
Image Deblurring Tutorial

Jian-Jiun Ding

Chun-Lin Liaw

September, 2022

Contents

1 Abstract 3

2 Introduction 4
2.1 Problem Statement . 4
2.2 Method Classification . 6
2.3 Problem Formulation . 7

3 Conventional Methods 8
3.1 Regularization . 8
3.2 Iterative Regularization . 14
3.3 Statistical . 23
3.4 Chapter Summarize . 29

4 Uniform Deblurring 30
4.1 Non-blind Deblurring . 30

4.1.1 Fast Image Deconvolution using Hyper-Laplacian Priors [7]
(code path: Deblurring Gather/fastdeconv/test fast deconv.m)

. 30
4.1.2 A General Framework for Regularized, Similarity-Based Image Restoration [6]

(code path: Deblurring Gather/DeblurringCode/mainDemo.m)
. 33

4.1.3 Image Deblurring Using a Pyramid-Based Richardson–Lucy Algorithm [3]
. 37

4.2 Blind Deblurring . 39
4.2.1 Digital Image Restoration for Phase-Coded Imaging Systems [16] 39
4.2.2 Blind Deconvolution Using a Normalized Sparsity Measure [8]

(code path: Deblurring Gather/online code/test blind deconv.m)
. 43

4.2.3 Deblurring Shaken and Partially Saturated Images [17] 46
4.2.4 Deblurring Text Images via L0-Regularized Intensity and Gradient Prior [11]

(code path: Deblurring Gather/text deblurring code v4/demo text deblurring.m)
. 49

4.2.5 Blind Image Deblurring Using Dark Channel Prior [12]
(code path: Deblurring Gather/cvpr16 deblurring code v1/demo deblurring.m) 53

5 Non-uniform Deblurring 57
5.1 Image and Depth from a Conventional Camera with a Coded Aperture [9]

(code path: Deblurring Gather/DeconvolutionCode-LevinEtAl07)
. 57

1

5.2 Spatially-Varying Out-of-focus Image Deblurring with L1-2 Optimization and A Guided
Blur Map [14]
(code path: Deblurring Gather/ICASSP2012/main.m)
. 61

5.3 Unnatural L0 Sparse Representation for Natural Image Deblurring [20]
(code path: Deblurring Gather/Non Uniform Pcode/runNon Uniform L0 Deblur.m)
. 64

6 Deep Learning in Image Deblurring 68
6.1 Non-blind Deblurring . 68

6.1.1 Deep Convolutional Neural Network for Image Deconvolution [19]
(code path: Deblurring Gather/dcnn nips14/run deblur all 3chs finetune.m)

. 68
6.1.2 Restoring an Image Taken through a Window Covered with Dirt or Rain [4]

. 70
6.2 Blind Deblurring . 72

6.2.1 Convolutional Neural Networks for Direct Text Deblurring [5] 72

7 A Short Comment on This Tutorial 74

Appendices 75

A Appendix A:
Issues of MATLAB Implementation 76

B Appendix B:
Iteratively Reweighted Least Squares(IRLS) 78

References 79

2

Abstract

Thanks to the explosive growth of social media, people nowadays tend to share images with each other
frequently. Together with the highly developed technology, it is extremely convenient to take pictures
almost anywhere nowadays. However, these hand-taken images might suffer from certain kinds of blur
effect. Researchers thus have proposed numerous post-processing methods to recover blur images to
sharp ones.

In this tutorial , we aim to address this problem by introducing some well-known methods by
classifying these methods into different categories.

3

Introduction

2.1 Problem Statement

First things first, let’s formulate two dimensional blurring process as follows

b(x) =

∫
k(x,x′)f(x′) dx′ + n(x) (1)

where x = {xvertical, xhorizontal}, b(x) is the blurred signal, k(x,x′) is the point spread function, f(x′)
is the original signal, and n(x) denotes the noise. The goal is to reconstruct f(x′) as precise as
possible. If the point spread function is invariant over entire integral space, we can translate k(x,x′)
to k(x− x′, 0) which is a function of x− x′. Thus, rewriting (1) gives

b(x) =

∫
k(x− x′)f(x′) dx′ + n(x) (2)

Noted that (2) shows that the deblurring process can also be seen as a deconvolution problem in
space-variant case. As a result, two dimensional deconvolution is a sub-problem of image deblurring,
but not the other way. In this tutorial, space-invariant cases are focused rather than space-variant.

To give a concrete idea of (2), we consider three kinds of blurred image with different blur kernels:
Gaussian blur, motion blur, and out-of-focus blur. For a Gaussian blur with zero mean and unit
variance, its kernel is written as

k(x) =
1√
2π
e

−x2

2 . (3)

The result is shown below,

Figure 2.1: left : original image, right : blurred image

4

One can see that the space-invariant kernel blurs the entire image uniformly. As for motion blur,
it stimulates hand shake. The kernel is written as

k(x) =
1

T

∫ T

0
δ[x− a(t)]dt (4)

where a(t) is the time-dependent 2D translation trajectory of the shake motion. The figure below is
generated in MATLAB using a (45◦, 10%) linear motion blur,

Figure 2.2: left : original image, right : blurred image

The above blurring processes are space-invariant since every pixel in the image experience same
convolution process. Out-of-focus, on the other hand, is an example of space-variant blurring. The
effect stems from the fact that when taking a picture, the camera is actually mapping objects of dif-
ferent depth of field (DOF) to a image plane. Figure below shows a scenario where the camera focus
on different object in a same environment.

Figure 2.3: left : focus on soldier, right : focus on the poker

In this case, the kernel can be written as

k(x) =
1

πD2
χcoc(x) (5)

Since the complete explanation requires domain knowledge in optics, this tutorial is not going any
further. Roughly speaking, if a point source on a object is not focused on, the point source will become
a circle of confusion (COC) with radius D. Additionally, the characteristic function of the COC is
χcoc(x). It is obvious that D and χcoc(x) varies from object to object in different places. Therefore,
out-of-focus blur is a space-variant blurring process.

5

2.2 Method Classification

Carrying on the previous section, the mission of image deblurring is to solve equation (2) given b(x).
Now, if k(x,x′) is also acquired, we call the problem a non-blind deblurring process. On the con-
trary, when k(x,x′) is not available, it becomes a blind deblurring process where both f(x′) and
k(x,x′) have to be estimated. Therefore, image deblurring methods can be grouped into two cate-
gories based on whether k(x,x′) is known. In another perspective, different mathematical means are
used to solve the problem. In this tutorial, three basic groups are introduced: regularization methods,
iterative regularization methods, and statistical methods.

The methods classified by different mathematical tools are mainly referred to [1] while the non-
blind and blind deblurring methods mostly come from milestone papers throughout these years. The
reason of such framework is that in [1], the authors provide important fundamentals of image deblur-
ring and explicit categories of each method. However, many novel methods proposed in the past few
decades are using two or more mathematical tools at the same time. What’s more, blind deblurring
problem becomes vial as the need of single image deblurring has arisen. To sum up, this tutorial can
be broke down into two part in the big picture: highlights of fundamentals in [1] and surveys of recent
progress in image deblurring. However, the following content aims to illustrate the concept behind
each methods rather than detailed derivation. For a better understanding, referring to the sources
attached to each methods is highly recommended.

Figure 2.4: Classification Based on [1] Figure 2.5: Rough Classification of Recent
Progress in Image Deblurring

6

2.3 Problem Formulation

Before going into further discussion, one may notice that equation (2) implies that images are contin-
uous signals. However, images are in fact discrete and often regard as matrices in practical. In the
case of 1D vector of size N , equation (2) is rewrite as

gm =

N−1∑
k=0

Km−kfk + wm = (Af)m + wm (6)

or equivalently
g = K ∗ f+w = Af + w (7)

where A = Km−n. By expanding (6), the matrix A is in the form of

A =

 K0 KN−1 . . . K1
...

. . .
...

KN−1 KN−2 . . . K0

 (8)

With such periodicity, A is recognized as a cyclic matrix and a particular case of Toeplitz matrix as
well. In the following content, equation (7) is adapted in most cases as default formulation of blurring
process.

To solve (7), a straightforward method is to apply Fourier transform on (7) directly:

K̂(w)f̂(w) + ŵ(w) = ĝ(w). Dividing K̂(w) on both side, one get f̂recover(w) =
ĝ(w)

K̂(w)
= f̂(w) + ŵ(w)

K̂(w)
.

The second term implies that the result will encounter inevitable failure at the frequency band where
K̂(w) equals 0. Additionally, low SNR of the blurred image will also result in poor restored image.

7

Conventional Methods

3.1 Regularization

As its name suggests, regularization methods solve the problem by adding constrains on the target
image. First, define the discrepancy function as

ε2(f ; g) = ∥Af − g∥2 (9)

where A is a 2D cyclic matrix corresponding to the point spread function in (2) and g is the known
blurred image. Additionally, another energy function E(f) is defined as

E2(f) = ∥f∥2 (10)

The problem is as such: Given a prescribed energy E2(f), find f that minimize ε2(f ; g). The effect of
adding energy constraints is to suppress noise amplification. Recall that the before-mentioned Fourier
transform method will amplify noise component to infinite at places where kernel equals zero. Taking
conditions (9)(10), this minimizing problem can be solved by Lagrange multipliers

Φµ(f ; g) = ∥Af − g∥2 + µ∥f∥2 (11)

By the use of Parseval equality, (11) can be rewrote as

Φµ(f ; g) =
1

(2π)q

∫
B

∣∣∣K̂(w)f̂(w)− ĝ(w)
∣∣∣2 dw +

1

(2π)q

∫
B

∣∣∣f̂(w)∣∣∣2 dw (12)

(12) can be further rearrange as

Φµ(f ; g) =
1

(2π)q

∫
B

(
∣∣∣K̂(w)

∣∣∣2 + µ)

∣∣∣∣∣∣∣f̂(w)−
K̂∗(w)ĝ(w)∣∣∣K̂(w)

∣∣∣2 + µ

∣∣∣∣∣∣∣
2

dw +
µ

(2π)q

∫
B

|ĝ(w)|2∣∣∣K̂(w)
∣∣∣2 + µ

dw (13)

One can discover that Φµ(f ; g) will have minimal value when the first term equal 0. Under such

condition, the restored f̂µ(w) is given by

f̂µ(w) =
K̂∗(w)ĝ(w)∣∣∣K̂(w)

∣∣∣2 + µ
(14)

8

Note that (14) is the Fourier transform of restored image. The final result is obtained by inverse
Fourier transform

fµ(x) =
1

(2π)q

∫
K̂∗(w)ĝ(w)∣∣∣K̂(w)

∣∣∣2 + µ
eix·wdw (15)

Recall that fµ(w) is obtained under the assumption: given a prescribed energy E2(f), find f that
minimize ε2(f ; g). By calculating the energy of fµ(w), we can get the following inequality

E2(f) =

∫
|f(x)|2 dx =

1

(2π)q

∫
B

∣∣∣K̂(w)
∣∣∣2

(
∣∣∣K̂(w)

∣∣∣2 + µ)2
|ĝ(w)|2 dw ≤ 1

µ(2π)q

∫
B

|f(w)|2 dw

≤ 1

µ
∥g∥2

(16)

That is to say, by choosing a proper µ, we can ensure that the energy of the restored image fµ(w) is
under a specific value since the energy of blurred image ∥g∥2 is already known. In fact, consider the
dual problem: given a prescribed discrepancy value ε2(f ; g), find f that minimize energy E2(f). We
can find that the Lagrange multiplier of this problem is also (11). Thus, using the result in (15), we
can again calculate the discrepancy value

ε2(fµ; g) =
1

(2π)2

∫ ∣∣∣∣∣∣∣
∣∣∣K̂(w)

∣∣∣2∣∣∣K̂(w)
∣∣∣2 + µ

ĝ(w)− ĝ(w)

∣∣∣∣∣∣∣
2

dw

=
1

(2π)2

∫
B

µ2 |ĝ(w)|2

(
∣∣∣K̂(w)

∣∣∣2 + µ)2
dw +

1

(2π)2

∫
B̄

|ĝ(w)|2 dw

(17)

In the second of (17), we separate the frequency domain integral into two parts. The first term is the
same as the first line, while the second term assumes that K̂(w) is band-limited and thus K̂(w) = 0
in B̄. If µ = 0, (17) becomes ∥g∥2. And as µ → ∞, (17) is simply ∥gout∥2 where gout represents the
out-of-band component of blurred image. Therefore, the discrepancy function is bounded by

∥gout∥2 < ε < ∥g∥2 (18)

Given a valid prescribed discrepancy energy ε2(fµ; g) a corresponding µ can be found such that E2(f)
is minimized.

9

By far, we’ve illustrated the characteristics of regularization method and gave brief derivations of
the result. The main idea is to add constraints on restored image. By using regularization term, one
cane ensure that the discrepancy ε2(f ; g) = ∥Af − g∥2 and energy E2(f) = ∥f∥2 will not exceed a
given value. One can find that the main advantage of regularization method is its computing speed.
The result is an one-step calculation as formulated in (15). However, regularization method has a few
drawbacks as well. For example, putting energy constraints on a image is a rather superficial way of
image deblurring since it does not consider any characteristics of natural images other than energy.
Additionally, regularization method has a trade-off between resolution and ringing effect.
The ringing effect is also known as Gibbs oscillations. To address this phenomenon, let’s rewrite (15) as

fµ(x) =
1

(2π)q

∫
B

Ŵ (w)
ĝ(w)

K̂(w)
eix·wdw (19)

where

Ŵ (w) =

∣∣∣K̂(w)
∣∣∣2∣∣∣K̂(w)

∣∣∣2 + µ
(20)

The reason of rewriting (15) into (20) is to show that the result fµ(w) is in fact the multiplication

of two elements in frequency domain(i.e., convolution in spatial domain). The second element ĝ(w)

K̂(w)

is the direct division in frequency domain. Recall that in page 6, we’ve discuss this may cause noise
amplification. As a result, one can find that regularization method is nothing more than adding a
filter Ŵ (w) to the direct division of blurred image and kernel.

Now, we can further investigate the relationship between Gibbs oscillations and (20). The follow-
ing plot shows the relation of µ and the inverse Fourier transform of Ŵ (w).

Figure 3.1: horizontal axis: log10 µ, vertical axis: W (w)

10

According to (11), bigger µ implies stronger energy in the restored image. In other words, an
increasing µ will suppress the oscillation, while a decreasing µ will generate a sharper image compared
to the blurred image. For a better understanding, a simple example is given below

Figure 3.2: (from left to right, from top to bottom):original image, motion blur, AWGN, µ = 0.01
restoration

Figure 3.3: (from left to right, from top to bottom):original image, motion blur, AWGN, µ = 0.05
restoration

11

Here we discuss two possible ways of choosing parameter µ:

• the Miller method:
If we put constrains on the set of all objects such that ∥Af − g∥2 ≤ ε2, ∥f∥2 ≤ E2, µ is chosen
as µMiller = (ε

E)2

• the L curve method:
If we plot µ against E(µ) and ε(µ), the curve looks like the letter L. The value of µ at the turning
point is chosen. The below figure shows the L curve in this case(µ = 0.0001 : 0.001 : 0.2).

Figure 3.4: x-axis: ε(µ), y-axis: E(µ)

It is worth notice that the methods of choosing µ may not result in the optimal solution visually.
The reason that µ only regularize power of image and its discrepancy. Therefore they merely represent
the optimal solution from the standpoint of signal power.

The results are stimulated via MATLAB using discrete version of (15).

(fµ)m,n =
1

HW

H∑
k=1

W∑
l=1

K̂∗k,l∣∣∣K̂k,l

∣∣∣2 + µ
ei

2π
H

kmei
2π
W

ln (21)

H is the height andW is the width of the blurred image. For additional implement details, please refer
to the code. As one can see, When µ = 0.01, there are sever ringing effects in the restored image. On
the other hand, when µ = 0.05, the oscillations reduce but the resolution drops at the same time. The
trade-off between resolution and oscillation shows the limitation of regularization method in some way.
As a matter of fact, the above deblurring process using regularization is a special case of Tikhonov
regularization in linear regression. A standard approach of Tikhonov regularization is as follows:

Given a matrix A and vector b, find a vector x such that Ax=b.

Sometimes the problem is ill-posed because there might be more than one x satisfy the equation or
no x is valid. Hence, the problem seeks to minimize ∥Ax − b∥22. If we include a regularization term
into the equation, the optimize function ∥Ax− b∥22 + ∥Γx∥22 can be solved numerically as

x̂ = (A⊤A+ Γ⊤Γ)−1A⊤b (22)

12

where Γ Tikhonov matrix , often choose as Γ = αI. The object function becomes ∥Ax−b∥22 + ∥αx∥22
which is in exact same form as (11).

Now, we try to solve the original problem (11) in terms of (22). Assume that there is a optimal
restored image fµ for equation (11) such that for any complex scalar α and complex vector h

Φ(fµ; g) ≤ Φ(fµ + αh; g) = ∥Afµ − g∥22 + µ∥fµ∥22
+ α[(Ah,Afµ − g) + µ(h, fµ)]

+ α∗[(Afµ − g,Ah) + µ(fµ, h)]

+ |α|2 (∥Ah∥22 + µ∥h∥22)

(23)

Note that A here is a linear operator rather than a matrix. (Every matrix is a linear operator but not
all the linear operator can be represented as matrix.) Since the fourth term in (23) is always positive,
the second and the third term must be 0 to ensure the inequality holds. The brackets (·, ·) in the
equation is inner product in Hilbert space. Using the property of adjoint operator (Ax, y) = (x,A∗y),
we have

α(h,A∗Afµ + µfµ −A∗g) + α∗(A∗Afµ + µfµ −A∗g, h) = 0 (24)

The commutative property further gives (A∗Afµ+µfµ−A∗g, h) = 0 and equivalently (A∗A+µI)fµ =
A∗g for any complex h. Finally, we can compare this result to (22).

fµ = (A∗A+ µI)−1A∗g (25)

According to Riesz representation theorem, if A has a transform matrixM with respect to orthonormal
basis, then A∗ corresponds to the conjugate transpose MH , resulting the complex representation of
(22)

fµ = (MHM + µI)−1MHg (26)

13

To sum up, in this section we discuss the fundamentals of image deblurring in terms regularization.
This method plays a part in image filtering. And the implement result shows that the restoration is
relatively fast , yet its performance is affected by the trade-off between resolution and ringing. In the
next section, we will introduce iterative regularization method which is considered as an improved
version of the current one.

3.2 Iterative Regularization

In the previous chapter, we try to solve image deblurring problem by a single equation (21). However,
we can actually solve this problem in a multi-step manner. To begin with, let’s revisit equation (25).
If µ = 0 (i.e., without regularization term), then the equation becomes

A∗Af = A∗g (27)

The convolution equation is thus generated by replacing A∗A and A∗g by Ā and ḡ respectively,

Āf = ḡ (28)

A straightforward way of solving (28) iteratively is to approach the optimal answer each step via

fk+1 = fk + τ(ḡ − Āfk) (29)

where fk is the output of the kth iteration and τ is relaxation parameter. Note that the second term
on the right hand side is a vector representing the distance and direction between ĝ and Âfk. Then,
we rearrange the equation and put it in frequency domain,

f̂k+1(w) = τ ˆ̄g(w) + (1− τĤ(w))f̂k(w) (30)

One can easily see that expanding (30) gives

f̂k(w) =(1− τĤ(w))kf̂0(w)

τ{1 + (1− τĤ(w))(1− τĤ(w))2 + . . . (1− τĤ(w))k−1}ˆ̄g(w)
(31)

Using the sum of geometric progression, (31) gives

f̂k(w) = (1− τĤ(w))kf̂0(w) + {1− (1− τĤ(w))k}
ˆ̄g(w)

Ĥ(w)
(32)

Take a closer look at the equation, one can find that the restored image is a linear combination of

general solution
ˆ̄g(w)

Ĥ(w)
and the initial estimation image f̂0(w)

14

Notice that (32) is the result without regularization term. In the following content, we first illus-
trate the original van Cittert and Landweber methods, then take regularization term into account,
and finally introduce the steepest descent and the conjugate gradient method(CG).

First, recall that for a image blurring model g = Af + w, we’ve derived (27) as its solution. And
based on (27), an iterative method to solve the problem is introduced as (32). In such case, Ĥ(w)
is the Fourier transform of Ā, and by definition Ā = A ∗ A which gives H(w) = |K(w)|2. Now,
consider a super simple case where there are no noise were added (Af = g). In this case, Ā = A
and H(w) = K(w). The above concept is the main difference of the van Cittert method and the
Landwever method.

• the van Cittert method:
The method that handles blurred image without additive noise.

f̂k(w) = (1− τK̂(w))kf̂0(w) + {1− (1− τK̂(w))k}
ˆ̄g(w)

K̂(w)
(33)

• the Landweber method:
The method that consider general blurred image with noise.

f̂k(w) = (1− τ
∣∣∣K̂(w)

∣∣∣2)kf̂0(w) + {1− (1− τ
∣∣∣K̂(w)

∣∣∣2)k} ˆ̄g(w)∣∣∣K̂(w)
∣∣∣2 (34)

In the following discussion, we focus on the Landweber method. The final result is obtained by setting
f̂0(w) = 0 (i.e., the first estimation is a zero matrix) and an inverse Fourier transform of (34)

fk(x) =
1

(2π)q

∫
B

Ŵ
(k)
Land(w)

ĝ(w)

K̂(w)
eix·wdw

Ŵ
(k)
Land(w) = 1− (1− τ

∣∣∣K̂(w)
∣∣∣2)k (35)

Compare (35) to Tikhonov regularization in (19), one can find that the Landweber method is in fact

another kind of filter acting on the general solution ĝ(w)

K̂(w)
. That is to say, the number of iteration is

nothing more than a parameter in filtering just as µ in the Tikhonov regularization method. When
K̂(w) is small,

Ŵ (w)T ikhonov ≈
1

µ

∣∣∣K̂(w)
∣∣∣2

Ŵ (w)Landweber ≈ kτ
∣∣∣K̂(w)

∣∣∣2 (36)

The window function of Tikhonov and Landweber can relate to each other by µ = 1/τk

15

As we can see from the above discussion, the Landweber method is not a genuine iterative method
since it can be represented in the form of single filtering process in (32). Therefore we consider a
stricter problem:

∥Af − g∥ = minimum, f ∈ C (37)

The constraint on f ensures that the restored image must be in a given closed and convex set C. The
following algorithm inherits the notations in (28)

1. compute f̂
(C)
k (w) from f

(C)
k (x)

2. compute

ĥk+1(w) = τK̂∗(w)ĝ(w) + (1− τ
∣∣∣K̂(w)

∣∣∣2)f̂ (C)
k (w) (38)

3. compute hk+1(x) from ĥk+1(w)

4. compute f
(C)
k+1(x) = (PChk+1)(x)

The idea here is to project the interior result of each iteration onto the given set C. The method is
thus named the projected Landwever method. The operator PC depends on how one constrains the
restored result. For example, PC can be a simple non-negative function or a saturation function

non− negative : PCf(x) =

{
f(x) if f(x) > 0

0 if f(x) ≤ 0
(39)

saturation : PCf(x) =

f(x) if a ≤ f(x) ≤ b
a if f(x) < a

b if f(x) > b

(40)

So far, we’ve introduce the general iterative method and projected Landweber method. Recall that
the above manners are based on (27) where no regularization terms considered. We now discuss how
to solve the problem with regularization term iteratively.

Φµ(f ; g) = ∥Af − g∥2 + µ∥f∥2 = minimum, f ∈ C (41)

As we’ve proved in (25), the solution of Φµ(f ; g) has the form

(Ā+ µI)f = ḡ (42)

Similar to (29), optimal solution is obtained by iteratively approaching g

fk+1 = fk + τ(ḡ − (Ā+ µI)fk) (43)

16

Thus, the algorithm of the projected Landweber method of constrained regularized solution is as
follows

1. compute f̂
(C, µ)
k (w) from f

(C, µ)
k (x)

2. compute

ĥ
(µ)
k+1(w) = τK̂∗(w)ĝ(w) + (1− τ

∣∣∣K̂(w)
∣∣∣2 + µ)f̂

(C, µ)
k (w) (44)

3. compute h
(µ)
k+1(x) from ĥ

(µ)
k+1(w)

4. compute f
(C, µ)
k+1 (x) = (PCh

(µ)
k+1)(x)

We’ve introduced the van Cittert method, the Landweber method, and the projected Landweber
method. Still, there’s two algorithms we’d like to investigate: the steepest descent and the conjugate
gradient method. The following content set a comparison between both methods. First of all, both
methods aim to iteratively solve a large linear systems

Af = g (45)

where A is a symmetric and positive definite matrix. Note that finding a solution xopt to (45) is
equivalent to minimize the below equation

η(f ;g) =
1

2
fTAf − fTg (46)

The reason is that the minimum f is obtain by ∇η(f) = 0, which is Af − g = 0 (i.e., the original
problem). Now we can discuss the difference between these two approaches.

• Steepest Descent
The idea of steepest descent is to move in the direction of gradient locally at each step. The
local gradient of (46) is given by ∇fη(f ;g) = Af −g which coincides with the negative residual
r = g−Af of each step. The the general iteration is shown below

fk+1 = fk + τrk (47)

The subscript indicates at the kth iteration. After the direction being made, the step size τ must
be decided as well. By simple calculation and (46), the relation of consecutive steps follows

η(fk+1;g) = η(fk;g) +
1

2
τ2∥Ark∥2 − τ∥rk∥2 (48)

Again the τk that minimizes η(fk+1;g) is obtain by

∇τη(fk+1;g) =
∥rk∥2

∥Ark∥2
(49)

17

Recall that in image restoration, the problem we’re solving is (28) where the symbol corresponds
to A and g is Ā and ḡ respectively. The resulting steepest descent is thus performed as a three-
step iteration:

Initialize f̂0(w) = 0
Initialize ˆ̄r0(w) = K̂∗(w)ĝ(w)

for i < iteration do

τk =
∥rk∥2

∥Ark∥2
(50)

f̂k+1(w) = f̂k(w) + τk ˆ̄rk(w) (51)

ˆ̄rk+1(w) = ˆ̄rk(w)− τ |K(w)|2 ˆ̄rk (52)

end for

output fk+1 = invF(fk+1(w))

The final output is given by inverse Fourier transform. The reason why all calculations are done
in Fourier domain is because of computation efficiency. In spatial domain, (52) needs two 2D
convolution. However, in frequency domain, convolution becomes element-wise multiplication.
It’s worth mentioning that (52) can be derived from the definition of residual r = g −Af and
(50). What’s more, the inner product (matrix multiplication in this case) of two consecutive
direct is zero

⟨rk+1, rk⟩ = ∥rk∥2 − τk∥Ark∥2 = 0 (53)

Below is a visualization of steepest descent where it starts from a point on the level surface of
η(f ;g). At each step, it move through the gradient direction and reach the next minimum point
along this direction.

Figure 3.5: example from wiki

18

The result of steepest descent deblurring can is shown below. The images corresponding to each
iteration are ordered from left to right and from top to bottom.

Figure 3.6: iteration outputs (from left to right and from top to bottom) 1st iteration f̂ =
0, 2nd iteration, 3rd iteration...

One can find the optimal result is around the fifth and the seventh iteration. The later ones
tend to experience ringing effects due to the absence of regularization. Similar to the steepest
descent, the conjugate gradient method starts from a point on the objective function and move
towards the optimal result. The difference is that the conjugate gradient method move in the
direction of conjugate gradient rather that gradient.

19

• Conjugate Gradient
Similar to the steepest descent method, the core philosophy of conjugate gradient is moving to-
wards the optimal solution iteratively. The difference is that, conjugate gradient method moves
in the directions that are conjugate to each other whereas steepest descent only makes sure
that the directions are orthogonal to each other. Given two vectors u,v, we say that they are
conjugate with respect to A if

⟨u,Av⟩ = 0 (54)

Where ⟨, ⟩ denotes the inner product in Hilbert space. Here we consider the case of vector inner
product(i.e., ⟨u,Av⟩ ≜ u⊤Av) for simplicity. The object function for minimization is the same
as in (46). Define residual

rk = b−Afk (55)

Instead of moving the direction of gradient, we apply Gram-Schmidt method to ensure that each
step pks are conjugate to each other.

pk = rk −
∑
i<k

pT
i Ark

pT
i Api

pi (56)

The output of kth iteration is thus

fk+1 = fk + αkpk

αk =
pT
k rk

pT
kApk

(57)

The result of αk is obtained by substituting fk+1 and fk into (46) and minimizing with respect
to αk. The iterative conjugate gradient method is summarized as follows (A is replaced by Ā
due to the assumption in (28))

Initialize r0 = p0 = g
Initialize f0 = 0

for i < iteration do

αk =
∥rk∥2

pTk Āpk
(58)

rk+1 = rk − αkĀpk (59)

βk = −∥rk+1∥2

∥rk∥2
(60)

pk+1 = rk+1 + βkpk (61)

fk+1 = fk + αkpk (62)

end for

20

We make a final remark on the mathematical meaning of the conjugate gradient method. The
coefficient αks and βks are chosen such that

⟨rk+1, rk⟩ = 0, ⟨pk+1, Āpk⟩ = 0 (63)

In linear algebra, rks form an orthogonal basis of Krylov subspace whereas pks form an Ā-
orthogonal basis of the same Krylov subspace. The following graph from Wikipedia visualize
the difference between the steepest descent and the conjugate gradient method in a 2 dimen-
sional case.

Figure 3.7: steepest descent(green) v.s conjugate gradient(red)

Last but not the least, although the above algorithm operates in spatial domain, the MATLAB
implementation is in frequency domain as below. The hat symbol on top is the corresponding
Fourier transform of each matrices. The detailed issues can be found in Appendix A.

Initialize r̂(w)0 = p̂(w)0 = K̂∗(w)ĝ(w)
Initialize f̂(w)0 = 0

for i < iteration do

αk =

∫
B

|r̂k(w)|2dw∫
B

|K̂∗(w)|2|p̂(w)|2dw
(64)

r̂k+1(w) = r̂k(w)− αk|K̂(w)|2p̂k(w) (65)

βk =

∫
B

|r̂k+1(w)|2dw∫
B

|r̂k(w)|2dw
(66)

p̂k+1(w) = r̂k+1(w) + βkp̂k(w) (67)

f̂k+1(w) = f̂k(w) + αkp̂k(w) (68)

end for

21

Figure 3.8: iteration outputs (from left to right and from top to bottom) 1st iteration f̂ =
0, 11th iteration, 21th iteration...

The implementation result is shown above. Comparing the result to Figure 3.5, one can see that
the conjugate gradient method converges faster than the steepest descent as it reaches visually
optimal image at the third iteration. In the later iterations, the restored image experiences
inevitable ringing effects.

22

3.3 Statistical

In this section, we’re going to explore image deblurring methods based on statistical models. The con-
cept of statistical modeling is that one can utilize some characteristics of the blurring process. If we
assume that the latent image is deterministic, the maximum likelihood(ML) method can be adopted.
If we model the latent image as a random process, the Bayesian method is used otherwise.

Starting with ML method, we rewrite equation (7) to g = Af0+ω, where f0 and A are deterministic.
ω denotes random variable of additive noise. The resulting random vector of such random variable is

η(f) = Af + ν (69)

f is the set of all possible latent image. Equation (69) implies that for any given set f , the distribution
of η(f) is available if ω is also known. Thus, the density function of η(f) is pη(g|f). The problem is
to find the member f that maximizes pη(g|f). Since f and A are both deterministic,

pη(g|f) = pν(g −Af) (70)

(70) is the so-called likelihood function. The optimal solution is acquired by maximizing the likelihood
function.

Here we discuss two types of noise: Gaussian noise and Poisson noise.

• Gaussian noise:
The joint density of normally distributed random variable

pη(g|f) =
1√

(2π)N2 |Sv|
e

−(S−1
v (g−Af))·(g−Af))

2 (71)

Sv is the covariance matrix of ν. Taking the logarithm, the object function is then

l(f) =
−(S−1

v (g −Af)) · (g −Af))

2
− 1

2
ln[(2π)N

2 |Sv|] (72)

Maximizing (72) is equivalent to minimizing the discrepancy

ε2ν(f ; g) = (S−1
v (g −Af)) · (g −Af)) (73)

The minimum value is obtained by setting the differential of (73) equals to zero. Here we omit
detailed derivation and show the result directly

A∗S−1
v Af = A∗S−1

v g (74)

(74) is the generalized equation of (27). In the case that Sv is multiples of identity matrix(i.e.,
the noise is uncorrelated), (74) becomes (27). That is to say, For stationary Gaussian noise,
the maximum-likelihood method will acquire the same result as the least-squares method. This is
based on the fact that both Gaussian noise and the least-squares method utilize the ∥·∥2 feature
of the image.

23

• Poisson noise:
The additive noise follows Poisson distribution

pη(g|f) =
N2∏
m=1

e−(Af)m (Af)gmm
(gm)!

(75)

Taking the logarithm, the object function is then

l(f) =

N2∑
m=1

{gmln(Af)m − (Af)m − ln(gm)!} (76)

We tries to find the maximum value by differentiating (76)

(∇l)n(f) =
∂l(f)

∂fn
= −αn + (AT g

Af
)n

αn =
N2∑
m=1

Am,n

(77)

Equation (77) relates to the Richardson-Lucy method of image deblurring. However, the ex-
plicit derivation is beyond the scope of this tutorial. Here we give some intuitive understanding
of Richardson-Lucy method for simplicity. Firstly, instead of applying −αn + (AT g

Af
)n = 0

directly, we add two constraints

fn
∂l(f)

∂fn
|f=f̃ = 0; n = 1, 2..., N2

∂l(f)

∂fn
|f=f̃ ≤ 0; if f̃n = 0

(78)

A visualization is provided in the figure below. The idea is that the maximum value must be
non-negative. Therefore, the first equation implies that either the gradient or f̃n itself equals
zero. The second inequality implies that if the obtained result is zero, its slope(blue line) must
be less than zero so that other positive numbers will result in smaller values.

Figure 3.9: slope(blue line), two dimension objective curve(red line)

24

By Kuhn-Tucker Conditions, one can ensure that the above two equation can be fulfilled. Addi-
tionally, the first equation in (78) is the necessary and sufficient condition for the result in (77).
The Richardson-Lucy method combines (77) and (78) as

αnf̃n = f̃n(A
T g

Af
)n; n = 1, 2, ..., N2 (79)

Applying successful approximations, (79) is modified to operate on 2D image

(f̃k+1)m,n = (f̃k)m,n(K
T ∗ g

K ∗ f̃k
)m,n (80)

As one may notice that αn disappears in (80). This is because Richardson-Lucy assume that

αn =
∑N2

m=1Am,n = 1. The result of Richardson-Lucy is shown below.

Figure 3.10 Iteration Outputs (from left to right and from top to bottom) 1st iteration, 11th iteration, 21th iteration...

25

Now, let’s move to the case where latent image is not deterministic. Comparing with equation
(69), the latent image is now a random vector ϕ with known density function.

η = Aϕ+ ν (81)

To analyse the probability distribution, we use Bayes’ theorem

pϕ(f |g) =
pη(g|f)pϕ(f)

pη(g)

=
pη(g|f)pϕ(f)∫
pη(g|f)pϕ(f) df

(82)

In the above equation, pϕ(f) is called a priori information whereas pϕ(f |g) denotes a posteriori den-
sity function. If both pη(g|f) and pϕ(f) are known, one can have the complete knowledge of pϕ(f |g)
and pϕη(f , g). The restored image can be obtained either by maximizing pϕ(f |g) or by the a posteriori

expectation f̂ = E{ϕη} =
∫
fpϕ(f |g)df . However, there are two main challenges of Bayesian meth-

ods. First challenge is that it is computational expensive. Second challenge is the choice of pϕ(f). By
definition, pϕ(f) means the probability of a given image f . The higher the probability is, the more f
is possible to be a good image. In other words, one have to find a probability model that can evaluate
natural image accurately. With that being said, in resent years, some good probability model pϕ(f)s
were proposed based on Bayesian method which will discuss in the next chapter. Before then, we show
that the famous Wiener filter is a special case of Bayesian method.

To begin with, four assumptions were made:

1. the additive noise is a Gaussian random vector with zero mean and covariance matrix Sν . Thus,

pν(w) =
1√

(2π)N2 |Sν |
e

−(S−1
ν w·w)
2 (83)

2. object ϕ in (81) is also a Gaussian random vector with zero expectation value and covariance
matrix Sϕ. Thus,

pϕ(f) =
1√

(2π)N2 |Sϕ|
e

−(S−1
ϕ

f ·f)

2 (84)

3. According to equation (81), it can be derived that E{η} = 0 and Sη = ASϕA
∗ + Sν(please

refer to the book for detailed derivation). Additionally, the independence of ν and phi give the
resulting probability density

pη(g) =
1√

(2π)N2 |Sη|
e

−(S−1
η g·g)
2 (85)

26

4. noise ν and the object ϕ are independent so that (Sϕ)n,m = E{ϕnν∗m} = 0. Thus,

pϕη(f , g) = pν(g −Af)pϕ(f)

=
1√

(2π)2N2 |Sν ||Sϕ|
e

−Φ(f ,g)
2 (86)

Φ(f , g) = (S−1
ν (g −Af)) · (g −Af)) + (S−1

ϕ f · f) (87)

With the four premises, the target object function according to (82) is

pϕ(f |g) =
1√

(2π)N2 |Sν ||Sϕ|
|Sη |

e
−Φ(f ,g)+(S−1

η g·g)
2 (88)

The above conditional probability is also a Gaussian distribution. Thus equation (88) can be rewrite as

pϕ(f |g) =
1√

(2π)N2 |Sϕ|η|
e

−(S−1
ϕ|η(f−f̂)·(f−f̂))

2 (89)

where Sϕ|η is the a posteriori covariance matrix and f̂ is the maximum value. By equating (88) and
(89), we get

Sϕ|η = (A∗S−1
ν A+ S−1

ϕ)−1 (90)

One can see that maximizing (88) (89) is equal to minimizing Φ(f , g) in (87). The corresponding
derivative with respect to f is

(A∗S−1
ν A+ S−1

ϕ)f̂ = A∗S−1
ν g

f̂ = Sϕ|ηA
∗S−1

ν g
(91)

The restored image is obtained by applying a matrix R0 on the blurred image g.

R0 = Sϕ|ηA
∗S−1

ν = (A∗S−1
ν A+ S−1

ϕ)−1A∗S−1
ν = SϕA

∗(ASϕA
∗ + Sν)

−1 (92)

Equation (92) is the exactly the Wiener filter. Finally, if we further model the Gaussian distribution
in assumption as white process, Sν = ε2I and Sϕ = E2I.

R0 = (A∗A+ (
ε

E
)2I)−1A∗ (93)

The result can be regarded as a special case of Tikhonov regularization method comparing to equation
(25).

27

We show the result in the following figure. The left image is obtained by the MATLAB built-in
function deconvwnr. The middle and right images are obtained by passing µMiller and µL to the
regularization method implemented before respectively.

Figure 3.11: A simple comparison

As one may know, the main objective of Wiener filter is to minimize the overall mean square error
in the process of inverse filtering. The problem is that, the signal-to-noise(noise-to-signal) ratio is not
available in many cases. In contrast, the L curve method is a method of exhaustion which takes more
time to search for a good µ.

28

3.4 Chapter Summarize

In this chapter, we discuss methods to restore blurred image caused by space-invariant kernel and ad-
ditive noise. The methods can be approximately categorize into three groups: regularization, iterative
regularization, and statistical. The regularization methods can be seen as the filtering of a blurred
image whereas the iterative regularization methods provides multiple results in deblurring process
which is more flexible comparing to regularization methods. On the other hand, statistical methods
explore the characteristics of additive noise. The following table summarize the algorithms in this
chapter.

Name Algorithm MATLAB implementation

one-step Tikhonov regularization fµ = (A∗A+ µI)−1A∗g Regularization Function.m

one-step Wiener filter fµ = (A∗A+ (ε
E)2I)−1A∗g Wiener method.m

iterative steepest descent (50)∼(52) steepest descent Function.m

iterative conjugate gradient (58)∼(62) CG Function.m

iterative Richardson Lucy (fk+1) = (fk)(K
T ∗ g

K∗fk) RL Function.m

∗ Function.m files in the folder are the main implementation of corresponding algorithm. On the other
hand, ∗ method.m files are scripts controlling input variables, blurring process and plotting. In the
next chapter, we will focus on the recent progress of image deblurring containing both blind deblurring
and non-blind deblurring.

29

Uniform Deblurring

In this chapter, several blind and non-blind image deblurring methods is introduced. We will introduce
several iconic methods that have outstanding performances. In fact, most of the processes have
inherited the concepts from the former chapter with additional prior information of images.

4.1 Non-blind Deblurring

4.1.1 Fast Image Deconvolution using Hyper-Laplacian Priors [7]
(code path: Deblurring Gather/fastdeconv/test fast deconv.m)

In this paper, author inherit the concept of Bayesian method and propose a pϕ(f) which will be de-
noted as p(x) in the following discussion.Following (82), the conditional probability can be generalized
as

p(x|y, k) ∝ p(y|x, k)p(x) (94)

where x is the latent image, k is the known kernel, and y is the input blurred image. The authors
found that the gradient of sharp images are likely to follow the Hyper-Laplacian distribution.

Figure 4.1: empirical image gradient versus different distribution models

30

One can see from the above figure that Hyper-Laplacian introduce a variable α to control the
distribution curve. In this paper, α = 1

2 ,
2
3 are discussed. Following this assumption, maximizing the

conditional probability p(x|y, k) is equal to minimizing the cost of − log p(x|y, k) = − log p(y|x, k)−
log p(x) which gives the objective function

min
x

N∑
i=1

(
λ

2
(x⊕ k − y)2i +

J∑
j=1

|(x⊕ fj)i|α) (95)

where ⊕ is the two dimensional convolution operator for image gradient(i.e., f1 = [1−1], f2 = [1−1]T)
and the corresponding matrix representation is F j

i x = (x⊕ fj)i. λ is the weighting value controlling
the strength of regularization. N is the number of total pixel(i being pixel index). J = 2 in the case
of 2D image.

Having α as the exponential term, it is rather hard to solve (95) by taking partial derivative ac-
cording to x. Using the half-quadratic method, we bring in two auxiliary variables w1

i and w2
i to each

pixel so that x will no longer be in |.|α. The new objective function is then

min
x,w

N∑
i=1

(
λ

2
(x⊕ k − y)2i +

β

2
(∥F 1

i x− w1
i ∥22 + ∥F 2

i x− w2
i ∥22) + |w1

i |α + |w2
i |α) (96)

The basic idea is that, when β → inf (96) will approach (95) since wi must equal to Fix to lower the
effect of β. That is to say, the entire algorithm is to solve (96) with an increasing β iteratively.

Since we’re minimizing two variables x and w, the optimization process are separated into two
sub-problems.

• x sub-problem:
x sub-problem solves x by fixing w. The derivative with respect to x is given as

(F 1TF 1 + F 2TF 2 +
λ

β
KTK)x = F 1Tw1 + F 2Tw2 +

λ

β
KTy (97)

where Kx = x⊕ k. Applying 2D FFT to (97), the result of restored x is given as

x = F−1(
F(F 1)∗ ◦ F(w1) + F(F 2)∗ ◦ F(w2) + (λ/β)F(K)∗ ◦ F(y)
F(F 1)∗ ◦ F(F 1) + F(F 2)∗ ◦ F(F 2) + (λ/β)F(K)∗ ◦ F(K)

) (98)

In the above equation, ∗ denotes complex conjugate. ◦ denotes element-wise multiplication and
the division is also element-wise.

• w sub-problem:
w sub-problem, on the other hand, is fixing x and finding the minimal value. Therefore,

wopt = argmin
w
|w|α +

β

2
(w − v)2 (99)

where v = F j
i x. One can see that the complexity of equation (99) depends on α. Here the

authors discuss two methods to find wopt. The first one is rather straightforward. Given α, wopt

depends only on β and v. In such case, a look-up table is used (β ranges from 1 to 256, and v
ranges from -0.6 to 0.6). A look-up table allow users to obtain wopt really fast. For example, it

31

only takes 1.5 seconds to restore the 1024x1024 blurred image below. However, a look-up table
is just an approximation. The authors also discuss the possible analytic solution. For example,
if α = 1

2 , the minimal value in (99) is given as

w3 − 2vw2v2w − sign(v)/4β2 = 0 (100)

There are three possible combinations of roots in (100): (a) 3 imaginary roots, (b) 2 imaginary
roots and 1 real root w̃, and (c) 3 real roots. wopt in each case are: (a) wopt = 0, (b) wopt =
w̃ if 2v/3 < w̃ < v else 0 (c) the root that lies between 0 and v, and further from 0. The
paper provide the explicit derivation of analytic solutions of α = 1/2 and α = 2/3. Nevertheless,
MATLAB implementation uses look-up table for faster performance. One can refer to the paper
if is interested. The complete algorithm and result is shown below.

Figure 4.2: Eqn.5:(99), Eqn.4:(98)

Figure 4.3: result of [7]

32

4.1.2 A General Framework for Regularized, Similarity-Based Image Restoration
[6]
(code path: Deblurring Gather/DeblurringCode/mainDemo.m)

Different from other methods, here we consider image as weighted graph G = (V,E,K) consisting of
a finite set V of vertices(image pixels) and a finite set E of edges (i, j) with the corresponding weights
K(i, j) which measure similarity between vertices (pixels) i and j in the graph. The values of the image
can be denoted as a vector z = [z(1), · · · , z(N)]T . Now, define the difference on an edge (i, j) ∈ E of
the graph G is

(dz)(i, j) =
√
K(i, j)(z(j)− z(i)) (101)

The point is to minimize the overall differences in the graph G. Therefore, the regularization term
can be written as

R(z) =
1

2

N∑
i=1

∥∇z(i)∥2 = 1

2

N∑
i=1

∑
j,j∼i

K(i, j)(z(i)− z(j))2 (102)

and the corresponding objective function is thus

E(z) = ∥y −Az∥2 + ηR(z) (103)

A being the blurring matrix. Since most of the mathematical knowledges involved in this paper are
beyond the scope of this tutorial, we will explore the algorithm in a top-down manner without going
into too much mathematical details. The overall algorithm is as below

33

Figure 4.4: complete algorithm

Firstly, noise estimation and noise removal are performed on the blurred image y. The first step of
the iteration is constructing weight matrix K

(a): K(i, j) = e
−∥ẑi−ẑj∥

2

h2 (104)

where are patches around pixel i and j of the image ẑ, and h is a smoothing parameter. This operation
as be seen as evaluating the similarity K(i, j) between patch centered at i and j. If these two patch
are similar, K(i, j) is large, forcing pixel i and pixel j close to each other in the reconstructed image.

The second step of the iteration comes from the fact that

R(z) =
1

2

N∑
i=1

∑
j,j∼i

K(i, j)(
z(i)√
C(i, i)

− z(j)√
C(j, j)

)2 = zT (I − C
−1
2 KC

−1
2)z (105)

which is called normalized graph Laplacian. In fact other types of graph Laplacian are discussed in
the paper as well. Please refer to the paper for more detail.

34

Figure 4.5: properties of different graph Laplacians

After obtaining the diagonal matrix C, the filtering matrix W is computed by W = I − C
−1
2 KC

−1
2 .

Recall that the objective function at the beginning becomes

E(z) = (y −Az)T {I + β(I −W)}(y −Az) + ηzT (I −W)z (106)

where β ≥ −1 and η > 0 are the parameters to be tuned based on noise and blur. The minimum
value can be obtained by setting the gradient of objective function equals to 0, giving

(b): (AT {I + β(I −W)}A+ η(I −W))z = AT {I + β(I −W)}y (107)

Since the linear equation is in the form of Āx = b, it can be solved by the conjugate gradient
method(section 3.2) to get new estimation ẑ(k+1) for the next iteration. The overall algorithm can be
simplify as the flow chart below

Figure 4.6: flow char of the proposed algorithm

One may notice that the first term in (b) has an additional {I + β(I −W)} comparing to the cost
function at the beginning. There are two advantages discussed in the paper. Firstly, since the matrix
(I−W) is a high-pass filter, with β > 0, I+β(I−W) behaves like a sharpening filter on the residuals
y −Az. Secondly, the solution in (b) can be represent as

ẑ =F (A,W)AT {I + β(I −W)}y
F (A,W) = {AT {I + β(I −W)}A+ η(I −W)}−1

(108)

Consider the inverse operation in the above equation, experiments have shown that F (A,W) has much
less conditional numbers than that of ATA, resulting a solution with less errors.

35

A sample result

Figure 4.7: sample result

36

4.1.3 Image Deblurring Using a Pyramid-Based Richardson–Lucy Algorithm [3]

This method is a modified version of the method introduced in section 4.1.2.

Figure 4.8: three-layer pyramid structure with RL deconvolution

Since the Richardson-Lucy algorithm has been already fully described in section 3.3, we will focus
on the structure of the this algorithm. Given a known kernel K, the blurred image is down sampled
to three level and then reconstructed in a coarse-to-fine manner. At the top half of the structure, the
residual of the blurred image before and after convolving the low pass filter L is computed.

DB
1 = B −B ∗ L

DB
2 = (B ∗ L)↓2 − (B ∗ L)↓2 ∗ L

DB
3 = [(B ∗ L)↓2 ∗ L]↓2

(109)

and

DR
i = Richardson-Lucy(DB

i) for i =, 1, 2, 3 (110)

The bottom half of the structure then reconstruct the estimated image R as

R = {[(DR
3)↑2 ∗ L] +DR

2 }↑2 ∗ L+DR
1 (111)

Note that Richardson-Lucy algorithm is performed on the residual of the blurred image instead of
the original blurred image to avoid Gibbs phenomena. This is because the residual of an image tend

37

to have weaker amplitude comparing to the original image. Additionally, the reconstruction of first
level DR

1 can be obtained by direct convolution of inverse kernel W and DB
1 to preserve large scale

details.(i.e., DR
1 = DB

1 ∗W , where W = F−1(1
F(K))).

38

4.2 Blind Deblurring

In this chapter, we discuss a few methods when blur kernel is not available(i.e., k(x) and f(x) in
equation (2) are both unknown). Intuitively, if there are no other constrains on k(x) and f(x), this
problem is impossible to solve since there are infinite pairs of latent images and blur kernels in equation
(2). With that being said, one must utilize image characteristics as constrains so that the restored
image conforms to specific feature.

4.2.1 Digital Image Restoration for Phase-Coded Imaging Systems [16]

In this paper, the authors propose a pyramid-based structure to recover the image blurred by a specific
point spread function(PSF). The procedure at each level is shown below

Figure 4.9: design flow of MMSE filter

The blurred image B(i, j) can be modeled as

B(i, j) =

R∑
k+1

Q∑
k+1

I(i+ k, j + l)H(k, l) +N(i, j) (112)

where I is the original image(known test pattern), H is the corresponding point-spread function in
dimensions P and Q and N is the additive noise. The restored image is

Î(i, j) =

M∑
k=1

N∑
l=1

B(i+ k, j + l)W (k, l) (113)

The output filter coefficients are the coefficients that minimize the mean-square-error(MSE) E{(I(i, j)−
Î(i, j))2}. By setting the derivation of MSE equals to 0, one can obtain the close form solution

39

RIB(k, l) =
M∑
p=1

N∑
q=1

RBB(k − p, l − q)W (p, q)

where RIB(k, l) = E{I(i, j)B(i+ k, j + l)}
and RBB(k − p, l − q) = E{B(i+ p, j + q)B(i+ k, j + l)}

(114)

The above equation can be rewritten in matrix from to solveW directly. That is, rIB = RBBw, w =
R−1

BBrIB, where rIB and w are vectors composed of RIB and W respectively, and RBB is a square
matrix consisting of RBB. The proposed pyramid structure is as follows

Figure 4.10: coefficients of each MMSE filter

In the above figure, three sets of coefficients are determined by passing a known pattern as input. The
block g is the convolution of a Gaussian filter and ↓ 2 is down sampling the image by 2. Note that
input of MMSE filter is not the original image but the residual of the image before and after Gaussian
filter g. Similarly, the reconstructing process is a three level pyramid but with the bottom part(i.e.,
blurred pyramid) being inverted.

40

Figure 4.11: three-level pyramid-based restoration

The math expression of reconstruction can be written as

IRN = wN ⋆ IBN

ÎRi = g ⋆ (IRi+1)↑2

IRi = ÎRi + wi ⋆ L
B
N for 0 ≤ i < N

(115)

In fact, the pyramid-base structure in the above figure can be further improved with noise suppression.
Assume that the original image is corrupted by noise after convolving with blur kernel. The noise
distribution is denoted as σ(y(x))ξ(x) = ηp(y(x))+ηg where ηg is a signal-independent Gaussian com-
ponent and ηp(y(x)) is a Poisson component depend on the value of blurred image y(x). The additive
noise variance of these two components is thus σ2(y(x)) = ay(x) + b since var{ηp(y(x))} = ay(x) and
ηg is a constant b. Both a, b depends only on the sensor hardware.

41

Figure 4.12: three-level pyramid-based restoration

One can see that threshold blocks si are added. The goal is to remove pixel values that exceed noise
variance in LR.i.e., at ith level and pixel x, the new L̄R

i (x) is

L̄R
i (x) = si(L

R
i (x), Î

R
i (x))

=

{
LR
i (x), for (LR

i (x))
2 ≤ aiÎRi (x) + bi

0 otherwise

(116)

42

4.2.2 Blind Deconvolution Using a Normalized Sparsity Measure [8]
(code path: Deblurring Gather/online code/test blind deconv.m)

In this paper, a regularization term is proposed—ℓ1/ℓ2. The reason of using such regularization can
be illustrated in the following figures:

Figure 4.13: cost of ℓ1/ℓ2 and other regularization terms

First of all, one can see that for a given image, the higher the blur size is, the lower the relative cost
will be. And the unsharp mask filter(i.e., negative blur size) will increase its cost on the other hand. In
fact, the process of blurring can be seen as smoothing an image where the high frequency components
are removed. Among these regularization terms, ℓ1/ℓ2 has desired characteristic—a minimum value
located at original image.

Additionally, in the following figure, we consider the negative gradient direction of a two dimensional
signal. The negative direction of the ℓ1 norm points to the original(i.e., zero vector); the ℓ0 norm has
zero gradient everywhere; the negative gradient of ℓ1/ℓ2 norm moves to the closest axis and preserves
the distance from the origin.

43

Figure 4.14: negative gradient vectors of ℓ1/ℓ2 and other regularization terms

Based on the features of ℓ1/ℓ2 of an image, the proposed objective function is as follows,

min
x,k

λ∥x⊗ k − y∥22 +
∥x∥1
∥x∥2

+ ψ∥k∥1 (117)

where ⊗ denotes 2D convolution, k is the blur kernel, y = [∇xg,∇yg] representing the concatenation of
vertical and horizontal gradient of blurred image, and k ≥ 0,

∑
i ki = 1 are assumed. The goal is to

find a pair of latent image x and blur kernel k that minimize above equation. The algorithm solving ob-
jective function can be divide into two part: blind estimation of kernel and non-blind image deblurring.

Figure 4.15: complete algorithm

Blind estimation of kernel includes x update and k update. x update is Algorithm 3 in the above
figure; the operator S in Algorithm 2 is the soft shrinkage operator on a vector Sα(x)i = max(|xi| −
α, 0) sign(xi). k update uses IRLS(appendix B) to solve

min
k
λ∥x⊗ k − y∥22 + ψ∥k∥1 (118)

44

After acquiring the estimation of kernel K, the non-blind deblurring is performed since the kernel is
known. The authors chose [7] (section 4.1.1) for its time efficiency and restored quality. The sample
result is as follows

Figure 4.16: deblurred image and corresponding kernel of sample image

45

4.2.3 Deblurring Shaken and Partially Saturated Images [17]

In this paper, we consider the effect of camera exposure in optical images. Since the color scale is
bounded by [0, 255], the bright region might experience saturation(i.e., values exceed 255 after being
blurred are clipped to 255). The saturated parts in image make the process of deblurring difficult and
may cause severe ringing effects.(see the figure below)

Figure 4.17: ringing effect due to saturation

Here the blur process is the same as previous assumptions

g = Af (119)

The matrix A can be further decomposed as A =
∑

k wkTk. A consists of several transformation
matrix T simulating the translation of camera. w is proportional to time spent at view k. If we solve
the problem directly by Richardson-Lucy method, the output of each iteration is simply

f t+1 = f t ◦AT (
g

Af t
) (120)

which is the same as in equation(80). However, this is not a proper model for the saturated images.

46

Figure 4.18: generation of saturated images

One can see from the above figure that Richardson-Lucy methods does not consider the saturation
during blurring process. A straightforward way of solving this problem is to discard the saturated
pixels.

f t+1 = f t ◦AT (
g ◦ z
Af t

+ 1− z) (121)

where z is a binary mask matrix. The elements in z is 1 if gi < T and 0 elsewhere. T is a user defined
threshold to determined whether the pixel is saturated. However, this algorithm will result in a trade
off between ringing effect and sharpness. Therefore, the authors proposed a forward model for satura-
tion. The model introduce a function R(x) = x− 1

a log(1 + e(a(x−1))). The modified Richardson-Lucy
is thus

f t+1 = f t ◦AT (
g ◦R′(Af t)

R(Af t)
+ 1−R′(Af t)) (122)

The design of R(x) aims to simulate the response of saturation.

Figure 4.19: red line in (b): R′(x), blue line in (b): R(x)

However, there is still a problem in the modified Richardson-Lucy algorithm. We know that the
convolution with blur kernel can be seen as a process of spreading a pixel to its neighboring pixels.
That is to say, if some(or all) its neighboring pixels are saturated and clipped, the information of
that pixel become incomplete. To prevent this scenario, the authors separate the latent image to
2 subset f = fU + fS . U denotes the set without saturation and the pixels in U are likely to be
restored accurately. S, on the other hand, are pixels that are unlikely to be estimated accurately. The
point is to keep the pixels in S from influencing the pixels in U . When performing Richardson-Lucy
iteration, only the pixels in U are used for a saturation-free deblurring process. Hence, a binary mask
v is defined; v corresponds to the set of point in V where V = ∩k:wk>0UTk

. Set V can be interpreted
as: Intersection of points in U transformed by all Tk. The condition of set U in each iteration is simply

47

U = {j|f tj ≤ ϕ} (123)

The complete algorithm is to solve two Richardson-Lucy in each iteration

(a) updateU, U = {j|f tj ≤ ϕ}
(b) updateV, V = ∩k:wk>0UTk

(c)f t+1
U = f t

U ◦AT (
g ◦R′(Af t) ◦ v

R(Af t)
+ 1−R′(Af t) ◦ v)

(d)f t+1
S = f t

S ◦AT (
g ◦R′(Af t)

R(Af t)
+ 1−R′(Af t))

(e)f t+1 = f t+1
U + f t+1

S

(124)

A sample result.

Figure 4.20: original blurred image Figure 4.21: result of Hyper-Laplacian(4.1.1)

Figure 4.22: result of Richardson-Lucy algorithm Figure 4.23: result of proposed method

48

4.2.4 Deblurring Text Images via L0-Regularized Intensity and Gradient Prior
[11]
(code path: Deblurring Gather/text deblurring code v4/demo text deblurring.m)

If we shrink the problem range from image deblurring to blurrd text image deblurring, more specific
features are found to have regularize the restored image. The following figure shows the histogram of
horizontal gradient of text image.

Figure 4.24: gradient values of clear and blurred text image

Most of the gradient values of a sharp text image are 0. On the other hand, the blurred one has
considerable gradient values that are close to 0. Therefore, the goal is to minimize non-zero values in
the gradient map. The resulting objective function is

min
x,k
∥x ⋆ k − y∥22 + γ∥k∥22 + λP (x) (125)

where k is a unknown blur kernel, y is the given blurred text image, λ is a weighting parameter,
and P (x) = σ∥x∥0 + ∥∇x∥0. One may notice that not only the gradient but also the pixel values
are taken into account; it will be further shown that both gradient and pixel values are necessary for
regularization. Solving the objective function requires two step: latent image estimation.

min
x
∥x ⋆ k − y∥22 + λP (x) (126)

and kernel estimation

min
k
∥x ⋆ k − y∥22 + γ∥k∥22 (127)

49

In latent image estimation, two auxiliary variables u, g are used(just as in [7]).

min
x,u,g
∥x ⋆ k − y∥22 + β∥x− u∥22 + µ∥∇x− g∥22 + λ(σ∥u∥0 + ∥g∥0) (128)

The algorithm shown below is used to restore latent image

Figure 4.25: latent image restoration

where

(a) u =

{
x, |x|2 ≥ λσ

β

0, otherwise

(b) g =

{
∇x, |∇x|2 ≥ λ

µ

0, otherwise

(c) x = F−1(
¯F(k)F(y) + βF(u) + µFG

¯F(k)F(k) + β + µ ¯F(∇)F(∇)
)

(129)

Note that F(·) denotes Fourier transform, and ¯F(·) is the complex conjugate operator. FG =
¯F(∇h)F(gh)+ ¯F(∇v)F(gv) where ∇h and ∇v denote the horizontal and vertical differential operators.

After obtaining estimated latent image x, the blur kernel estimation is generated by the following al-
gorithm

50

Figure 4.26: complete algorithm

where (d) is the objective function with respect to kernel k

min
k
∥∇x ⋆ k −∇y∥22 + γ∥k∥22 (130)

The above optimization problem can be solved efficiently by fast Fourier transform(FFT). Note that
initializing k with the result from the coarser level is commonly seen in many deblurring methods; the
purpose is to reconstruct a unknown kernel from low resolution to high resolution.

We make a remark on the regularization term P (x) = σ∥x∥0 + ∥∇x∥0. The following figure shows
that both ∥x∥0 and ∥∇x∥0 are necessary. (h) is the intermediate result without the regularization
of ∥x∥0. The restored image does not separate text and background properly. In comparison, if one
didn’t regularize ∥∇x∥0(i.e., (i)), the edges in restored image are vague.

51

Figure 4.27: (h) intermediate salient edges using only ∥∇x∥0. (i) intermediate results using only ∥x∥0.
(j) proposed intermediate salient edges

Finally, the result of sample code are shown below. The resolution of kernel increased at each coarser
level.

Figure 4.28

Figure 4.29

52

4.2.5 Blind Image Deblurring Using Dark Channel Prior [12]
(code path: Deblurring Gather/cvpr16 deblurring code v1/demo deblurring.m)

In this paper, a novel feature the differentiate blurred images and sharp images is proposed—Dark
channel prior. The dark channel of an image is defined as

D(I)(x) = min
y∈N(x)

(min
c∈{r,g,b}

Ic(y)) (131)

In other words, given a three-channel image(i.e., r,g,b), the dark channel of pixel x is the smallest
value in all three channel in the window N(x) center at pixel x. The following figure shows the dark
channel of a color image.

Figure 4.30: dark channel of blurred image and restored image

It may seem like (c) and (d) have no big differences when observed by naked eyes. However, the
statistical property of dark channel is quite different in blurred image and sharp image.

Figure 4.31: histogram of dark channel value

As one can see, The dark channel of sharp image has most of its values equals 0 whereas the dark
channel values in blurred image has a much smoother distribution. It has been proved in the paper that

Let Ω denote the domain of an image I. If there exist some pixels x ∈ Ω such that I(x) = 0, we have :

∥D(B)(x)∥0 > ∥D(I)(x)∥0
(132)

53

where B is the blurred image, I is the clear image, and the L0 norm ∥X∥0 is counting the number of
non-zero values in X. The authors utilize this characteristic to prosed a regularization term ∥D(I)∥0.
The point is to minimize non-zero pixel in the dark channel in the restored image. The objective
function is thus

min
I,k
∥I ⋆ k −B∥22 + γ∥k∥22 + µ∥∇I∥0 + λ∥D(I)∥0 (133)

γ, µ and λ are user defined weight parameters. Additionally, both the gradient and dark channel of
latent image I are taken into account. Minimizing the objective function requires two steps: solve for
latent image I:

min
I
∥I ⋆ k −B∥22 + µ∥∇I∥0 + λ∥D(I)∥0 (134)

and solve for blur kernel k:

min
k
∥I ⋆ k −B∥22 + γ∥k∥22 (135)

The function in step one has the similar form in section 4.1.1. Two auxiliary variables are introduced.

min
I,u,g
∥I ⋆ k −B∥22 + α∥∇I − g∥22 + β∥D(I)− u∥22 + µ∥g∥0 + λ∥u∥0 (136)

The above equation can be further divide into three sub-steps

• (fix u, g) I = minI∥TkI −B∥22 + α∥∇I − g∥22 + β∥MI − u∥22
Where Tk is the convolution matrix of k. MI = D(I). M represents the operator of selecting
dark channel value of image I.

Figure 4.32: schematic diagram of mapping matrix M

54

Since all three terms are squared and Tk is Toeplitz matrix, I can be solve by direct fast Fourier
transformation.

• (fix x, g) u = minu β∥D(I)− u∥22 + λ∥u∥0
The result is given by

u =

{
D(I) |D(I)|2 ≥ λ

β

0 otherwise
(137)

• (fix x, u) g = ming α∥∇I − g∥22 + µ∥g∥0
The result is given by

g =

{
∇I |∇I|2 ≥ µ

α

0 otherwise
(138)

After completing these three steps, one can obtain the latent image I. The second step is estimating
blur kernel k i.e.,

k = min
k
∥I ⋆ k −B∥22 + γ∥k∥22 (139)

The objective function of k can also be solved directly by fast Fourier transform as the first sup-step
in estimating I(section 4.1.1).

Here we make a final remark on the algorithm. The kernel estimation step is solved in a coarse-to-fine
manner. That is to say, the kernel is estimated from low resolution to high resolution. A sample result
is shown as follows

Figure 4.33: deblurring result of the first level

Figure 4.34: deblurring result of the fifth level

55

Figure 4.35: final result of latent image and kernel

56

Non-uniform Deblurring

In previous chapters, we assume that the blur kernel is space invariant. Yet in real world, an image is
very likely to be blurred non-uniformly. Affected by various blur kernels, this type of problem can be
rather complex.

5.1 Image and Depth from a Conventional Camera with a Coded
Aperture [9]
(code path: Deblurring Gather/DeconvolutionCode-LevinEtAl07)

When taking a picture from a 3 dimensional world, objects from different depth are projected to the
camera sensor.

Figure 5.1: objects from different depth

Due to the principle of optical camera, objects from different depth experience different scales of blur.
The schematic diagram is as follows

Figure 5.2: objects from different depth

57

The projected image(i.e., the blurred image) y can be expressed as

y = fk ⋆ x (140)

where fk is the blur kernel at depth k and x is the latent image. Now, the problem is to find a filter
that can distinguish objects from different depths. Consider a toy example below

Figure 5.3: a simple 1D filter

The Fourier transform of a filter of different scales have zeros at different frequencies. By examining
where the zeros of Fourier transform of y (i.e.,Y) locates, one can determine the depth of the blurred
object and performed deblurring process accordingly. Yet there are two main challenges: the design
of filter and the possible existence of noise. First, the filter must follow these constrains.

1. Consider figure 5.3, the targeted filter must be easily invert so that y = fk ⋆ x can be solve.
2. The zeros in frequency domain should not overlap.
3. The filter is binary.
4. No floating parts in the center of coded aperture since it’s implementation impossible.
5. Avoid excessive radial distortion by not using the full aperture.

Combining above conditions, the proposed coded aperture is shown below(top right)

58

Figure 5.4: conventional aperture and coded aperture

After one obtains the image captured by the coded aperture, the next step is to remove possible noise.
Given the object conditional probability model P (x|y),

P (x|y) ∝ e−(1
η2

|Cfk
x−y|2+α|Cgxx|2+α|Cgyx|2) (141)

where η2 is the variance of additive Gaussian noise N(0, η2I), Cfkx = fk ⋆x, and Cgx , Cgy corresponds
to the horizontal derivative matrix and vertical derivative matrix. The object function is thus

xest = argmin
x

1

η2
|Cfkx− y|

2 + α|Cgxx|2 + α|Cgyx|2 (142)

The answer is rather simple since the above equation can be seen as a set of linear equation Ax = b
with A = 1

η2
CT
fk
Cfk + αCT

gxCgx + αCT
gyCgy and b = 1

η2
CT
fk
y. Another objective function is

xest = argmin
x

1

η2
|Cfkx− y|

2 + α|Cgxx|0.8 + α|Cgyx|0.8 (143)

which is the exact same objective function as in section 4.1.1. In this case, a longer run time are
required for a sharper restored image. Optimizing the objective function gives us the restored im-
age blurred by kernel fk. k images are generated as candidates. As one can see, a depth map is
need so that one can determine the depth at different part in the image. The depth is determined
as follows. First define reconstruction error at depth k, ek = y − fk ⋆ xk. The averaging error

59

Êk(y(i)) ≈
∑

j∈window ek(j)
2. Chose the depth k that minimize λkÊk(y(i)), i.e.,

d(i) = argmin
k
λkÊk(y(i)) (144)

where λk is learnt to minimize the scale misclassification error on a set of training images having a
known depth profile. The resulting depth map is as follows

Figure 5.5: depth map

The complete algorithm can be summarized as

Figure 5.6: summarization

For more details of λk and smoothing of depth map, please refer to the paper. Note that the MATLAB
code of this paper is just an implementation of 4.1.1 since the core deblurring algorithms are the same.

60

5.2 Spatially-Varying Out-of-focus Image Deblurring with L1-2 Op-
timization and A Guided Blur Map [14]
(code path: Deblurring Gather/ICASSP2012/main.m)

In this paper, a method is proposed to solve similar problem as in the previous section: spatially-
varying out-of-focus blurring process. Since objects of different distances from the camera lens will
experience different degrees of blur, the authors proposed a way to distinguish the blur kernels in the
blurred and then deblur each part accordingly. The flow chart of proposed method is as follows

Figure 5.7: flow chart of proposed method

The idea here is to build a blur map which indicates the degree of blur a pixel suffer from(i.e., Brighter
pixel is convolved by stronger blur kernel). Additionally, the blurred image is deblurred using different
blur kernel. Pixels in final result are patched up according to its degree of blur according to the blur
map.

The blur kernels g(x, σ) are assumed to be Gaussian functions(i.e., g(x, σ) = 1√
2πσ

e−
x2

2σ) in this paper.

The σ value of the kernel that a pixel convolved with can be determined by

σ(x, y) =
1√

2πLC(x, y)
=

0.3989

LC(x, y)
(145)

LC(x, y) is the local contrast prior LC(x, y) given by

LC(x, y) =
max |∇b(x′, y′)|

max b(x′, y′)−min b(x′, y′)
(146)

where b is the input defocused image, |∇b(x, y)| =
√
∇b2x +∇b2y, representing the magnitude of 2 di-

mensional gradient, and (x′, y′) is the neighboring points of (x, y) within a user-defined local window.
σ(x, y) is then filtered by a guided filter using the original blurred image.

σ(x, y) =← GF{b(x, y), σ(x, y), r, ε} (147)

61

r, ε being user-defined parameter. The filtered result is the blur map of the blurred image. Mean-
while, the original image is deblurred by different blur kernel using L1−2 optimization. The objective
function is

min
lσ

µ

2
∥Gσlσ − b∥22 + α

n2∑
i=1

∥Dilσ∥+ (1− α)
n2∑
i=1

∥Dilσ∥22 (148)

As in section 4.1.1, the objective function can be solve iteratively by introducing auxiliary variables

min
lσ ,w

µ

2
∥Gσlσ − b∥22 + α(

n2∑
i=1

∥wi∥+
β

2

n2∑
i=1

∥wi −Dilσ∥) + (1− α)
n2∑
i=1

∥Dilσ∥22 (149)

The deblurring process is thus

• update wi:

wi = max{∥Dilσ∥ −
1

β
, 0} Dilσ
∥Dilσ∥

(150)

• update lσ:

lσ = F−1{
(αβ2)F(Di)

∗ ◦ F(wi) + (µ2)F(Gσ) ◦ F(b)
(αβ2 + (1− α))F(Di)∗ ◦ F(Di) + (µ2)F(Gσ) ◦ F(b)

} (151)

◦ is the element-wise multiplication and ∗ denotes complex conjugation. Now, having blur map and
several deblurred images {lσ1, lσ2, · · · , lσN}, the all-in-focus result is given by

l∗(x, y) =
∑
(x,y)

lσ∗(x,y)(x, y) (152)

While {lσ1, lσ2, · · · , lσk, · · · , lσN} are results from blur kernel of quantized σ, σ(x, y) in blur map is
excepts to be consecutive. Thus, σ∗(x, y) is chosen to be the biggest blur scale close to lσk. In short, the
proposed method can be summarized into three parts: (a)blur map generation, (b) L1− 2 deblurring,
and (c) scale selecting.

A sample result

62

Figure 5.8: out-of-focus image

Figure 5.9: blur map

Figure 5.10: restored all-in-focus image

63

5.3 Unnatural L0 Sparse Representation for Natural Image Deblur-
ring [20]
(code path: Deblurring Gather/Non Uniform Pcode/runNon Uniform L0 Deblur.m)

In this paper, a method for both uniform and non-uniform is proposed. The novel point of this paper
is that it proposed a new sparsity function regularizing the estimated latent image. To begin with,
consider the blur process

y =
∑
m

kmHm + ε (153)

which is the same as in section 4.2.2. Hm is the transformation matrix of the camera, km denotes the
weight that is proportional to the time camera spent on pose m. The transformation matrix can be
separate into two cases: rotation matrix Rm and translation matrix M −m. The blurring process can
thus be rewritten as

∑
m

kmRmx = BRx = ARk (154)

∑
m

kmMmx = BMx = AMk (155)

The reason of separating Hm into two cases is that the translation matrix Mm is referred as uniform
blur whereas Rm is sufficient to model non-uniform blur. With these assumption, the objective func-
tion in this paper is given as

min
x̃,k

∥
∑
m

kmHmx̃− y∥+ λ
∑

⋆∈{h,v}

ϕ0(∂⋆x̃) + γ∥k∥2 (156)

where λ and γ are user defined parameters. ϕ0(∂⋆x̃) is a novel sparsity function proposed in this paper
as follows

ϕ0(∂⋆z) =
∑
i

ϕ(∂⋆zi)

ϕ(∂⋆zi) =

{
1
ε2
|∂⋆zi|2 if |∂⋆zi| ≤ ε

1, otherwise

(157)

The two main advantages of ϕ0(∂⋆z) is that ϕ0(∂⋆z) is similar to L0 norm(see (a) in the following
figure)

64

Figure 5.11: plots of different penalty functions

Additionally, since ϕ0(a
t∂⋆z) ≃ ϕ0(∂⋆z), ϕ(·) has an effect to remove fine structures and keep useful

salient ones in the estimated latent image. In other words, this regularization term is scale invariant.

Now we move to the optimization part. In this tutorial we omit quite a lot mathematical details and
derivation in the original for simplicity. To objective function is solved by alternatively computing

x̃t+1 = argmin
x̃
{∥Btx̃− y∥2 + λ

∑
⋆∈{h,v}

ϕ0(∂⋆x̃)}

kt+1 = argmin
k
{∥At+1k − y∥2 + γ∥k∥2}

(158)

First, use half-quadratic L0 solver to optimize x̃t+1. The objective function is rewritten as:

argmin
x̃,l
{ 1
λ
∥Bx̃− y∥2 +

∑
⋆∈{h,v}

∑
i

{|l⋆i|0 +
1

ε2
(∂⋆x̃i − l⋆i)2}} (159)

Thus, solving x̃ needs to solve two sub-problems as well.

Update l:

(a) lhi(vi) =

{
0, if |∂h(v)x̃i| ≤ ε
∂h(v)x̃i, otherwise

(160)

Update x̃:

1. Uniform(b): F(x̃) =
F(BM)·F(y)+ λ

ε2
(F(∂h)·F(lh)+F(∂v)·F(lv))

F(BM)·F(BM)+ λ
ε2

F 2
D

, where F 2
D = |F(∂h)|2 + |F(∂v)|2

2. Non-uniform(c): x̃ = 1
W

∑
pC

−1
p F−1F(Ck(ARδk))+F(w·Cp(y))+

λ
ε2

F 2
Dl

F 2
k+

λ
ε2

F 2
D

, where F 2
k = |F(Ck(ARδk))|2

and FDl = (F(∂h) · F(Cp(lh)) + F(∂v) · F(Cp(lv)))

65

The math equation in non-uniform case is derived by cutting blurred image into p patches. In this case,
it can be assumed that these patches are locally uniform. Cp and C−1

p means extracting patch p and
pasting back patch p to the original image respectively. Additionally, ARδk =

∑
i kiRiδ representing

the blur kernel for patch p.
Now let’s move on to the problem of solving k. We consider uniform and non-uniform cases as the
previous step.

1. Uniform(d): kt+1 = F−1(
F(At+1

M)F(y)

|F(At+1
M)|2+γ

)

2. Non-uniform(e): kt+1 = kt · (AT
Ry

(AT
RAR+γ)kt

)α

where α is the step size of iteration. The overall algorithm is given below

Figure 5.12: complete algorithm

A sample result:

66

Figure 5.13: blurred image

Figure 5.14: restored image

67

Deep Learning in Image Deblurring

with the burst of deep learning in recent years, some have found that deep learning can also be applied
to solve ill-posed problems such as image deblurring. In this chapter, we categorize the methods into
blind and non-blind deblurring like we’ve done in chapter 4. In this tutorial, however, only fundamental
concepts are introduced. For a better understanding of deep learning in image deblurring, one can
refer to [21].

6.1 Non-blind Deblurring

6.1.1 Deep Convolutional Neural Network for Image Deconvolution [19]
(code path: Deblurring Gather/dcnn nips14/run deblur all 3chs finetune.m)

When it comes to deblurring methods using deep learning, there are two indispensable elements: one
or more cost functions to be minimized, and the proposed network architecture. In this paper, a
convolution neural network(CNN) is used to reconstruct the blurred image. The loss function of the
network is, not surprisingly,

1

2|N |
∑
i∈N
∥f(ŷi)− x̂i∥2 (161)

where N is the size of training set, and {x̂i, ŷi} is a pair of a clear image and a corrupted version of
it. The architecture of the network proposed in this paper is as follows

Figure 6.1: complete network architecture for deep deconvolution

68

The network consist of two part: image deconvolution CNN(DCNN) and outlier-rejection deconvolu-
tion CNN(ODCNN). The architecture of DCNN is given as

h3 =W3 ∗ h2; hl = σ(Wl ∗ hl−1 + bl−1), l ∈ {1, 2}; h0 = ŷ (162)

where Wl is the weight mapping the (l−1)th layer to the lth one and bl−1 is the vector value bias. σ(·)
is the nonlinear function, which can be sigmoid or hyperbolic tangent. (The architecture of ODCNN
will be discuss in next section). DCNN is trained by the natural images degraded by additive Gaussian
noise and JPEG compression. However, the initialization of model parameters play an important part
in training DCNN. The authors show that the kernel k′ in Wiener deconvolution

x = F−1(
1

F(k)
{ |F(k)|2

|F(k)|2 + 1
SNR

}) ∗ y = k′ ∗ y (163)

can be used as initial values of model parameters to achieve better result.

Figure 6.2: PSNRs produced in different stages CNN architecture

ODCNN, on the other hand, is trained by 2500 natural images from Flicker. The authors sample
patches in these natural images and blur them as training data for ODCNN.

69

6.1.2 Restoring an Image Taken through a Window Covered with Dirt or Rain [4]

In this section, we introduce the ODCNN used in the previous method. The purpose of ODCNN is
to remove small particles such as dirt and rain in an image. The figure below shows the input and
output of ODCNN

Figure 6.3: (left): blurred image taken through glass that is covered with rain, (right): output of
ODCNN

The loss function is given as

j(θ) =
1

2|D|
∑
i∈D
∥F (xi)− y∗i ∥2 (164)

where θ is the model parameters θ = (W1, · · · ,WL, b1, · · · , bL). D is the data set containing image
pairs (xi, y

∗
i) which corresponds to the noisy and clean image. The N -layer architecture is given as

F0(x) = x

Fl(x) = tanh(Wl ∗ Fl−1(x) + bl), l = 1, · · · , L− 1

F (x) =
1

m
(WL ∗ FL−1(x) + bL)

(165)

The training data is mainly composed by images corrupted by dirt and water droplets. To simulation
the effect of dirt, the artificial noisy image I ′ is generate as

I ′ = pαD + (1− α)I (166)

70

where α is a transparency mask, D is the additive component of the dirt, and p is a random pertur-
bation vector in RGB space. The water droplets, on the other hand, is simulated by spraying water
on a pane of anti-reflective MgF2-coated glass, producing drops that closely resemble to real rain. In
fact, the visualization of model weights at different layer shows how the model works.

Figure 6.4: (left): first layer filters. (right): top layer filters used to reconstruct the clean patch

Since the proposed model is based on convolutional neural network(CNN), the filers in the first layer
will detect and extract possible features of rain. And the filters in top layer are used to remove these
distortion by convolution.

71

6.2 Blind Deblurring

6.2.1 Convolutional Neural Networks for Direct Text Deblurring [5]

In this paper, a convolutional neural network(CNN) is proposed for text deblurring. The loss function
is straightforward,

1

2|D|
∑

xi,yi∈D
∥F (yi)− xi∥22 + 0.0005∥W∥22 (167)

where W and b are model parameters. D is the data set containing image pairs (xi, yi) which corre-
sponds to the noisy and clean image. For a L-layer architecture, the model can be written as

F0(y) = y

Fl(y) = max(0,Wl ∗ Fl−1(y) + bl), l = 1, · · · , L− 1

F (y) =WL ∗ FL−1(y) + bL

(168)

For a 15-Layer, the filter characteristic is shown in the following figure

Figure 6.5: parameters of 10-layer and 15-layer model

Figure 6.6: performances of different model size and channel number

72

The training data are sampled from scientific publication containing different content types. Addi-
tionally, in order to make the the sampled data more realistic, the authors apply small geometric
transformations with bicubic interpolation to simulate camera rotation(since the real world photo is
impossible to be exactly parallel to the content plane). Then, an uniform anti-aliased disc is used as
kernel to simulate de-focus blur; and the motion blur was generated by a random walk. A sample
result is shown below.

Figure 6.7: sample result

73

A Short Comment on This Tutorial

In this tutorial, we explored some methods of image deblurring. The conventional methods are extract
from book [1], and the others methods are summarized from different research papers. However, the
point of this tutorial is to introduce the spirits of each method(i.e., the image prior they utilize) and
the core algorithm of the method. Hence, this tutorial does omits quite a lot mathematical details. It
is highly recommended that one refer to the original paper for a better understanding. Last but not
the least, there may be some typos and mistakes in this tutorial. Any comments and suggestion are
welcomed. If you have any guidance or problems, please email r11942060@ntu.edu.tw. Thank you!

74

Appendices

75

Appendix A:
Issues of MATLAB Implementation

In this tutorial, the notation Aopf is frequently used. Generally speaking , f is a matrix and Aop

is the linear operator on the matrix. A linear operator can be either convolution (Aopf = K ∗ f)
or matrix multiplication (Aopf = Af) of the matrix f . Although the above two representations are
mathematically identical, they differ from each other when implementing. Here we address the rela-
tionship between them.
Consider a blurred image without noise

b = Af (169)

Suppose f is a sharp image of size R×K and the linear operator A defines the blurring process by a
kernel a of size r × k. The explicit dimension of (69) is

b1,1 b1,2 . . . b1,K

...
. . .

...

bR,1 bR,2 . . . bR,K

 =

a1,1 a1,2 . . . a1,k

...
. . .

...

ar,1 ar,2 . . . ar,K

 ∗

f1,1 f1,2 . . . f1,K

...
. . .

...

bf,1 fR,2 . . . fR,K

 (170)

where ∗ denotes 2D convolution. In MATLAB, b can be obtained by

b = conv2(padarray(f, [r-1 k-1] , ’pre’), a, ’valid’)

The padding ensures that the result after convolution will be the same size as f . Now, we try to
modify the above convolution to matrix multiplication.(a’ = a(end:-1:1, end:-1:1))

76

b1,1

b1,2

...

b1,K

b2,1

...

bR,K

=

a′1,1 . . . a′1,k, 0 . . . 0, a′2,1, . . . 0

0, a′1,1 . . . a′1,k, 0 . . . 0, a′2,1, . . . 0

0, 0, a′1,1 . . . a′1,k, 0 . . . 0, a′2,1, . . . 0

...
. . .

...

f1,1

f1,2

...

f1,K−k+1

f2,1

...

fR−r+1,K−k+1

(171)

Using a set of new notation bvec = a′expanded fvec, one can examine the outcome by expanding
few terms in above equation. As a result, a 2D convolution can theoretically be formulated as ma-
trix multiplication. The reason of doing so is that in some scenarios, the derivation of algorithm is
based on such assumption. For example, the conjugate gradient method (54) (57) regards image blur-
ring process as linear equations. A in equation (56) and (57) correspond to a′expanded for its blur kernel.

However, consider a case of 2048 × 2048 sharp image and 20 × 20 blur kernel. The corresponding
bvec, a

′
expanded, fvec will be matrices with approximate size 222×1, 222×222, 222×1 respectively. The

size of matrices exceed the limitation in MATLAB. Therefore, the operation Af in implementation
is usually performed as 2D convolution. What’s more, the time complexity of 2D convolution is
O(K2HW). A faster way of doing 2D convolution is transform kernel K and sharp image f to Fourier
domain and use point-wise multiplication since K ∗ f = K̂f̂ . The time complexity is reduced to two
fast Fourier transform and a point-wise multiplication O(HW (logH + logW)). In fact, MATLAB
implementations of Af in this tutorial is done in either spatial domain or Fourier domain. Performing
matrix multiplication in image deblurring is rather unrealistic.

77

Appendix B:
Iteratively Reweighted Least Squares(IRLS)

According to [10], IRLS is a method to find x that minimize costs of the form

∑
j

ρ(Ajx− bj) (172)

The IRLS algorithm is summarized as follows,

Algorithm 1 Iteratively Reweighted Least Squares(IRLS)

Initialization: ψ0
j = 1

while xt does not convergence do

1. Ā =
∑

j A
T
j ψ

t−1
j Aj and b̄ =

∑
j A

T
j ψ

t−1
j bj , x

t is the solution of Āx = b̄

xt = (ATΨtA)−1ATΨtb

2. uj = Ajx− bj
ψt
j(uj) =

1
uj

dρ(uj)
du

end while

For different ρ(uj), corresponding ψ(uj) can be calculate. For example, [15] showed that

78

Figure B.1: (top)three different robust loss functions rho(u) and associated ψ functions (bottom) ψ(u)
versus scale-normalized u

In the case of Lp norm linear regression, ρ(u) = |u|p. The update after each iteration is

ψt(u) = |u|p−2 (173)

The derivation can be found in Wikipedia [18] . Note that it has been shown in [7] that p = 0.8 is a
proper parameter for natural images.

79

Reference

[1] M. Bertero, P. Boccacci, C. d. Mol, and M. Bertero. Introduction to inverse problems in imaging.
CRC Press, 2021.

[2] S. Cho and S. Lee. Fast motion deblurring. ACM Transactions on Graphics, 28(5):1–8, Dec.
2009.

[3] J.-J. Ding, W.-D. Chang, Y. Chen, S.-W. Fu, C.-W. Chang, and C.-C. Chang. Image deblurring
using a pyramid-based richardson-lucy algorithm. In 2014 19th International Conference on
Digital Signal Processing. IEEE, Aug. 2014.

[4] D. Eigen, D. Krishnan, and R. Fergus. Restoring an image taken through a window covered with
dirt or rain. In 2013 IEEE International Conference on Computer Vision. IEEE, Dec. 2013.

[5] M. Hradǐs, J. Kotera, P. Zemč́ık, and F. Šroubek. Convolutional neural networks for direct text
deblurring. In Procedings of the British Machine Vision Conference 2015. British Machine Vision
Association, 2015.

[6] A. Kheradmand and P. Milanfar. A general framework for regularized, similarity-based image
restoration. IEEE Transactions on Image Processing, 23(12):5136–5151, Dec. 2014.

[7] D. Krishnan and R. Fergus. Fast image deconvolution using hyper-laplacian priors. In Y. Bengio,
D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta, editors, Advances in Neural Information
Processing Systems, volume 22. Curran Associates, Inc., 2009.

[8] D. Krishnan, T. Tay, and R. Fergus. Blind deconvolution using a normalized sparsity measure.
In CVPR 2011. IEEE, June 2011.

[9] A. Levin, R. Fergus, F. Durand, and W. T. Freeman. Image and depth from a conventional
camera with a coded aperture. ACM Transactions on Graphics, 26(3):70, July 2007.

[10] A. Levin and Y. Weiss. User assisted separation of reflections from a single image using a sparsity
prior. In Lecture Notes in Computer Science, pages 602–613. Springer Berlin Heidelberg, 2004.

[11] J. Pan, Z. Hu, Z. Su, and M.-H. Yang. Deblurring text images via l0-regularized intensity and
gradient prior. In 2014 IEEE Conference on Computer Vision and Pattern Recognition. IEEE,
June 2014.

[12] J. Pan, D. Sun, H. Pfister, and M.-H. Yang. Blind image deblurring using dark channel prior. In
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, June 2016.

[13] C. J. Schuler, M. Hirsch, S. Harmeling, and B. Schölkopf. Learning to deblur, 2014.

[14] C.-T. Shen, W.-L. Hwang, and S.-C. Pei. Spatially-varying out-of-focus image deblurring with
l1-2 optimization and a guided blur map. In 2012 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, Mar. 2012.

80

[15] C. V. Stewart. Robust parameter estimation in computer vision. SIAM Review, 41(3):513–537,
Jan. 1999.

[16] C.-Y. Tseng, S.-J. Wang, C.-W. Chang, P.-C. Chen, C.-C. Chang, and Y.-A. Chen. Digital
image restoration for phase-coded imaging systems. In P. Schelkens, T. Ebrahimi, G. Cristóbal,
F. Truchetet, and P. Saarikko, editors, SPIE Proceedings. SPIE, Apr. 2010.

[17] O. Whyte, J. Sivic, and A. Zisserman. Deblurring shaken and partially saturated images. In 2011
IEEE International Conference on Computer Vision Workshops (ICCV Workshops). IEEE, Nov.
2011.

[18] Wikipedia. Iteratively reweighted least squares — Wikipedia, the free encyclope-
dia. http://en.wikipedia.org/w/index.php?title=Iteratively%20reweighted%20least%

20squares&oldid=1008856999, 2023. [Online; accessed 16-January-2023].

[19] L. Xu, J. S. Ren, C. Liu, and J. Jia. Deep convolutional neural network for image deconvolution.
In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, editors, Advances in
Neural Information Processing Systems, volume 27. Curran Associates, Inc., 2014.

[20] L. Xu, S. Zheng, and J. Jia. Unnatural l0 sparse representation for natural image deblurring. In
2013 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, June 2013.

[21] K. Zhang, W. Ren, W. Luo, W.-S. Lai, B. Stenger, M.-H. Yang, and H. Li. Deep image deblurring:
A survey. International Journal of Computer Vision, 130(9):2103–2130, June 2022.

81

http://en.wikipedia.org/w/index.php?title=Iteratively%20reweighted%20least%20squares&oldid=1008856999
http://en.wikipedia.org/w/index.php?title=Iteratively%20reweighted%20least%20squares&oldid=1008856999

	Abstract
	Introduction
	Problem Statement
	Method Classification
	Problem Formulation

	Conventional Methods
	Regularization
	Iterative Regularization
	Statistical
	Chapter Summarize

	Uniform Deblurring
	Non-blind Deblurring
	Fast Image Deconvolution using Hyper-Laplacian PriorsKrishnan2009(code path: Deblurring_Gather/fastdeconv/test_fast_deconv.m)
	A General Framework for Regularized, Similarity-Based Image RestorationKheradmand2014(code path: Deblurring_Gather/DeblurringCode/mainDemo.m)
	Image Deblurring Using a Pyramid-Based Richardson–Lucy AlgorithmDing2014

	Blind Deblurring
	Digital Image Restoration for Phase-Coded Imaging SystemsTseng2010
	Blind Deconvolution Using a Normalized Sparsity MeasureKrishnan2011(code path: Deblurring_Gather/online_code/test_blind_deconv.m)
	Deblurring Shaken and Partially Saturated ImagesWhyte2011
	Deblurring Text Images via L0-Regularized Intensity and Gradient PriorPan2014(code path: Deblurring_Gather/text_deblurring_code_v4/demo_text_deblurring.m)
	Blind Image Deblurring Using Dark Channel PriorPan2016(code path: Deblurring_Gather/cvpr16_deblurring_code_v1/demo_deblurring.m)

	Non-uniform Deblurring
	Image and Depth from a Conventional Camera with a Coded ApertureLevin2007(code path: Deblurring_Gather/DeconvolutionCode-LevinEtAl07)
	Spatially-Varying Out-of-focus Image Deblurring with L1-2 Optimization and A Guided Blur MapShen2012(code path: Deblurring_Gather/ICASSP2012/main.m)
	Unnatural L0 Sparse Representation for Natural Image DeblurringXu2013(code path: Deblurring_Gather/Non_Uniform_Pcode/runNon_Uniform_L0_Deblur.m)

	Deep Learning in Image Deblurring
	Non-blind Deblurring
	Deep Convolutional Neural Network for Image DeconvolutionNIPS20141c1d4df5(code path: Deblurring_Gather/dcnn_nips14/run_deblur_all_3chs_finetune.m)
	Restoring an Image Taken through a Window Covered with Dirt or RainEigen2013

	Blind Deblurring
	Convolutional Neural Networks for Direct Text DeblurringHradi2015

	A Short Comment on This Tutorial
	Appendices
	Appendix A: Issues of MATLAB Implementation
	Appendix B: Iteratively Reweighted Least Squares(IRLS)
	References

