游承軒

2022/01/18

Outline

- Introduction
 - Graph Signal
 - Graph Shift
 - Graph Filter
 - Graph Fourier Transform (GFT)
 - Properties and Example
- Application
 - $\circ \quad \mathsf{Image}\,\mathsf{Coding}\,\mathsf{using}\,\mathsf{GFT}$
 - Graph Convolutional Network (GCN)
- Conclusion
- Reference

Outline

- Introduction
 - Graph Signal
 - Graph Shift
 - Graph Filter
 - Graph Fourier Transform (GFT)
 - Properties and Example
- Application
 - o Image Coding using GFT
 - o Graph Convolutional Network (GCN)
- Conclusion
- Reference

Introduction

Graph: G=(V, E), N=|V|

$$A \in \mathbb{R}^{N \times N}$$
 : adjacency matrix, $A_{ij} = \begin{cases} 0 & \text{if } e_{i,j} \notin E \\ w(i,j) & \text{otherwise} \end{cases}$
 $D \in \mathbb{R}^{N \times N}$: degree matrix, $D_{i,j} = \begin{cases} \sum_{j} A_{ij} & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$

 $L \in \mathbb{R}^{N imes N}$: Laplacian matrix (graph Laplacian), L = D - A

 $L^{sym} \in \mathbb{R}^{N imes N}$: normalized Laplacian matrix, L^{sym} = D^{-1/2}LD^{-1/2}

Introduction

Discrete Fourier Transform:
$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi nk}{N}}$$

 $x[n] = \sum_{k=0}^{N-1} X[k]e^{j\frac{2\pi nk}{N}}$

How to connect them?

Graph Signal

Signals on graphs(vertex domain signals):

 $\mathbf{x} = [x(0), x(1), ..., x(N-1)]^T$

Graph Signal

Several common signals can be transformed into graph signals

- (1) time series
- (2) digital image
- (3) weather stations

Graph Shift with A

A graph shift is the movement of the signal sample from the vertex n along all walks, with the length equal to one.

Graph Shift with A

Considering a graph shift on a directed circular graph, it is like signals shifted by 1 in traditional DSP

Graph Shift with A

In general, a graph signal shifted by m is obtained as a shift by 1 of the graph signal shifted by m-1:

$$\mathbf{x}_m = \mathbf{A}\mathbf{x}_{m-1} = \mathbf{A}^m \mathbf{x}$$

Graph Shift with L

$$L = \begin{bmatrix} 2 & -1 & -1 & 0 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 2 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}, D = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, x = \begin{bmatrix} 4 \\ 2 \\ 4 \\ -3 \end{bmatrix}$$

- Lx: # of neighbors*signal on it- sum of signals over its neighbors
 - = Sum of signal differences between neighbors

$$= \sum_{j \in N(i)} (x(i) - x(j))$$

- For node $0, x_1(0) = 2^*4 2 4 = 1^*4 2 + 1^*4 4$
- In practice, we often use L or normalized L for graph shift for better mathematical properties than A

Graph Filter

The output signal from a system on a graph can be written as

$$\mathbf{y} = h_0 \mathbf{L}^0 \mathbf{x} + h_1 \mathbf{L}^1 \mathbf{x} + \dots + h_{M-1} \mathbf{L}^{M-1} \mathbf{x}$$
$$= H(\mathbf{L}) \mathbf{x}$$

H(L): graph filter, a matrix polynomial of L

Spectral decomposition of L: L = $U \wedge U^{-1}$

U: columns are eigenvectors of L

A: diagonal matrix, diagonal entries are eigenvalues of L

 $y = h_0 \mathbf{U} \mathbf{\Lambda}^0 \mathbf{U}^{-1} \mathbf{x} + h_1 \mathbf{U} \mathbf{\Lambda}^1 \mathbf{U}^{-1} \mathbf{x} + \dots + h_{M-1} \mathbf{U} \mathbf{\Lambda}^{M-1} \mathbf{U}^{-1} \mathbf{x}$ $= \mathbf{U} H(\mathbf{\Lambda}) \mathbf{U}^{-1} \mathbf{x}$

X, Y: spectral domain graph signals

 $H(\Lambda)$: filter in spectral domain

$$X(l) = \sum_{i=0}^{N-1} x(i u_{l}(i))$$
 orthogonal basis

=> GFT is a projection on the eigenspace of the graph shift operator

Comparison with DFT

• GFT
$$X(l) = \sum_{i=0}^{N-1} x(i)u_l(i)$$

$$x(i) = \sum_{l=0}^{N-1} X(l) u_l(i)$$

• DFT

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi nk}{N}}$$

$$x[n] = \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi nk}{N}}$$

Frequency of graph signals

• frequency $\uparrow \Rightarrow$ signal variation \uparrow

• Graph shift with L (weighted):
$$x_1(i) = Lx(i) = \sum_{j \in V} w_{i,j}(x(i) - x(j))$$

 $x^T Lx = \sum_{i \in V} x(i) \sum_{j \in V} w_{i,j}(x(i) - x(j))$
 $= \sum_{i \in V} \sum_{j \in V} w_{i,j}(x^2(i) - x(i)x(j))$
 $= \frac{1}{2} \sum_{i \in V} \sum_{j \in V} w_{i,j}(x^2(i) - x(i)x(j) + x^2(j) - x(i)x(j))$
 $= \frac{1}{2} \sum_{i \in V} \sum_{j \in V} w_{i,j}(x(i) - x(j))^2$
=>a measure of signal variation (frequency)

Frequency of graph signals

• Consider eigenvector
$$u_l \Rightarrow u_l^T L u_l = \lambda_l u_l^T u_l = \lambda_l$$

•
$$\lambda_{l} \uparrow \Rightarrow$$
 frequency of $u_{l} \uparrow$
• Inner product with $u_{l} \uparrow \Rightarrow X(l) \uparrow (X(l) = \sum_{i=0}^{N-1} x(i)u_{l}(i))$

• If X(I) of the signal is large, it contains a lot of component u₁

Similar to DSP, signal values in spectral domain reflects frequency components of the signal

Example of GFT

Outline

- Introduction
 - o Graph Signal
 - o Graph Shift
 - o Graph Filter
 - Graph Fourier Transform (GFT)
 - Properties and Example
- Application
 - $\circ \quad \mathsf{Image}\,\mathsf{Coding}\,\mathsf{using}\,\mathsf{GFT}$
 - Graph Convolutional Network (GCN)
- Conclusion
- Reference

Colorization — Colorization-based — Colorization-based image image coding coding using GFT

luminance image y

chrominance image u

Colorization Based Coding

- Colorization-based image coding
- Recovering error $\min_{x} ||u^* Cx||_2^2$ s.t. $x_i = 0$ if *i* is not in RP
- u*: original chrominance image x: RP vector $\in \mathbb{R}^{MN}$
- Cx: recovered chrominance image

Colorization-based image coding

- Graph construction of p RPs
 - $w_{i,j} = \exp(-\alpha \Delta d_{(i,j)}) \exp(-\beta \Delta y_{(i,j)})$
- $\Delta d_{(i,j)}$: distance between RPs(vertices)
- $\Delta y_{(i,j)}$: difference of the luminance values between vertices

① Segment the luminance image and choose a central pixel as RPs at each segment.

(2) Construct a graph each of whose vertex corresponds to RPs.

A graph signal corresponds to a chrominance value of RPs.

Edge weights are calculated from luminance image.

 J_3

 f_1

 $\begin{array}{c} f_1 \\ f_2 \\ f_3 \end{array}$

1 3 Apply the graph Fourier transform to the graph signal and store the graph spectrum.

 $u = Cx = \hat{C}f \qquad f \in \mathbb{R}^{P}, \ C \in \mathbb{R}^{MN \times P}$ $f = Vs \approx \hat{V}\hat{s} \qquad V \in \mathbb{R}^{P \times c}$ $u \approx \hat{C}\hat{V}\hat{s} = C_p\hat{s} \qquad \hat{s} \in \mathbb{R}^{c}$ Recovering error: $\min_{s} ||u^* - C_p\hat{s}||_2^2$

$$\hat{s} = (C_p^T C_p)^{-1} C_p^T u^{s}$$

• Algorithm

Graph Convolutional Network

- Graph neural network (GNN)=> deep learning on graph-structured data
 - Spatial-based GNN
 - Spectral-based GNN->GCN
- Convolutions on 2D signals (images)=>CNN
- How to define convolutions on graph signals?

Convolutions on graphs

- Convolution theorem: $f * g = F^{-1}{F{f} \times F{g}}$
- Spectral domain multiplication \Leftrightarrow vertex domain convolution

$$y = Ug_{\theta}(\Lambda)U^{T}x$$
$$= g_{\theta}(U\Lambda U^{T})x$$
$$= g_{\theta}(L)x$$

Convolutions on graphs

$$g_{\theta}(\Lambda) = \sum_{k=0}^{K} \theta_{k} \Lambda^{k} \longrightarrow g_{\theta'}(\Lambda) = \sum_{k=0}^{K} \theta_{k}' T_{k}(\Lambda) \qquad (\Lambda = \frac{2\Lambda}{\Lambda_{\max}} - I, \ \Lambda \in [-1, \ 1])$$
$$y = g_{\theta'}(L) x = \sum_{k=0}^{K} \theta_{k}' T_{k}(L) x$$

T_k: Chebyshev polynomials (avoid direct computation of L)

 $T_k(x) = 2xT_{k-1}(x) - T_{k-2}(x), T_0(x) = 1, T_1(x) = x$

Graph Convolutional Network

$$y = g_{\theta'}(L)x = \sum_{k=0}^{K} \theta_k' T_k(L) x, \quad K = 1$$

= $\theta_0' x + \theta_1' L x$
= $\theta_0' x + \theta_1' (\frac{2L}{\lambda_{\max}} - I) x$
= $\theta_0' x + \theta_1' (L - I) x$ ($\lambda_{\max} \approx 2$)
= $\theta_0' x + \theta_1' (D^{-\frac{1}{2}} A D^{-\frac{1}{2}}) x$ ($L = I - D^{-\frac{1}{2}} A D^{-\frac{1}{2}}$)
= $\theta(I + D^{-\frac{1}{2}} A D^{-\frac{1}{2}}) x$ ($\theta = \theta_0' = -\theta_1'$)

$$I + D^{-\frac{1}{2}}AD^{-\frac{1}{2}} \to D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$$
$$(A = A + I_N, D_{ii} = \sum_j A_{ij})$$

renormalization trick: avoid gradient vanishing/exploding

Graph Convolutional Network

=>correspond to 1 convolutional layer in CNN

Results

• Model: 2-layer GCN $Z = f(X, A) = \operatorname{softmax}(A \operatorname{ReLU}(AXW^{(0)})W^{(1)})$

Method	Citeseer	Cora	Pubmed	NELL
ManiReg [3]	60.1	59.5	70.7	21.8
SemiEmb [28]	59.6	59.0	71.1	26.7
LP [32]	45.3	68.0	63.0	26.5
DeepWalk [22]	43.2	67.2	65.3	58.1
ICA [18]	69.1	75.1	73.9	23.1
Planetoid* [29]	64.7 (26s)	75.7 (13s)	77.2 (25s)	61.9 (185s)
GCN (this paper)	70.3 (7s)	81.5 (4s)	79.0 (38s)	66.0 (48s)
GCN (rand. splits)	67.9 ± 0.5	80.1 ± 0.5	78.9 ± 0.7	58.4 ± 1.7

Outline

- Introduction
 - o Graph Signal
 - o Graph Shift
 - o Graph Filter
 - o Graph Fourier Transform (GFT)
 - Properties and Example
- Application
 - o Image Coding using GFT
 - o Graph Convolutional Network (GCN)
- Conclusion
- Reference

Conclusion

- GFT is a graph signal analysis approach. Like DFT in DSP, it can reflect frequencies by observing signals in the spectral domain.
- Colorization based coding is an idea of image coding, which utilizes colorization technique. Colorization based coding using GFT constructs a graph of representative pixels of an image and applies GFT to use values of spectrum for encoding.
- GCN is a type of graph neural network (GNN), it is based on spectral graph theory and models convolutions in the vertex domain as multiplications in the spectral domain.

Reference

[1] A. Sandryhaila and J. M. F. Moura, "Discrete signal processing on graphs: Graph Fourier transform," in Proc. Int. Conf. Acoust., Speech, Signal Process. (ICASSP), 2013.

[2] T. N. Kipf and M. Welling, "Semi-supervised classification with graph convolutional networks," in Proc. ICLR, 2017, pp. 1–14.

[3] http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML2020/GNN.pdf

[4] L. Stankovi´c, M. Dakovi´c, and E. Sejdi´c, "Introduction to graph signal processing," in Vertex-Frequency Analysis of Graph Signals, pp. 3–108, Springer, 2019.

[5]] K. Uruma, K. Konishi, T. Takahashi, T. Furukawa, Colorization-based image coding using graph Fourier transform, Signal Process., Image Commun. 74 (2019) 266–279.

[6] A. Levin, D. Lischinski, and Y. Weiss, "Colorization Using Optimization," Proc. ACM Siggraph, 2004.

[7]] T. Ueno, T. Yoshida, and M. Ikehara, "Color image coding based on the colorization," in Signal Information Processing Association Annual Summit and Conference (APSIPA ASC), 2012 Asia-Pacific, Dec 2012, pp. 1–4.