Y.C. Huang 12/07/2021

Gradient Projection for Sparse Reconstruction

Application to Compressed Sensing and Other Inverse Problems

Outline

- Introduction
 - Compressed Sensing
 - Previous Algorithms
- Proposed Formulation
- Gradient Projection Algorithms
- Experiment Results
- * Reference

Introduction

Try to estimate x from observations

$$\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{n}$$

where $\mathbf{x} \in \mathbb{R}^{n}$, $\mathbf{y} \in \mathbb{R}^{k}$, **A** is an $k \times n$ matrix, k < n, **n** is white Gaussian noise.

Introduction

Consider the unconstrained optimization problem

$$\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 + \tau \|\mathbf{x}\|_1$$

where τ is a nonnegative parameter.

- * Other related convex optimization problems:
 - ∗ (QP) min $||\mathbf{x}||_1$ subject to $||\mathbf{y} \mathbf{A}\mathbf{x}||_2^2 \le \epsilon$, where *ε* is a nonnegative parameter

* (LP)
$$\min_{\mathbf{x}} \|\mathbf{x}\|_1$$
 subject to $\mathbf{y} = \mathbf{A}\mathbf{x}$

Compressed Sensing

* $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{n}$, where $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{y} \in \mathbb{R}^k$, \mathbf{A} is an $k \times n$ matrix

* $k \ll n$

- Signal is sparse or approximately sparse in some orthonormal basis
- * Signal can be recovered from far fewer samples
 - * A powerful alternative to Shannon-Nyquist sampling

Compressed Sensing

- Matrix A has the form A = RW
- **R** is a low-ranked randomized sensing matrix
- * W is the representation basis
 - * e.g. a wavelet basis or Fourier basis

Previous Algorithms

- Most algorithms need to explicitly store A = RW, which is not suitable for high-dimensional cases.
- Iterative shrinkage / thresholding (IST) are not suitable if the nonzero components of x is significant
- Matching pursuit (MP) or Orthogonal MP (greedy method) is not designed for above problems, but is used to reconstruct x from y = Ax

Proposed Formulation

* The unconstrained optimization problem $\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \tau \|\mathbf{x}\|_{1}$

where τ is a nonnegative parameter.

Proposed Formulation

Formulate as a Quadratic Program

- * $\mathbf{x} = \mathbf{u} \mathbf{v}, \mathbf{u} \ge \mathbf{0}, \mathbf{v} \ge \mathbf{0}$, where $u_i = (x_i)_+$ and $v_i = (-x_i)_+$ * $(a)_+ = \max\{0, a\}$
- * Bound constrained quadratic program (BCQP)

$$\min_{\mathbf{u},\mathbf{v}} \quad \frac{1}{2} \|\mathbf{y} - \mathbf{A}(\mathbf{u} - \mathbf{v})\|_2^2 + \tau \mathbf{1}_n^T \mathbf{u} + \tau \mathbf{1}_n^T \mathbf{v}$$

subject to $\mathbf{u} \geq \mathbf{0}, \mathbf{v} \geq \mathbf{0}$

Proposed Formulation

* In more standard BCQP form

$$\min_{\mathbf{z}} \quad \mathbf{c}^{T}\mathbf{z} + \frac{1}{2}\mathbf{z}^{T}\mathbf{B}\mathbf{z} \equiv F(\mathbf{z})$$

subject to $z \geq 0$

where
$$\mathbf{z} = \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix}$$
, $\mathbf{b} = \mathbf{A}^T \mathbf{y}$, $\mathbf{c} = \tau \mathbf{1}_{2n} + \begin{bmatrix} -\mathbf{b} \\ \mathbf{b} \end{bmatrix}$
and $\mathbf{B} = \begin{bmatrix} \mathbf{A}^T \mathbf{A} & -\mathbf{A}^T \mathbf{A} \\ -\mathbf{A}^T \mathbf{A} & \mathbf{A}^T \mathbf{A} \end{bmatrix}$

Gradient Projection Algorithms

In each iteration,

* First, choose some scalar parameter $\alpha^{(k)} > 0$ and set

*
$$\mathbf{w}^{(k)} = \left(\mathbf{z}^{(k)} - \alpha^{(k)} \nabla F(\mathbf{z}^{(k)})\right)_{+}$$

* Then, choose a second parameter $\lambda^{(k)} \in [0,1]$ and set

*
$$\mathbf{z}^{(k+1)} = (1 - \lambda^{(k)})\mathbf{z}^{(k)} + \lambda^{(k)}\mathbf{w}^{(k)} = \mathbf{z}^{(k)} + \lambda^{(k)}(\mathbf{w}^{(k)} - \mathbf{z}^{(k)})$$

The GPSR-Basic Algorithm

* Define vector $\mathbf{g}^{(k)}$ by

$$\mathbf{g}_{i}^{(k)} = \begin{cases} \left(\nabla F(\mathbf{z}^{(k)}) \right)_{i}, & \text{if } \mathbf{z}_{i}^{(k)} > 0 \text{ or } \left(\nabla F(\mathbf{z}^{(k)}) \right)_{i} < 0 \\ 0, & \text{otherwise }. \end{cases}$$

Initial guess

$$\alpha_0 = \frac{(\mathbf{g}^{(k)})^T \mathbf{g}^{(k)}}{(\mathbf{g}^{(k)})^T \mathbf{B} \mathbf{g}^{(k)}} \text{ (by letting } \nabla_\alpha F(\mathbf{z}^{(k)} - \alpha \mathbf{g}^{(k)}) = 0)$$

* Confine α_0 to the interval $[\alpha_{\min}, \alpha_{\max}]$

The GPSR-Basic Algorithm

- * Step 0 (initialization): Given $\mathbf{z}^{(0)}$, choose parameters $\beta \in (0,1)$ and $\mu \in (0,1/2)$; set k = 0.
- * Step 1: Compute α_0 like last slide, and replace α_0 by $mid(\alpha_{\min}, \alpha_0, \alpha_{\max})$.
- * Step 2 (backtracking line search): Choose $\alpha^{(k)}$ to be the first number in sequence $\alpha_0, \beta \alpha_0, \beta^2 \alpha_0, \ldots$, such that

$$F\left(\left(\mathbf{z}^{(k)} - \alpha^{(k)} \nabla F(\mathbf{z}^{(k)})\right)_{+}\right)$$

$$\leq F\left(\mathbf{z}^{(k)}\right) - \mu \nabla F\left(\mathbf{z}^{(k)}\right)^{T}\left(\mathbf{z}^{(k)} - \left(\mathbf{z}^{(k)} - \alpha^{(k)} \nabla F(\mathbf{z}^{(k)})\right)_{+}\right)$$

and set $\mathbf{z}^{(k+1)} = (\mathbf{z}^{(k)} - \alpha^{(k)} \nabla F(\mathbf{z}^{(k)}))_{+}$

* Step 3: Check termination or $k \leftarrow k + 1$ and go to Step 1

The GPSR-BB Algorithm

- BB: Barzilai-Borwein
- * Second order method, approximate Hessian of *F* at iteration *k* by $\eta^{(k)}I$
 - * $\nabla F(\mathbf{z}^{(k)}) \nabla F(\mathbf{z}^{(k-1)}) \approx \eta^{(k)} [\mathbf{z}^{(k)} \mathbf{z}^{(k-1)}]$ * $\mathbf{z}^{(k+1)} = \mathbf{z}^{(k)} - (\eta^{(k)})^{-1} \nabla F(\mathbf{z}^{(k)}) = \mathbf{z}^{(k)} - \alpha^{(k)} \nabla F(\mathbf{z}^{(k)})$
- In our problem,

*
$$\nabla F(\mathbf{z}^{(k)}) - \nabla F(\mathbf{z}^{(k-1)}) = \mathbf{B}(\mathbf{z}^{(k)} - \mathbf{z}^{(k-1)})$$

The GPSR-BB Algorithm

* Step 0 (initialization): Given $\mathbf{z}^{(0)}$, choose parameters α_{\min} , α_{\max} , $\alpha^{(0)}$, and set k = 0. * Step 1: Compute $\delta^{(k)} = (\mathbf{z}^{(k)} - \alpha^{(k)} \nabla F(\mathbf{z}^{(k)}))_{+} - \mathbf{z}^{(k)}$

Step 2:
$$\lambda^{(k)} = \operatorname{mid} \left\{ 0, \frac{\left(\delta^{(k)}\right)^T \nabla F(\mathbf{z}^{(k)})}{\left(\delta^{(k)}\right)^T \mathbf{B}\delta^{(k)}}, 1 \right\}$$
 (by $\nabla_{\delta} F(\mathbf{z}^{(k)} + \lambda^{(k)}\delta) = 0$) and set
 $\mathbf{z}^{(k+1)} = \mathbf{z}^{(k)} + \lambda^{(k)}\delta^{(k)}.$

* Step 3 (update α): compute $\gamma^{(k)} = (\delta^{(k)})^T \mathbf{B} \delta^{(k)}$;

$$\alpha_i^{(k+1)} = \begin{cases} \left(\nabla F(\mathbf{z}^{(k)})\right)_i, & \text{if } \gamma^{(k)} = 0\\ \min\left\{\alpha_{\min}, \frac{\|\delta^{(k)}\|_2^2}{\gamma^{(k)}}, \alpha_{\max}\right\}, & \text{otherwise}. \end{cases}$$

* Step 4: Check termination or $k \leftarrow k + 1$ and go to Step 1

Termination

* Choose some threshold *th* and for each iteration we define

 $\mathscr{I}_{k} = \{i \mid z_{i}^{(k)} \neq 0\}$ $\mathscr{C}_{k} = \{i \mid (i \in \mathcal{I}_{k} \text{ and } i \notin \mathcal{I}_{k-1})$ $\circ \text{ or } (i \notin \mathcal{I}_{k} \text{ and } i \in \mathcal{I}_{k-1})\}$

- * The algorithm terminates if
 - $* |\mathcal{C}_k| / |\mathcal{I}_k| \le th$
- * This criteria takes account of
 - the nonzero indices of z
 - how much these changed in recent iterations

Experiment Results

- Compressed Sensing
 - *n* = 4096,*k* = 1024, the original signal **x** contains 160
 randomly placed nonzero components
 - * white Gaussian noise with variance $\sigma^2 = 10^{-4}$
 - * $\tau = 0.1 \|\mathbf{A}^T \mathbf{y}\|_{\infty}$

Experiment Results

TABLE I CPU TIMES (AVERAGE OVER TEN RUNS) OF SEVERAL ALGORITHMS ON THE EXPERIMENT OF FIG. 1

Algorithm	CPU time (seconds)
GPSR-BB monotone	0.59
GPSR-BB nonmonotone	0.51
GPSR-Basic	0.69
GPSR-BB monotone + debias	0.89
GPSR-BB nonmonotone + debias	0.82
GPSR-Basic + debias	0.98
l1_ls	6.56
IST	2.76

Experiment Results

MSE = $(1/n) \|\hat{\mathbf{x}} - \mathbf{x}\|_{2'}^2$, where $\hat{\mathbf{x}}$ is the estimator of \mathbf{x}

Conclusion

- Proposed algorithms for solving a quadratic programming of a class of convex nonsmooth unconstrained optimization
- It can be efficiently applied to CS problem, image reconstruction, and other inverse problems

Reference

- M. A. T. Figueiredo, R. D. Nowak and S. J. Wright, "Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems," in IEEE Journal of Selected Topics in Signal Processing, vol. 1, no. 4, pp. 586-597, Dec. 2007, doi: 10.1109/JSTSP.2007.910281.
- * DONOHO, David L. Compressed sensing. IEEE Transactions on information theory, 2006, 52.4: 1289-1306.
- Serafini, Thomas, Gaetano Zanghirati, and Luca Zanni. "Gradient projection methods for quadratic programs and applications in training support vector machines." *Optimization Methods and Software* 20.2-3 (2005): 353-378.

Debiasing

- * Fix the zero components of previous result \mathbf{x}_{GP}
- * Minimize $\|\mathbf{y} \mathbf{A}\mathbf{x}\|_2^2$ using a CG algorithm
- The algorithm is terminated when

*
$$\|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 \le \text{tolD} \|\mathbf{y} - \mathbf{A}\mathbf{x}_{\mathbf{GP}}\|_2^2$$

