Public Key Cryptography

In this section, we talk about the main idea that how data encryption process

processes. Then we discuss the difference between two cipher ways that are

symmetric cipher (secret key cryptography) and the asymmetric cipher (public key

cryptography).

Generally speaking, the two cipher ways above are the two key systems we use

to encrypt in cryptography field.

Moreover, we can even implement the symmetric cipher with two kinds of cipher,

that is the block cipher and the stream cipher.

(1) Cipher classes for Data encryption：

Data encryption main process:

encryptionPlaintext � �ciphertext

key�

Fig.1

Figure.2 Plaintext and Ciphertext

Symmetric cipher(secret key cryptography)：1key(secret key)

Cipher public key to encrypt

Asymmetric cipher(public key cryptography)：2keys

Secret key to decrypt

Fig.2

Figure.3 Symmetric cipher and Asymmetric cipher

In the secret key system, we use only one key to encrypt and decrypt. The

 4

transmitters and the receivers have to own the same secret key. The concept of secret

key is simple and fast. But it is hard to keep the key safety because as the involved

parties number increase, the security of the secret key becomes unsafe. In order to

solve this problem, someone invented the public key system or so called asymmetric

cipher. There are two keys used in the cipher algorithm. The man owning the public

key can encrypt the data, and only the man owning the secret key can decrypt the

encrypted data. Asymmetric cipher is easy for key management, but the drawback is

the computing speed is rather slow and complicated.

Table.1 advantage and disadvantage of symmetric cipher and asymmetric cipher

 advantage Disadvantage

Symmetric cipher fast and simple key management is not

easy

Asymmetric cipher key management is easy slow and complicated

3 Transposition Ciphers and Substitution Ciphers

 From the encryption algorithm point of view, there are two main techniques we

used to implement in the secret key cryptography (symmetric cipher) system:

Substitution cipher and Transposition cipher.

Substitution ciphers replace bits, characters, or blocks of characters with

substitution. Transposition ciphers rearrange bits or characters in the data. We now

describe some details about the two kinds of cipher and simply introduce some

examples that we use very often in the two kinds of cipher.

SUBSTITUTION TECHNIQUES

Substitution technique is one that the letters in the plaintext will be replaced by

other letters or by numbers or symbols.

[Caesar Cipher]

The earliest use of substitution cipher is also the simplest one that is proposed by

Julius Caesar, called Caesar Cipher. The Caesar Cipher works with replacing each

letter with the letter standing three places further down of the alphabet order. For

example:

plaintext: a b c d e f g h w x y z

ciphertext: e f g h i j k l z a b c

So if the plaintext is “meet me after the party”. The ciphertext would be “phhw

ph diwhu wkh sduwb”.

 5

plaintext: meet me after the party

ciphertext: phhw ph diwhu wkh sduwb

 If we assign each letter a number from 0 to 25(from A to Z). Take the Ciphertext

as C, Encryption as E, and plaintext as P. Then we can describe the Caesar Cipher as

below

C=E(p)=(p+3)mod(26) (1)

 A shift could be any amount, so the general Caesar algorithm is

 C=E(p)=(p+k)mod(26) (2)

where k takes on a value in the range from 1 to 25. And the decryption algorithm is

simply p =D(C)=(C-k)mod(26) (3)

 If it is known that a given ciphertext is a Caesar cipher, then a brute-force

cryptanalysis will be easily performed. Just try all the 25 for the possible value of k.

 In this example, there are three reasons for us to use the brute-force cryptanalysis.

First is that the encryption and the decryption algorithms are known. Second is that

there are only 25 keys to try. Third is that the language of the plaintext is known and

easily recognizable.

 For general cases, we always assume that the first condition is held, that is the

algorithms of encryption and decryption are always known by the enemy who want to

break the cipher. What really makes the brute-force attack impractical is that most of

the algorithms use a large number of keys, that is, the second condition. For example,

the triple DES algorithm uses a 168-bit key which makes people who choose to use

the brute-force attacking way wasting resources or time. And the third condition is

also important. If the language of the plaintext is unknown, we do not have any idea

to recognize that if the key we try is right even in the trial that is right.

[Polyalphabetic cipher]

Simple substitution ciphers like Caesar cipher use a single mapping from

plaintext to ciphertext letters, that is the same plaintext will have the same ciphertext.

This characteristic is always not good in cryptography from the security point of view.

Polyalphabetic cipher solves this problem by using multiple substitutions.

Image a cipher disk with two circles (outer and inner circle) and they are

movable between each other.

Every time we randomly turn around the inner circle, we will get a response pair

from each alphabet. Then we record where the &(or any sign different from alphabets

and numbers) sign stand. That is the simple way to produce a substitution cipher

which works and avoid the single mapping from plaintext to ciphertext problem.

(figure in Denning p.73)

TRANSPOSITION TECHNIQUES

 6

Transposition technique is achieved by performing some kind of permutation on

the plaintext letters. It is very simple to realize this kind of cipher. We can do it by the

example. If the plaintext is “meet me after the party”, we can rearrange it by this way:

m e m a t r h p r y

 e t e f e t e a t

So we get the plaintext and the ciphertext like this:

plaintext: meet me after the party

ciphertext: mematrhpryetefeteat

[Columnar transposition]

Another simple transposition cipher is called Columnar transposition. If the

plaintext is “data encryption”, we will compose the sentence into a 3*5 matrix. For

example:

key: 4 1 2 3 5

plaintext : d a t a

 e n c r y

 p t i o n

ciphertext: anttciarodep yn

 Of course, the transposition cipher can be made more secure by performing more

than one stage of transposition. For example, doing the Columnar transposition 2 or 3

times and it will efficiently to increase the security of this cipher.

4 Block Cipher and Stream Cipher

In detail, we can even more separate symmetric cipher to two kinds of cipher as

block cipher and stream cipher by the encryption basic sense. In this report we pay

more attention to the block cipher, but we also give some stream cipher examples.

Block cipher

Symmetric cipher(secret key cryptography)

Stream cipher
Cipher

Asymmetric cipher(public key cryptography)

Fig.4

Figure.4 Block cipher and Stream cipher

 The most different part between the block cipher and the stream cipher is that the

block cipher encrypts the fixed size of the input data. On the other hand, stream cipher

 7

encrypts the bitstream with the unit of bit or byte.

˙˙Block cipher： One block of input data encryption One block of output data
� �Key �(plaintext) (ciphertext)

Figure.5 Block cipher scheme

Let M be a plaintext message. A block cipher breaks M into successive

blocks 1M , 2M , …… and encrypt each
k

M with the same key K; that is,

 1 2() () ()......
k

E M E M E M= (4)

Typical size of block cipher block size is 64bits, 128bits or larger. Older cipher

usually had the smaller size. Considering of the security, the larger the block size has,

the safer the data is. Because each bits in the original data influences the every single

output bit. And with aspect of processing speed, it is the same that we hope that the

block size much larger. One of the advantages of the block cipher is the fast speed.

 The drawback of the block cipher is that we must fit the block size, or we cannot do

block cipher encryption. Sometimes we have to add additional redundant to fit the

block size to do encryption. And this is kind of wasting resource.

˙˙Stream cipher：

 Stream cipher is different from block cipher that stream cipher break message M

into successive characters or bits 1m , 2m , …… and encrypt each
k

m with the ith

element
i

k of a key stream K= 1 2k k ……; that is,

1 21 2() () ()......

k k k
E M E m E m= (5)

 The stream cipher produces key stream by using a key instead of dealing with

block data. The key stream is often used to do XOR with plaintext and the results

could be used to do encryption. We describe the XOR algorithm as followed.

(2)XOR(exclusive or)

XOR-operation is often used in the cryptology.

Table.2 XOR-operation

 8

Input 1 Input 2 XOR output

0 0 0

0 1 1

1 0 1

1 1 0

 We explain how to do a simple data encryption using XOR by the followed

example：

T: plaintext bitstream. S: some secret bitstream. We define C as the result of T S,

C=T S. And now C is the cipher text. Then we can decrypt the encrypted data by the

following steps:

C S=(T S) S=T (S S)=T 0=T，So T=C S。

We can decrypt the encrypted data by doing C S.

5 Operation Modes for Block ciphers

 Here we simply introduce some modes to implement block ciphers. These different

modes we call them ”Operation Modes”. We choose one of them to implement the

block cipher by considering the different kind of outstanding threatens.

ECB(electronic codebook mode)：

The simplest sense of Block cipher is ECB mode. In ECB mode, each encryption

and decryption of the data blocks are independent from one another. It means that the

speed of ECB mode is very fast because the parallel inputs and parallel outputs could

be used. And the transmission errors will be confined inside the single block, and will

not influence on the other blocks. The drawback of ECB mode is that the same

plaintext input will have the same ciphertext output. It would be an advantage that the

attackers could take on.

Figure.6 ECB mode encryption

 9

Figure.7 ECB mode decryption

CBC(cipher block chaining mode)：

 CBC mode efficiently solves the security problem of ECB. The encryption of CBC

is to do XOR between the current plaintext and the former plaintext, then deal the

result from the above with the key. And the output is the current cipher. Decryption is

quite simple that we could use the specification of the XOR. We could realize the

detail by checking out Fig.8 and Fig.9. (Notice that there is a IV, initialization vector

in the first step where there is no former ciphertext.)The disadvantage of CBC is that

the processing speed in CBC is slower than ECB because the parrell inputs cannot be

used here.

Figure.8 CBC mode encryption

Figure.9 CBC mode decryption

 10

CFB(cipher feedback mode)：

 The most serious problem (drawback)is that it can only encrypt the data fitting the

data size. CFB could solve this problem. CFB can deal with any data that even

smaller than the block size. On the other hand, we can image this is a way transferring

block cipher to stream cipher.

 Fig.10 is an example for 8-bit CFB. At the beginning, the former ciphertext(or IV) is

put into a shift register(we assume that the register shifts from right to left.) and the

stuff inside the register would be encrypted with key. In general, the encryption output

of the left n bits is exactly the ciphertext(now it is 8 bits).And the decryption is as

same as the former modes that using the XOR.

Figure.10 CFB encryption and CFB decryption

OFB(output feedback mode)：

OFB is similar to CFB that both of the two modes could transfer block cipher into

stream cipher. The most difference between them is that OFB put the output of the

encryption into to register directly. So OFB is a little simpler than CFB. check out the

figure：

Figure.11 OFB encryption and decryption

CTR(counter mode or SIC, segment integer counter)：

 11

The concept of CTR mode is also familiar to OFB. The difference between them is

that there is no register inside the CTR system. Instead of the register, the CTR mode

uses the counter to do encryption. The counter would be added by 1 every time after

encryption. The biggest advantage of CTR is that the parallel inputs can be used

which means the processing time of CTR mode is rather fast. And at the same time,

there is no such security problem happened in ECB mode in CTR mode.

CTR is a popular mode that used very often nowadays. There is so many different

type of such mode just like CTR. CTR is also suitable in the muti-processor machine.

We just simply described the basic sense of CTR mode and put the simplest algorithm

figure beyond.(The nonce here is the meaning as the IV above.)

Figure.12 CTR mode encryption

Figure.13 CTR mode decryption

 12

Table.3 advantage and drawback of the modes above

 Advantage Drawback

ECB Parallel en/decryption,

Simple and fast

Insecure,

Handling constant data

size

CBC Secure Series en/decryption,

Slow,

Handling constant data

size

CFB Secure,

Handling data with any

size

Series en/decryption,

Slow

OFB Secure,

handling data with any

size,

Simpler and faster than

CFB

Series en/decryption,

Slow

CTR Parallel en/decryption,

Handling data with any

size,

Secure

6 stream cipher example：：：：LFSR and OTP

We mentioned the sense of stream cipher above. We now take LFSR for example.

LFSR (linear feedback shift register) is so popular because the stream cipher here is

easy to be implemented from the hardware point of the view.

There are two main parts of LFSR, shift register and feedback function.

1: Shift register

Shift register has two main jobs to deal with. The first is to deal with parallel or

series data, and the second is to delay a serial bitstream. There are two ways to use the

register. The first one is to input all the value into the register in one time (so called

parallel input), then shift the output one by one (so called serial).The second one is

serial input and parallel output. And the concept of delaying is rather simpler as it is

the basic function of the shift register.

 13

Figure.14

2: feedback function

The computation in the LFSR is so called the XOR, odd parity, or sum modulo

2.No matter what it is called, the concept is very simple：(1)add the select bit

value(2)if the sum is odd, the output will be 1,or output 0 and vise versa.

 The place we choose to do “add” is called the tap. The sequence of select bit tap is

tap sequence. And the tap sequence would be feedbacked into the input of the register.

Figure.15

 OTP (one time pad)is another example for stream cipher. The difference between

OTP and the other stream ciphers is that the key stream produced by OTP will not be

repeated. The specification of unrepeated key stream guanrantees the security, but also

brings new problem, key distribution and randomness which means that we cannot

use any software to produce the key stream generator because the software cannot

modify the real random distribution. We have to use things such as atomic decay or

radiation, etc to get the real random distribution.

 7 Hybrid Algorithms, PGP

 The most serious drawback of Public key algorithm is the complicated

computation and the slow speed, but all the other specifics of this algorithm is very

useful, especially in the condition that the communicators do not know each others.

As the reason, we wonder if there were some ways to combine all the advantage of

secret key and public key algorithms.

 A widely used example for the above is PGP. The original plaintext is encrypted

by a temporary key and the symmetric cipher system. The temporary key is produced

 14

as random. Since the mechanism is symmetric cipher, the key should be transmitted to

every parties involved in the communication system. We need to notice that the key

would be encrypted by public key mechanism before it is transmitted. Therefore, if

there are n receivers, there would be n versions symmetric key hidden in it.

 This kind of cipher algorithm that combining both advantage of secret key and

public key is so called Hybrid algorithm.

8 Cryptanalysis

 Cryptanalysis is the methods to attack cryptographic protection. There are

several ways to achieve this goal. A cipher is breakable if it is possible to determine

the plaintext or key from the ciphertext, or to determine the key from the

plaintext-ciphertext pair. There is a kind of attack called “Brute-force attack” which

means that the attacker tries every possible key on a piece of ciphertext until an

intelligible translation into plaintext is obtained. On average, half of all possible keys

must be tried before succeeding. Besides Brute-force attack, there are three typical

attacking situations we describe as followed.

1 ciphertext-only attack: the attackers only know the information of ciphertext and the

detail of how encryption works, that is they know the encryption algorithm. (the

Kerckhoff principle).

2 known-plaintext attack: the attackers know the encryption algorithm and the

ciphertext just as cipher-only attackers know. And additional, they know one or more

ciphertext – plaintext pairs generated by the secret key.

3 chosen-plaintext attack: the attackers not only know the encryption algorithm but

also have the ability to modify the input plaintext and observe the corresponding

output ciphertext.

 Among the three situations, no doubts that the chosen-plaintext attack is the most

threaten one in the point of view of the original data protectors.

A cipher is called “unconditional secure” if no matter how much the ciphertext

is intercepted, there is not enough information to determine the corresponding

plaintext uniquely. By the way, we have to realize that all ciphers are breakable if

given unlimited resources.

So generally speaking, the “computationally secure” is sometimes more

meaningful, which means if it can be broken by systematic analysis with available

limited resources.

Computationally secure is established with the two criteria meet at the same

time:

1. the cost of breaking the cipher exceeds the value of the encrypted information.

2. the time required to break the cipher exceeds the useful lifetime of the information.

 15

Table.4 unconditional secure and computational secure

Unconditional secure cannot be achieved in practical.

Computationally secure criteria:

1. the cost of breaking the cipher exceeds the value of

the encrypted information.

2. the time required to break the cipher exceeds the

useful lifetime of the information.

Except the attack ways above, there are some attackers who do not consider pure

cryptanalysis but mention about other effects .They might choose different inputs to

observe the power consumption or the consuming time. They would guess the secret

key by these kinds of way.

9 Assessment for image and video encryption

We have some critical properties for image and video encryption that we should

evaluate such as “Time demand”, “Security”, “Bitstream compliance”, “Compressed

domain processing”, “Compression performance affected”.

Table.5 important properties of image and video encryption

Time demand Two main parts 1. Time(E): the time

required for the actual

encryption.

2. Time(P): the time

required for the system to

decide which parts of the

data is going to be

encrypted.

0,

low,

medium,

high

Security Two main aspects 1. The security of the cipher

in use itself.

low,

medium,

high

Bitstream

compliance

An image or video encryption scheme is said to be

bitsrtream is compliant if the resulting bitstream is

compliant to the bitstream definition of the

compression system in use.

yes,

no

Bitstream

processing

Whether the encryption is applied directly to the

bitstream or the bitstream needs to be encoded

before encryption.

yes,

no

Compression A lot of image and video encryption schemes yes,

 16

performance

affected

increase the file size as compared to applying

compression without encryption.

moderately

no

10 Algorithms for DCT-based Tech Image Encryption

(1) Zig-Zag Permutation Algorithm

Zig-Zag permutation algorithm is one of the common used compression

oriented scheme image encryption and is the first MPEG encryption. Its main

idea simple that is to substitute the fixed zig-zag quantized DCT coefficient

scan pattern by a random permutation. We have to mention that the JPEG and

MPEG standard orders the coefficients with respect to increasing frequency

and decreasing magnitude. Therefore, long runs zeros occur in the high

frequency areas of block. We could expect to lost compression performance.

Figure.16

Tab.6 the properties of Zig-Zag algorithm

Time(E) Time(P) Security BS compl. BS proc. CP affect

Low 0 Low Yes No Yes

(2) Frequency-band Coefficient Shuffling

In order to improve the security and the limit the drop in compression

efficiency as seen with zig-zag permutation, some people propose not to

permute the coefficients within a single 8*8 pixels block but to group the

entire set of similar frequency location coefficients together and perform

permutation on that. It improves more security than the pure zig-zag

permutation because more blocks are involved and additional key material

may be employed to define which blocks should be selected to encrypt.

Tab.7 the properties of Freq-band shuffling

Time(E) Time(P) Security BS compl. BS proc. CP affect

Low Low Low Yes No Moderately

 17

(3) Coefficient Sign Bit Encryption

This encryption encrypts the sign bit of each DCT coefficient only. The main

idea of this encryption is that by changing the sign bit of all DCT coefficient,

the output of the encryption remains high entropy. Moreover, we could even

encrypt the DCT coefficients with changing the sign bits and in additional to

do an extra zig –zag permutation.

Tab.8 the properties of Coefficient sign bit encryption

Time(E) Time(P) Security BS compl. BS proc. CP affect

Medium Medium Low Yes Yes No

(4) Secret Fourier Transform Domain

All of the above we talk about the encryptions that deal with the transform

domain coefficients. So if the transform domain is not known by the attackers,

it will be very hard for the attackers to attack the encryption. One of the

examples is that the input plane, the encryption plane, and the output plane

are the fractional Fourier transform to one another. General speaking, the

most serious problem of this kind of encryption is that it might take a lot of

time for the system to compute throughout all the transforms.

Tab.9 the properties of secret FT domain

Time(E) Time(P) Security BS compl. BS proc. CP affect

High High High No No Yes

11 Algorithms for DCT-based Tech Video Encryption

 (1) Encryption of I-frames

 Some people propose to encrypt I-frames only. Since P-frames and B-frames

are restructed from the predictions of I-frames, it is reasonable to assume that

if I-frames are encrypted, P and B-frames are expected to be protected as

well. But there are several problems we should mention. First, the I-frames is

about 25-50% in the whole frames which means this encryption approach

does not reduce the computational complexity enough. Second, the motion in

the video remains visible, especially when replacing the encrypted I-frames

by uniform frames. We could solve the first problem by increasing the

numbers of I-frames, but that makes the second problem be more serious. It

means that we would have to trade off between security and the compression

 18

performance.

Tab.10 the properties of I-frame encryption

Time(E) Time(P) Security BS compl. BS pronc. CP affect

Medium Medium Low Yes Yes No

Simulation result of image encryption

We simulate three simple sense of image encryption by using the block

permutation, zig-zag permutation and dealing with the coefficients using mod

computation. All of the three algorithms do not transform the original image

coefficients into another domain. We just make a trial on these three encryption sense

and give examples above, so it is not the point that the domain is transformed or not.

We show the encryption and decryption results below and discuss the performance

after all.

˙(Zig-Zag permutation encryption)

 Figure.17 Original image: lena.jpg

Figure.18 Image after zig-zag permutation and the decryption image

 ˙(Doing Mod computation on coefficients encryption)

 19

Figure.19 Image after coefficient mod dealing and the decryption

˙(Block permutation encryption)

 Figure.20 Image after block permutation and the decryption

Advantage and Disadvantage

 The block permutation encryption is the simplest idea that encrypts the image.

But the security is a problem. We can conceal this problem by changing the

permutation block size and increase the permutation numbers. The idea of mod way

encryption encrypts the image by changing the coefficients of the image matrix in a

mod computing formula (We can tune the formula as our will of course.). The

problem of it is that the choice of coefficient in the formula is critical. In our program

the coefficient of the mod formula cannot be chose too big, or the image after

encryption will be simply seen as an image composed by several small size of the

original image. The advantage of the mod way encryption is that the computational

complexity is very low, that makes the encryption speed very fast. The zig-zag

 20

encryption seems the best way to encrypt image among the three algorithms we

discuss. And the computational complexity is in the acceptable range that will not yet

be a problem. Moreover, we can combine the three algorithms together to encrypt

images, and that would ensure the security well. The table below lists the advantages

and the drawbacks of the three simulations we discuss.

Table.11 advantage and disadvantage of the simulate examples

 advantage disadvantage

Block permutation Simple to realize Security problem

Mod coefficient encrypt Low complexity Security problem

Zig-zag permutation Secure, Simple,

Low complexity

Conclusion

We have seen the basic background knowledge of cryptography and realized

some image and video data encryption schemes and examples. Most parts of the

report are emphasizing on the whole scheme of the data encryption process and the

basic sense of cryptography and cryptanalysis. We should understand that there is

always a “trade-off” to deal with the two aspects of security and the computational

complexity when we encrypt the visual data. Also we have to know that the standards

used nowadays such as MPEG IPMP or JPSEC are quite recent and are not going to

be the final or the best standards. Indeed, there will always be some more powerful

standards invented in the future. Consequently, almost all of the literatures suggest

that we can pay more attention on the entertainment and telecommunication

application which will possibly make more extensive use of encryption. And that

would bring us more exciting ideas even from the commercial point of view.

 References

[1] A. Uhl, A. Pommer, Image and Video Encryption, Springer, City, 2005

Chap3.Cryptography基本架構，Cryptanalysis overview。

Chap4.DCT-based架構下發展 image與 video encryption演算法的重要考慮元素。

此書薄，從 cryptography到 data compression再到 data encryption都有包涵，初學

者看較為吃力，但因去除許多細節，已有概念者閱讀起來會很輕鬆，易心領神會。

[2]D. Elizabeth, R. Denning Cryptography and Data Security, Addison-Wesley, City,

1982

非常早期的書，此報告參考其 secret-key system中兩個分類：transposition cipher

 21

technique，substitution cipher technique。

[3] W. Stallings, Cryptography and Network Security, Prentice Hall, 2003

Chap2.Block cipher。

Chap3.Block cipher modes。

Chap9.Public-Key cryptosystems。

適合當作 Cryptography 的入門書，從基本概念介紹到 Public-Key Secret-Key 架

構，還有 Cipher的分類，Key Management，Message Authentication，最後兩個章

節分別談到Network Security與 System Security，適合初學者閱讀，且作者William

Stallings在 Cryptography領域有好幾本相關的書籍。

[4] P. Wayner, Disappearing Cryptography Information Hiding: Steganography &

Watermarking, Morgan Kaufmann, 2002

[5] D. Salomon, Data Compression, Springer, 2004

Chap 6-4. I-frame，P-frame，B-frame的概念。

是一本完整的 data compression參考書(The Complete Reference)，介紹各種

statistical coding方法，Image compression，Wavelet Methods，Video compression，

Audio compression等重要的領域，對各種演算法也有詳細的圖文解釋。

[6] L.Tang, “Method for Encrypting and Decrypting MPEG Video data Efficiently”,

In Proceedings of The ACM Mutimedia, Publisher, City, 1996

有介紹到 Zig-Zag permutation algorithm

[7] W. Zeng, S. Lei, “Efficient Frequency Domain Selective Scrambling of Digital

Video”, IEEE Transactions on Mutimedia, 2003

http://ieeexplore.ieee.org/iel5/6046/26936/01196741.pdf?tp=&isnumber=&arnumber

=1196741

提到 Frequency-band Coefficient Shuffling與 Coefficient Sign Bit Encryption。

[8] W. Zeng, S. Lei, “Efficient Frequency Domain Selective Scrambling for content

access control”, In Proceedings of The Seventh ACM International Mutimedia

Conference, 1999

同上，提到 Frequency-band Coefficient Shuffling與 Coefficient Sign Bit Encryption.

[9] A.J. Menezes, P.V. Oorschot, S.A. Vanston, Handbook of Applied Cryptography,

CRC Press, 1996

講到部份關於 Crypyanalysis，Cryptography的基本概念

[10]B.Schneier, “Applied Cryptography: protocols, algorithms and source code in C”,

Wiley Publishers, 1996

簡單提及 The family of Alice and Bob的概念

[11]A. Kerckhoff, “La cryptographie militaire”, Journal des sciences militaries, 1883

Kerckhoff Principle：The attackers always know the encryption algorithm detail.

[12]N. Drakos, A. Eng, ‘Secure Telnet’, available from

http://www.pvv.ntnu.no/~asgaut/crypto/thesis/thesis.html

 22

取其 Block cipher modes的圖

[13]R. Blaschke, ‘Kryptographie -- Multimedia Security, MPEG’, available from

http://www.rblasch.org/studies/crypto/index.html

 取其 zig-zag permutation的圖

 [14] H. Cheng and X. Li. On the application of image decomposition to image

compression and encryption. In P. Horster, editor, Communications and

Multimedia Security II, IFIP TC6/TC11 Second Joint Working Conference on

Communications and Multimedia Security, CMS ’96

 參考 Data compression的部分。

 23

程式片段程式片段程式片段程式片段：：：：(附上附上附上附上 3 種此報告內撰寫之種此報告內撰寫之種此報告內撰寫之種此報告內撰寫之 image en/decryption 方法方法方法方法)

1.Zig-Zag permutation encryption(fig.18)

Encryption： function En=jimkuozigzag(T,a,b,c) N=size(T); %allpix=N(1)*N(2) %newpix=sqrt(allpix); %此 zigzag 函式用來將輸入的 image 利用 zigzag 掃描方式加密 % 其簡單概念如下: % (1)輸入 image 'T' % (2)用 zigzag 方式將 T 矩陣的值掃描成一個一維 array 'new' % (3)將此一維 array 利用 reshape 語法,轉成與 T 相同維度大小的矩陣 En,即為加密之新圖片 %%% % 程式做法說明 % 基於 ZigZag 的掃描方式,每一條的掃描用變數 d 來計算 % new array 的 index 以 n 來計算,(1,1)的值輸入給 new(1),(1,2)輸給 new(2)..etc. % 第一條掃描 d=1,zigzag 掃描路徑即為(1,1)-->(1,2) % 第二條掃描 d=2,zigzag 掃描路徑為(1,2)-->(2,1)-->(3,1) % 注意最後(3,1)此處,此時d仍然是2,我先把(x,y)改變成下一條的起始點(3,1),稱'掃描',但不作輸入動作 % 到 d=3 才做將(3,1)輸入 new 的動作. % 所以,以 d=2 為例,程式的動作就是:(1)先將 d=2 起始點的值輸入給 new % (2)先做輸入,再做掃描 % (3)到左邊邊緣後(此判斷式即為 while 迴圈y<=1 成立,迴圈停止) % (4)輸入值給 new,再做座標改變(d=3 的起始座標) % 第三條掃描 d=3,為(3,1)-->(2,2)-->(1,3)-->(1,4) % 以此類推... %%% x=1;y=1;n=1; % x,y 為座標,n 為 new 的 index,亦是現在掃描於第幾個pixel 的數目 new(1)=T(1,1,1); % 先將(1,1)輸入 new(1),並 y++此為第一路徑輸入與掃描 y=y+1; n=n+1; % 開始迴圈以前已經將第一路徑輸入掃描完畢

 24

 % 所以,d=1 時,輸入動作為 new(1)=T(1,1,1),而掃描動作為 y=y+1 % 即從(1,1)-->(1,2) for d=2:N(1) % 迴圈開始,由 d=2 開始 if mod(d,2)==0 % 用 d 的單偶數來判斷 zigzag 的方向 while y>1 % while 條件式來判斷是否已經接觸到最左邊 new(n)=T(x,y,1); % 現在 d 為偶數,掃描方向為右上到左下,所以每次先將座標值輸入 new,再做掃描:將 x++,y--,n++, x=x+1;y=y-1; n=n+1; end % 當 y<=1,即碰到最左邊,此時輸入 new,再做 x++的動作 (例:d=2 時 new(3)=T(2,1,1),再 x++,即(x,y)變為(3,1)) new(n)=T(x,y,1); x=x+1; n=n+1; else % 此時 d 為單數,表示 zigzag 方向由左下到右上,因此迴圈內在掃描碰到最上面(x>=1)以前,每次掃描都為 x--,y++ while x>1 new(n)=T(x,y,1); % 同樣若 d=3,先輸入 T(3,1,1)進入 new,再做 x--,y++ x=x-1;y=y+1; n=n+1; end new(n)=T(x,y,1); % 當 x<=1,即碰到最上邊,此時輸入 new,再做 y++的動作 (例:d=3 時 new(3)=T(1,3,1),再 y++,即(x,y)變為(1,4)) y=y+1;n=n+1; end end x=x-1; y=y+1; % 此為剛好掃完一半的點,若為N*N矩陣,此時在(N,1)位置,將 x--,y++ d1=N(1)+1; d2=2*N-1; % 此開始與上面類似,僅因為現在掃的是下三角的矩陣,所以 while 判斷邊緣有點改變而已 temp1=N(1); for d=d1:d2 if mod(d,2)==1 while y<temp1 new(n)=T(x,y,1); x=x-1;y=y+1;

 25

 n=n+1; end new(n)=T(x,y,1); x=x+1;n=n+1; else while x<temp1 new(n)=T(x,y,1); x=x+1;y=y-1; n=n+1; end new(n)=T(x,y,1); y=y+1; n=n+1; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%以下為 RGB 中的 GB 部分,方式同上,可直接跳至最後第 170行的注解%%%%%%%%%%% %% x=1;y=1;n=1; new2(1)=T(1,1,2); y=y+1; n=n+1; for d=2:N(1) if mod(d,2)==0 while y>1 new2(n)=T(x,y,2); x=x+1;y=y-1; n=n+1; end new2(n)=T(x,y,2); x=x+1; n=n+1; else while x>1 new2(n)=T(x,y,2); x=x-1;y=y+1; n=n+1; end new2(n)=T(x,y,2);

 26

 y=y+1;n=n+1; end end x=x-1; y=y+1; d1=N(1)+1; d2=2*N-1; temp1=N(1); for d=d1:d2 if mod(d,2)==1 while y<temp1 new2(n)=T(x,y,2); x=x-1;y=y+1; n=n+1; end new2(n)=T(x,y,2); x=x+1;n=n+1; else while x<temp1 new2(n)=T(x,y,2); x=x+1;y=y-1; n=n+1; end new2(n)=T(x,y,2); y=y+1; n=n+1; end end x=1;y=1;n=1; new3(1)=T(1,1,3); y=y+1; n=n+1; for d=2:N(1) if mod(d,2)==0 while y>1 new3(n)=T(x,y,3); x=x+1;y=y-1; n=n+1; end

 27

 new3(n)=T(x,y,3); x=x+1; n=n+1; else while x>1 new3(n)=T(x,y,3); x=x-1;y=y+1; n=n+1; end new3(n)=T(x,y,3); y=y+1;n=n+1; end end x=x-1; y=y+1; d1=N(1)+1; d2=2*N-1; temp1=N(1); for d=d1:d2 if mod(d,2)==1 while y<temp1 new3(n)=T(x,y,3); x=x-1;y=y+1; n=n+1; end new3(n)=T(x,y,3); x=x+1;n=n+1; else while x<temp1 new3(n)=T(x,y,3); x=x+1;y=y-1; n=n+1; end new3(n)=T(x,y,3); y=y+1; n=n+1; end end %%利用 reshape 的方式,將一維的 new 改成與 T 同維的 matrix %%再將 RGB 各 channel 指定給 D,最後 En 即為輸出之加密圖像

 28

C1=reshape(new,temp1,temp1); C2=reshape(new2,temp1,temp1); C3=reshape(new3,temp1,temp1); D(:,:,1)=C1; D(:,:,2)=C2; D(:,:,3)=C3; En=D(:,:,[a,b,c]);

Decryption： function De=jimkuoZigZagDe(H,j,k,p) %%此函式為針對 ZigZag 加密的圖像做解密的動作 %先將輸入的 H 改成一維的 a %再利用 jimkuozigzag 的各迴圈來做一樣的事情,只是在這邊是將 1 維的 a 指給 matrix T %其餘與加密法都相同 N=size(H); N1=N(1); Dim=N1*N1; a=reshape(H(:,:,1),1,Dim); a2=reshape(H(:,:,2),1,Dim); a3=reshape(H(:,:,3),1,Dim); x=1;y=1;n=1; T(1,1,1)=a(1); y=y+1; n=n+1; for d=2:N1 if mod(d,2)==0 while y>1 T(x,y,1)=a(n); x=x+1;y=y-1; n=n+1; end T(x,y,1)=a(n); x=x+1; n=n+1; else while x>1

 29

 T(x,y,1)=a(n); x=x-1;y=y+1; n=n+1; end T(x,y,1)=a(n); y=y+1;n=n+1; end end x=x-1; y=y+1; d1=N1+1; d2=2*N1-1; temp1=N(1); for d=d1:d2 if mod(d,2)==1 while y<temp1 T(x,y,1)=a(n); x=x-1;y=y+1; n=n+1; end T(x,y,1)=a(n); x=x+1;n=n+1; else while x<temp1 T(x,y,1)=a(n); x=x+1;y=y-1; n=n+1; end T(x,y,1)=a(n); y=y+1; n=n+1; end end %%%%%%%%%%%%%%%%%%%%%%%%下面為其餘兩個 channel x=1;y=1;n=1; T(1,1,2)=a2(1); y=y+1; n=n+1; for d=2:N1 if mod(d,2)==0

 30

 while y>1 T(x,y,2)=a2(n); x=x+1;y=y-1; n=n+1; end T(x,y,2)=a2(n); x=x+1; n=n+1; else while x>1 T(x,y,2)=a2(n); x=x-1;y=y+1; n=n+1; end T(x,y,2)=a2(n); y=y+1;n=n+1; end end x=x-1; y=y+1; d1=N1+1; d2=2*N1-1; temp1=N(1); for d=d1:d2 if mod(d,2)==1 while y<temp1 T(x,y,2)=a2(n); x=x-1;y=y+1; n=n+1; end T(x,y,2)=a2(n); x=x+1;n=n+1; else while x<temp1 T(x,y,2)=a2(n); x=x+1;y=y-1; n=n+1; end T(x,y,2)=a2(n); y=y+1; n=n+1;

 31

 end end %%%%%%%%%%%%%% x=1;y=1;n=1; T(1,1,3)=a3(1); y=y+1; n=n+1; for d=2:N1 if mod(d,2)==0 while y>1 T(x,y,3)=a3(n); x=x+1;y=y-1; n=n+1; end T(x,y,3)=a3(n); x=x+1; n=n+1; else while x>1 T(x,y,3)=a3(n); x=x-1;y=y+1; n=n+1; end T(x,y,3)=a3(n); y=y+1;n=n+1; end end x=x-1; y=y+1; d1=N1+1; d2=2*N1-1; temp1=N(1); for d=d1:d2 if mod(d,2)==1 while y<temp1 T(x,y,3)=a3(n); x=x-1;y=y+1; n=n+1; end

 32

 T(x,y,3)=a3(n); x=x+1;n=n+1; else while x<temp1 T(x,y,3)=a3(n); x=x+1;y=y-1; n=n+1; end T(x,y,3)=a3(n); y=y+1; n=n+1; end end De=T(:,:,[j,k,p]);

 33

2.Doing Mod computation on coefficients encryption(fig.19)

Encryption：

function En=jimkuoModEnc(T,a,b,c)

pn=size(T);

 p1=mod(53*[0:pn(1)-1],pn(1))+1;

 p2=mod(173*[0:pn(2)-1],pn(2))+1;

 En=T(p1,p2,[a,b,c]);

% Function JimkuoModEnc is a function used to do picture encryption using

the MOD

% way to change the picture matrix element value.

% There are four input variables.

% You do not have to input the picture size bcz this function already do

% that for you.

% Variable T is the original picture file without encryption in the main

% function.

% And the a,b,c represent the R,G,B element,respectively.

% To use this function, you only have to input the pixel numbers of the

original

% picture,and see if you want to change the RGB element representing

% order with number 1 2 3.

% Then En is the picture results from MODway Encryption that we did by

the function.

Decryption：

function DeEn=jimkuoModDeEnc(En,a,b,c)

%p1=mod(53*[0:x-1],x)+1;

%p2=mod(47*[0:y-1],y)+1;

pn=size(En);

p1=mod(53*[0:pn(1)-1],pn(1))+1;

p2=mod(173*[0:pn(2)-1],pn(2))+1;

[a11,a12]=sort(p1);

[a21,a22]=sort(p2);

[temp,index]=sort([a,b,c]);

DeEn=En(a12,a22,index(:));

% This function is used to De-Encrypted pictures which be Encrypted by

the

% function JimkuoModEnc.m using the MOD way to change the picture matrix

% element value.

% To use this function, we also have to input the x-y pixel numbers of

 34

the

% picture,and the RGB order we changed when encrypted the picture.

3. (Block permutation encryption) (fig.20)

X方向：

function En=jimkuoPermuencX(T)

pn=size(T);

x=floor(pn(1)/20);

y=floor(pn(2)/20);

Enc=T

i=1;

n=1;

%if mod(x,2)=0

 while(n<=x/2)

 temp=Enc(i:i+10,:,:);

 Enc(i:i+10,:,:)=Enc(i+20:i+30,:,:);

 Enc(i+20:i+30,:,:)=temp;

 i=i+40;

 n=n+1;

 end

En=Enc;

Y方向：

function En=jimkuoPermuencY(T)

pn=size(T);

x=floor(pn(1)/20);

y=floor(pn(2)/20);

Enc=T

i=1;

n=1;

%%if mod(x,2)=0

 while(n<=y/2)

 temp=Enc(:,i:i+10,:);

 Enc(:,i:i+10,:)=Enc(:,i+20:i+30,:);

 Enc(:,i+20:i+30,:)=temp;

 i=i+40;

 n=n+1;

 end

 En=Enc;

