Gradient Projection for Sparse Reconstruction

Application to Compressed Sensing and Other Inverse Problems

Outline

* Introduction
* Compressed Sensing
* Previous Algorithms
- Proposed Formulation
* Gradient Projection Algorithms
* Experiment Results
- Reference

Introduction

* Try to estimate \mathbf{x} from observations

$$
\mathbf{y}=\mathbf{A x}+\mathbf{n}
$$

where $\mathbf{x} \in \mathbb{R}^{n}, \mathbf{y} \in \mathbb{R}^{k}, \mathbf{A}$ is an $k \times n$ matrix, $k<n, \mathbf{n}$ is white Gaussian noise.

Introduction

* Consider the unconstrained optimization problem

$$
\min _{\mathbf{x}} \frac{1}{2}\|\mathbf{y}-\mathbf{A} \mathbf{x}\|_{2}^{2}+\tau\|\mathbf{x}\|_{1}
$$

where τ is a nonnegative parameter.

* Other related convex optimization problems:
* (QP) $\min _{\mathbf{x}}\|\mathbf{x}\|_{1}$ subject to $\|\mathbf{y}-\mathbf{A x}\|_{2}^{2} \leq \epsilon$, where ϵ is a nonnegative parameter
* (LP) min $\|\mathbf{x}\|_{1}$ subject to $\mathbf{y}=\mathbf{A x}$

$$
\mathbf{x}
$$

Compressed Sensing

* $\mathbf{y}=\mathbf{A x}+\mathbf{n}$, where $\mathbf{x} \in \mathbb{R}^{n}, \mathbf{y} \in \mathbb{R}^{k}, \mathbf{A}$ is an $k \times n$ matrix
* $k \ll n$
* Signal is sparse or approximately sparse in some orthonormal basis
- Signal can be recovered from far fewer samples
* A powerful alternative to Shannon-Nyquist sampling

Compressed Sensing

* Matrix \mathbf{A} has the form $\mathbf{A}=\mathbf{R W}$
* \mathbf{R} is a low-ranked randomized sensing matrix
* \mathbf{W} is the representation basis
* e.g. a wavelet basis or Fourier basis

Previous Algorithms

* Most algorithms need to explicitly store $\mathbf{A}=\mathbf{R W}$, which is not suitable for high-dimensional cases.
* Iterative shrinkage / thresholding (IST) are not suitable if the nonzero components of \mathbf{x} is significant
* Matching pursuit (MP) or Orthogonal MP (greedy method) is not designed for above problems, but is used to reconstruct \mathbf{x} from $\mathbf{y}=\mathbf{A x}$

Proposed Formulation

* The unconstrained optimization problem

$$
\min _{\mathbf{x}} \frac{1}{2}\|\mathbf{y}-\mathbf{A} \mathbf{x}\|_{2}^{2}+\tau\|\mathbf{x}\|_{1}
$$

where τ is a nonnegative parameter.

Proposed Formulation

Formulate as a Quadratic Program

* $\mathbf{x}=\mathbf{u}-\mathbf{v}, \mathbf{u} \geq \mathbf{0}, \mathbf{v} \succeq \mathbf{0}$, where $u_{i}=\left(x_{i}\right)_{+}$and $v_{i}=\left(-x_{i}\right)_{+}$
* $(a)_{+}=\max \{0, a\}$
* Bound constrained quadratic program (BCQP)

$$
\begin{array}{ll}
\min _{\mathbf{u}, \mathbf{v}} & \frac{1}{2}\|\mathbf{y}-\mathbf{A}(\mathbf{u}-\mathbf{v})\|_{2}^{2}+\tau \mathbf{1}_{n}^{T} \mathbf{u}+\tau \mathbf{1}_{n}^{T} \mathbf{v} \\
\text { subject to } & \mathbf{u} \succeq \mathbf{0}, \mathbf{v} \succeq \mathbf{0}
\end{array}
$$

Proposed Formulation

* In more standard BCQP form

subject to $\quad \mathbf{z} \geq \mathbf{0}$
where $\mathbf{z}=\left[\begin{array}{l}\mathbf{u} \\ \mathbf{v}\end{array}\right], \mathbf{b}=\mathbf{A}^{T} \mathbf{y}, \mathbf{c}=\tau \mathbf{1}_{2 n}+\left[\begin{array}{c}-\mathbf{b} \\ \mathbf{b}\end{array}\right]$
and $\mathbf{B}=\left[\begin{array}{cc}\mathbf{A}^{T} \mathbf{A} & -\mathbf{A}^{T} \mathbf{A} \\ -\mathbf{A}^{T} \mathbf{A} & \mathbf{A}^{T} \mathbf{A}\end{array}\right]$

Gradient Projection Algorithms

In each iteration,

* First, choose some scalar parameter $\alpha^{(k)}>0$ and set

$$
\mathbf{w}^{(k)}=\left(\mathbf{z}^{(k)}-\alpha^{(k)} \nabla F\left(\mathbf{z}^{(k)}\right)\right)_{+}
$$

* Then, choose a second parameter $\lambda^{(k)} \in[0,1]$ and set

$$
\mathbf{z}^{(k+1)}=\left(1-\lambda^{(k)}\right) \mathbf{z}^{(k)}+\lambda^{(k)} \mathbf{w}^{(k)}=\mathbf{z}^{(k)}+\lambda^{(k)}\left(\mathbf{w}^{(k)}-\mathbf{z}^{(k)}\right)
$$

The GPSR-Basic Algorithm

* Define vector $\mathbf{g}^{(k)}$ by
* $\mathbf{g}_{i}^{(k)}= \begin{cases}\left(\nabla F\left(\mathbf{z}^{(k)}\right)\right)_{i}, & \text { if } \mathbf{z}_{i}^{(k)}>0 \text { or }\left(\nabla F\left(\mathbf{z}^{(k)}\right)\right)_{i}<0 \\ 0, & \text { otherwise } .\end{cases}$
* Initial guess
* $\alpha_{0}=\frac{\left(\mathbf{g}^{(k)}\right)^{T} \mathbf{g}^{(k)}}{\left(\mathbf{g}^{(k)}\right)^{T} \mathbf{B} \mathbf{g}^{(k)}}\left(\right.$ by letting $\left.\nabla_{\alpha} F\left(\mathbf{z}^{(k)}-\alpha \mathbf{g}^{(k)}\right)=0\right)$
* Confine α_{0} to the interval $\left[\alpha_{\text {min }}, \alpha_{\text {max }}\right]$

The GPSR-Basic Algorithm

* Step 0 (initialization): Given $\mathbf{z}^{(0)}$, choose parameters $\beta \in(0,1)$ and $\mu \in(0,1 / 2)$; set $k=0$.
* Step 1: Compute α_{0} like last slide, and replace α_{0} by $\operatorname{mid}\left(\alpha_{\min }, \alpha_{0}, \alpha_{\text {max }}\right)$.
- Step 2 (backtracking line search): Choose $\alpha^{(k)}$ to be the first number in sequence $\alpha_{0}, \beta \alpha_{0}, \beta^{2} \alpha_{0}, \ldots$, such that

$$
\begin{aligned}
& \qquad \begin{array}{l}
F\left(\left(\mathbf{z}^{(k)}-\alpha^{(k)} \nabla F\left(\mathbf{z}^{(k)}\right)\right)_{+}\right) \\
\quad \leq F\left(\mathbf{z}^{(k)}\right)-\mu \nabla F\left(\mathbf{z}^{(k)}\right)^{T}\left(\mathbf{z}^{(k)}-\left(\mathbf{z}^{(k)}-\alpha^{(k)} \nabla F\left(\mathbf{z}^{(k)}\right)\right)_{+}\right) \\
\text {and } \operatorname{set} \mathbf{z}^{(k+1)}=\left(\mathbf{z}^{(k)}-\alpha^{(k)} \nabla F\left(\mathbf{z}^{(k)}\right)\right)_{+}
\end{array}
\end{aligned}
$$

* Step 3: Check termination or $k \leftarrow k+1$ and go to Step 1

The GPSR-BB Algorithm

- BB: Barzilai-Borwein
* Second order method, approximate Hessian of F at iteration k by $\eta^{(k)} I$
* $\nabla F\left(\mathbf{z}^{(k)}\right)-\nabla F\left(\mathbf{z}^{(k-1)}\right) \approx \eta^{(k)}\left[\mathbf{z}^{(k)}-\mathbf{z}^{(k-1)}\right]$
* $\mathbf{z}^{(k+1)}=\mathbf{z}^{(k)}-\left(\eta^{(k)}\right)^{-1} \nabla F\left(\mathbf{z}^{(k)}\right)=\mathbf{z}^{(k)}-\alpha^{(k)} \nabla F\left(\mathbf{z}^{(k)}\right)$
- In our problem,

$$
\nabla F\left(\mathbf{z}^{(k)}\right)-\nabla F\left(\mathbf{z}^{(k-1)}\right)=\mathbf{B}\left(\mathbf{z}^{(k)}-\mathbf{z}^{(k-1)}\right)
$$

The GPSR-BB Algorithm

- Step 0 (initialization): Given $\mathbf{z}^{(0)}$, choose parameters $\alpha_{\text {min }}, \alpha_{\text {max }}, \alpha^{(0)}$, and set $k=0$.
- Step 1: Compute $\delta^{(k)}=\left(\mathbf{z}^{(k)}-\alpha^{(k)} \nabla F\left(\mathbf{z}^{(k)}\right)\right)_{+}-\mathbf{z}^{(k)}$
- Step 2: $\lambda^{(k)}=\operatorname{mid}\left\{0, \frac{\left(\delta^{(k)}\right)^{T} \nabla F\left(\mathbf{z}^{(k)}\right)}{\left(\delta^{(k)}\right)^{T} \mathbf{B} \delta^{(k)}}, 1\right\}\left(\right.$ by $\left.\nabla_{\delta} F\left(\mathbf{z}^{(k)}+\lambda^{(k)} \delta\right)=0\right)$ and set $\mathbf{z}^{(k+1)}=\mathbf{z}^{(k)}+\lambda^{(k)} \delta^{(k)}$.
- Step 3 (update α): compute $\gamma^{(k)}=\left(\delta^{(k)}\right)^{T} \mathbf{B} \delta^{(k)}$;

$$
\alpha_{i}^{(k+1)}= \begin{cases}\left(\nabla F\left(\mathbf{z}^{(k)}\right)\right)_{i}, & \text { if } \gamma^{(k)}=0 \\ \operatorname{mid}\left\{\alpha_{\min }, \frac{\left\|\delta^{(k)}\right\|_{2}^{2}}{\gamma^{(k)}}, \alpha_{\max }\right\}, & \text { otherwise. }\end{cases}
$$

* Step 4: Check termination or $k \leftarrow k+1$ and go to Step 1

Termination

* Choose some threshold $t h$ and for each iteration we define

$$
\begin{aligned}
\mathscr{F}_{k}= & \left\{i \mid z_{i}^{(k)} \neq 0\right\} \\
\mathscr{C}_{k}= & \left\{i \mid\left(i \in \mathscr{I}_{k} \text { and } i \notin \mathscr{F}_{k-1}\right)\right. \\
& \text { or } \left.\left(i \notin \mathscr{J}_{k} \text { and } i \in \mathscr{J}_{k-1}\right)\right\}
\end{aligned}
$$

* The algorithm terminates if
- $\left|\mathscr{C}_{k}\right| /\left|\mathscr{I}_{k}\right| \leq t h$
- This criteria takes account of
* the nonzero indices of \mathbf{z}
* how much these changed in recent iterations

Experiment Results

* Compressed Sensing
* $n=4096, k=1024$, the original signal \mathbf{x} contains 160 randomly placed nonzero components
* white Gaussian noise with variance $\sigma^{2}=10^{-4}$
* $\tau=0.1\left\|\mathbf{A}^{T} \mathbf{y}\right\|_{\infty}$

Experiment Results

TABLE I

CPU Times (Average Over Ten Runs) of Several Algorithms on the Experiment of Fig. 1

Algorithm	CPU time (seconds)
GPSR-BB monotone	0.59
GPSR-BB nonmonotone	0.51
GPSR-Basic	0.69
GPSR-BB monotone + debias	0.89
GPSR-BB nonmonotone + debias	0.82
GPSR-Basic + debias	0.98
ll $l s$	6.56
IST	2.76

Experiment Results

$\operatorname{MSE}=(1 / n)\|\hat{\mathbf{x}}-\mathbf{x}\|_{2}^{2}$, where $\hat{\mathbf{x}}$ is the estimator of \mathbf{x}

Conclusion

* Proposed algorithms for solving a quadratic programming of a class of convex nonsmooth unconstrained optimization
* It can be efficiently applied to CS problem, image reconstruction, and other inverse problems

Reference

* M. A. T. Figueiredo, R. D. Nowak and S. J. Wright, "Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems," in IEEE Journal of Selected Topics in Signal Processing, vol. 1, no. 4, pp. 586-597, Dec. 2007, doi: 10.1109/JSTSP.2007.910281.
* DONOHO, David L. Compressed sensing. IEEE Transactions on information theory, 2006, 52.4: 1289-1306.
* Serafini, Thomas, Gaetano Zanghirati, and Luca Zanni. "Gradient projection methods for quadratic programs and applications in training support vector machines." Optimization Methods and Software 20.2-3 (2005): 353-378.

Debiasing

* Fix the zero components of previous result $\mathbf{x}_{G P}$
* Minimize $\|\mathbf{y}-\mathbf{A x}\|_{2}^{2}$ using a CG algorithm
* The algorithm is terminated when
* $\|\mathbf{y}-\mathbf{A x}\|_{2}^{2} \leq$ tolD $\left\|\mathbf{y}-\mathbf{A} \mathbf{x}_{\mathbf{G P}}\right\|_{2}^{2}$

