Introduction to Image Interpolation and Super Resolution

Hsin-Hui Chen

Digital Image and Signal Processing Lab National Taiwan University

Outline

- Introduction
- Image interpolation
 - Example1: New-edge directed interpolation (NEDI)
 - Example2: Soft-decision adaptive interpolation (SAI)
 - Example3: Adaptive Wiener Filter (AWF)
- Super resolution
 - Example1: Iterative back-projection (IBP)
 - Example2: Bilateral back-projection (BFIBP)
- Conclusions
- References

Introduction

- Applications
- Why image interpolation and super resolution matters?
- The difference between image interpolation and super resolution
- Classification of the image interpolation and super resolution

Applications

- HDTV
- Image/Video Coding
- Image/Video Resizing
- Image Manipulation
- Face Recognition
- View Synthesis
- Surveillance

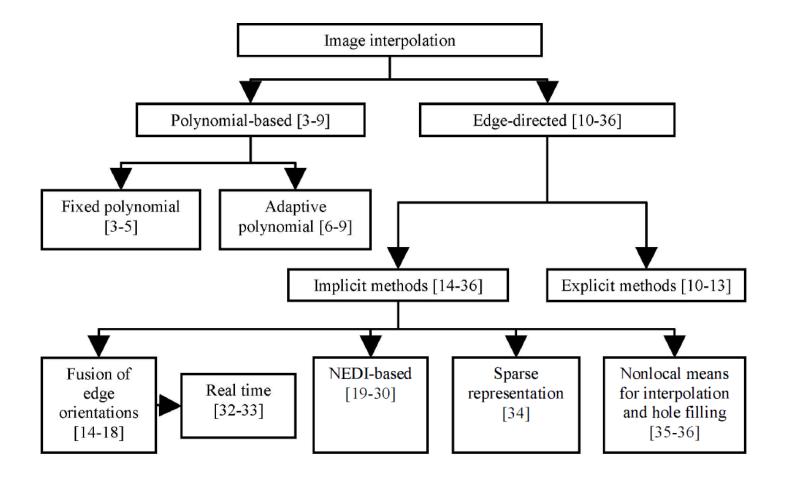
Why image interpolation and super resolution matters?

- Storage limitation
- Limited computational power
- Cost of camera
- Insufficient bandwidth (Limited network bandwidth)

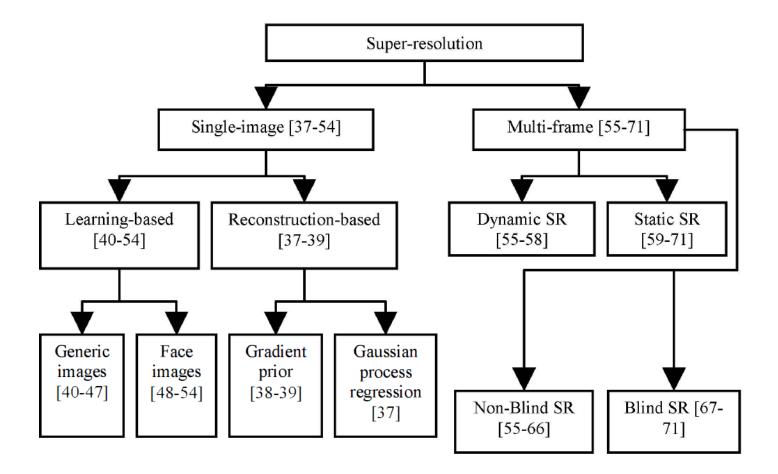
The difference between interpolation and super resolution

- Interpolation only involves upsampling the low-resolution image, which is often assumed to be aliased due to direct down-sampling.
- **Super resolution** aims to address undesirable effects, including the resolution degradation, blur and noise effects. Super resolution usually involves three major processes which are upsampling (interpolation), deblurring, and denoising.

Classification of Image Interpolation

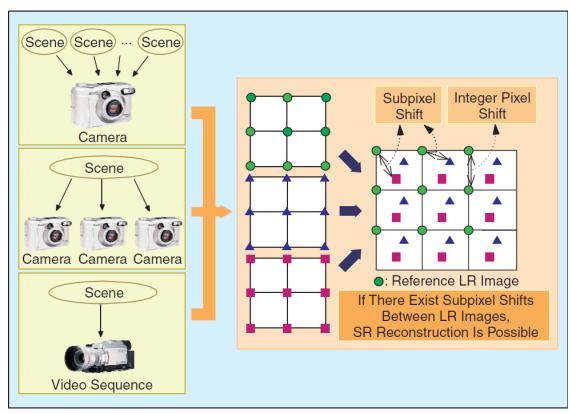


Classification of Super Resolution



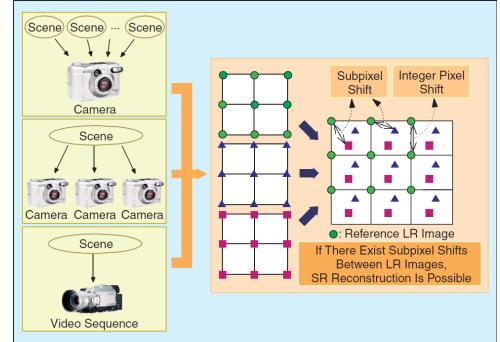
Basic Premise for Super Resolution

- How can we obtain an HR image from multiple LR images?
- **Basic premise:** The availability of multiple LR images captured from the same scene.

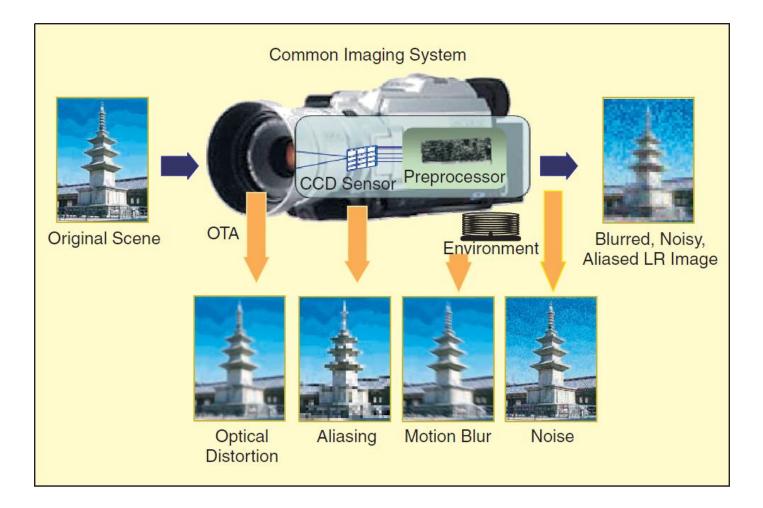


Basic Premise for Super Resolution

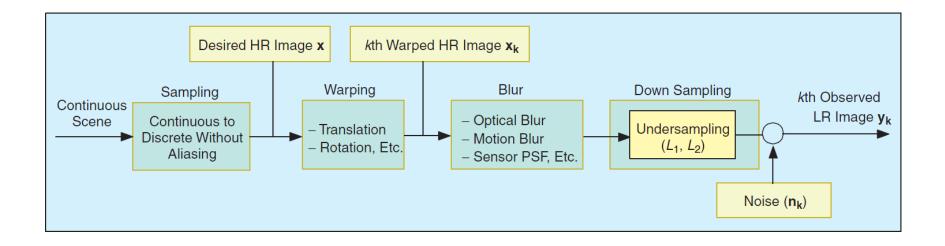
- Scene motions can occur due to the controlled or uncontrolled motions in imaging systems.
- If these scene motions are known or can be estimated within subpixel accuracy and if combine these LR images, SR image reconstruction is possible.



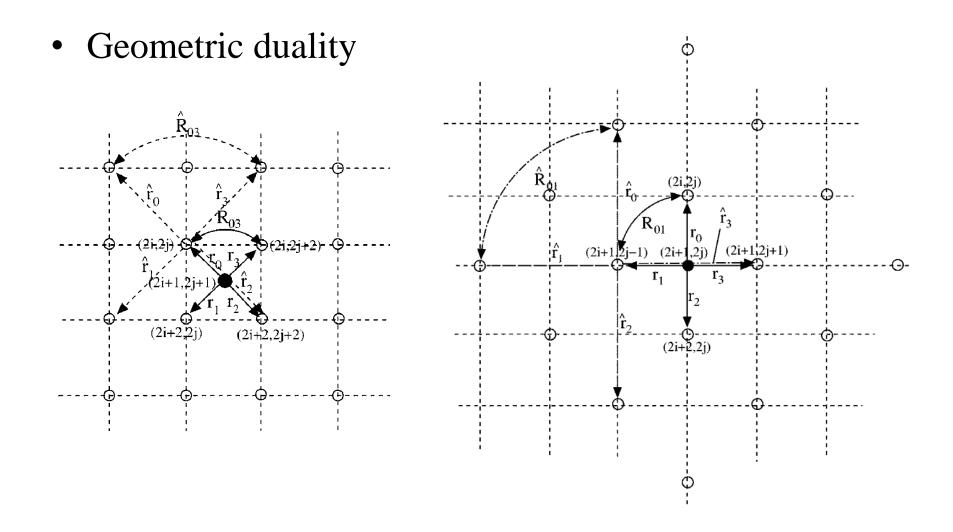
Common Image Acquisition System



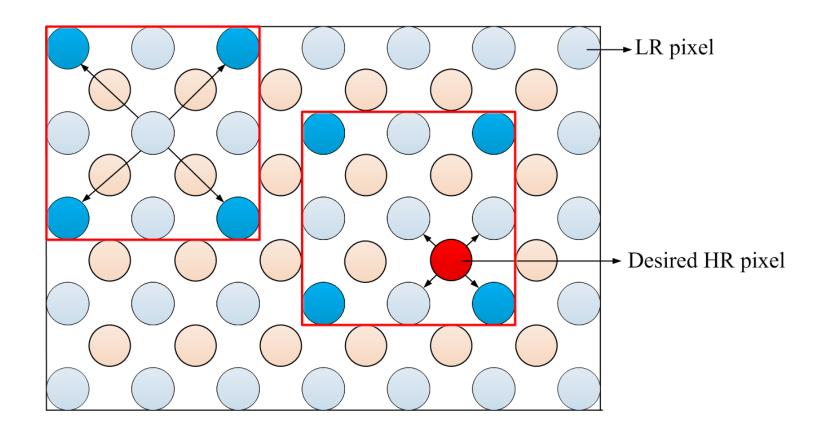
Observation Model



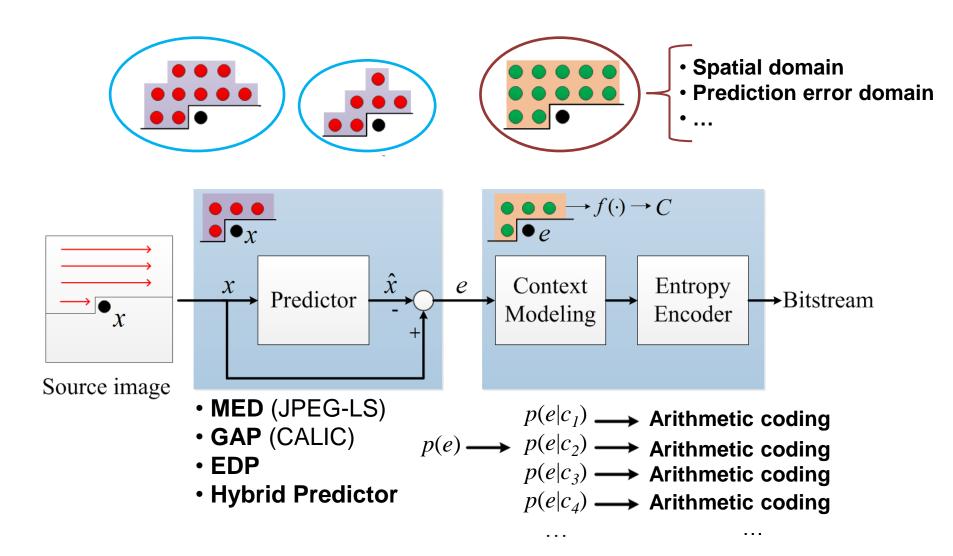
$$\mathbf{y}_{k} = \mathbf{DB}_{k}\mathbf{M}_{k}\mathbf{x} + \mathbf{n}_{k}$$
 for $1 \le k \le p$



• Training window



Lossless image coding system



• Consider the *N* nearest neighbors, which are the supports of the predictor, the value of the current pixel *X*(*n*) can be predicted by

$$\hat{X}(n) = \sum_{k=1}^{N} a_k X(n-k)$$

where a_k is the prediction coefficient of the neighbor X(n-k).

• To determine the coefficients a_k , LS optimization is used for minimizing

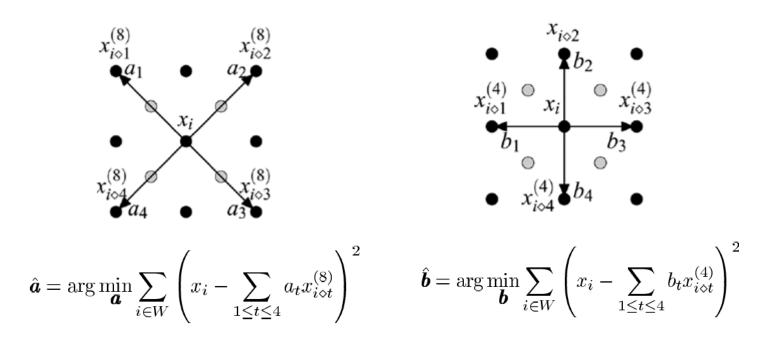
$$\left\| \vec{y} - C \vec{a} \right\|_2^2$$

where
$$\vec{a} = [a_1, a_2, ..., a_N]^T$$

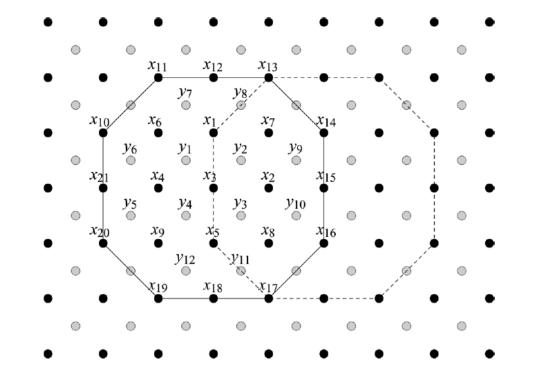
• The optimal coefficient vector can be solved from

$$\vec{a} = (\mathbf{C}^{\mathrm{T}}\mathbf{C})^{-1}(\mathbf{C}^{\mathrm{T}}\vec{y})$$

• Sample relations in estimating model



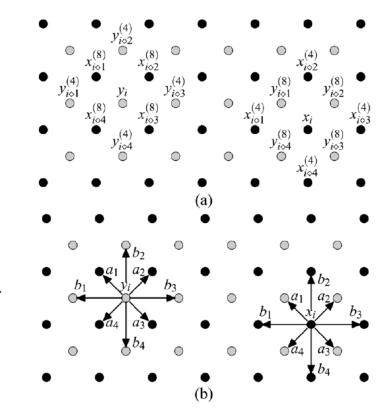
- Existing interpolation methods estimate each missing pixel independently from others, which is called "hard-decision"
- A new strategy of "**soft-decision**" estimation is adopted



- Existing interpolation methods estimate each missing pixel independently from others, which is called "hard-decision"
- A new strategy of "soft-decision" estimation is adopted

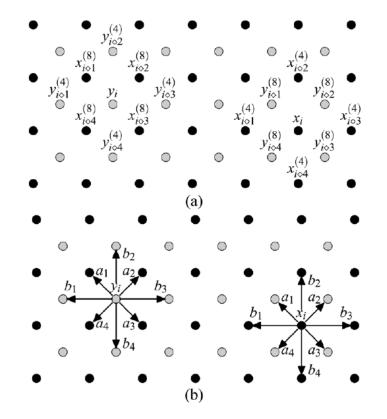
$$y_i = \sum_{1 \le t \le 4} a_t x_{i \diamond t}^{(8)} + v_i$$

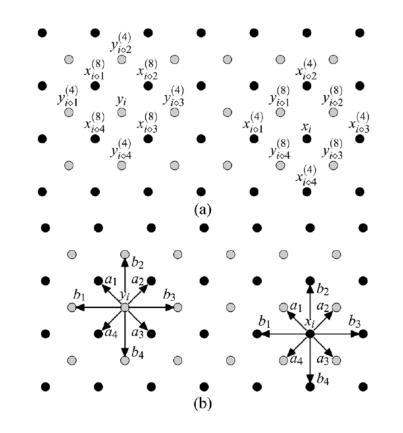
$$\hat{\boldsymbol{y}} = \arg\min_{\boldsymbol{y}} \left\{ \sum_{i \in W} \left\| y_i - \sum_{1 \le t \le 4} a_t x_{i \diamond t}^{(8)} \right\| + \sum_{i \in W} \left\| x_i - \sum_{1 \le t \le 4} a_t y_{i \diamond t}^{(8)} \right\|$$



• Include horizontal and vertical correlations

$$y_i = \sum_{1 \le t \le 4} \left\| b_t y_{i \diamond t}^{(4)} \right\| + v_i$$

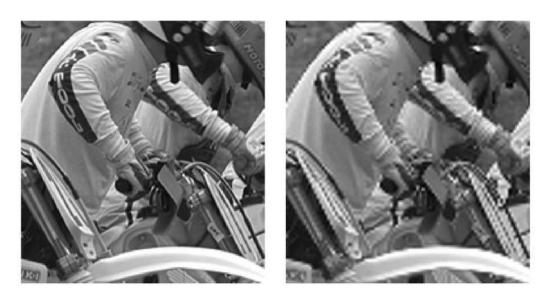




$$J(\lambda) = \min_{\mathbf{y}} \left\{ \sum_{i \in W} \left\| y_i - \sum_{1 \le t \le 4} a_t x_{i \diamond t}^{(8)} \right\| + \sum_{i \in W} \left\| x_i - \sum_{1 \le t \le 4} a_t y_{i \diamond t}^{(8)} \right\| + \lambda \sum_{i \in W} \left\| y_i - \sum_{1 \le t \le 4} b_t y_{i \diamond t}^{(4)} \right\| \right\}$$

subject to $\sum_{i \in W} \left\| y_i - \sum_{1 \le t \le 4} b_t y_{i \diamond t}^{(4)} \right\| \approx \sum_{i \in W} \left\| x_i - \sum_{1 \le t \le 4} b_t x_{i \diamond t}^{(4)} \right\|$

Original image



Bicubic

SAI

NEDI

Original image



Bicubic

SAI

NEDI

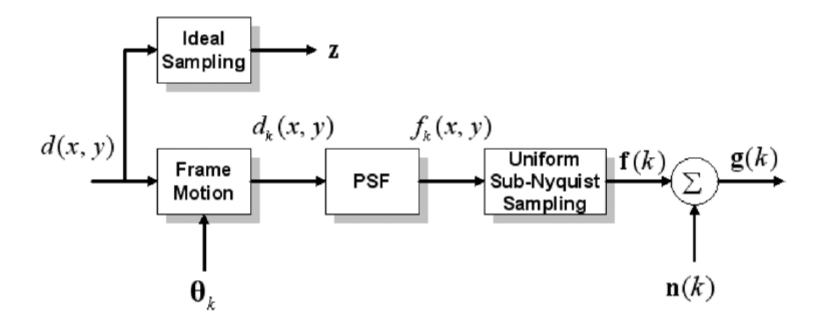
Original image

Bicubic

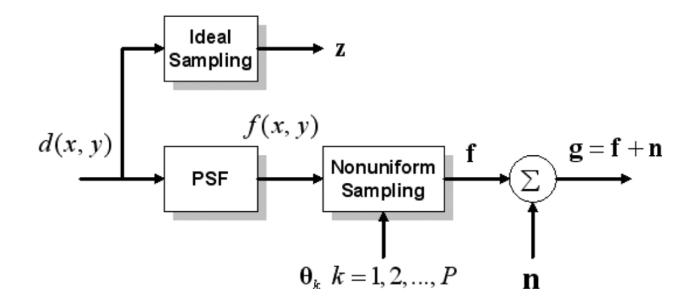
SAI

NEDI

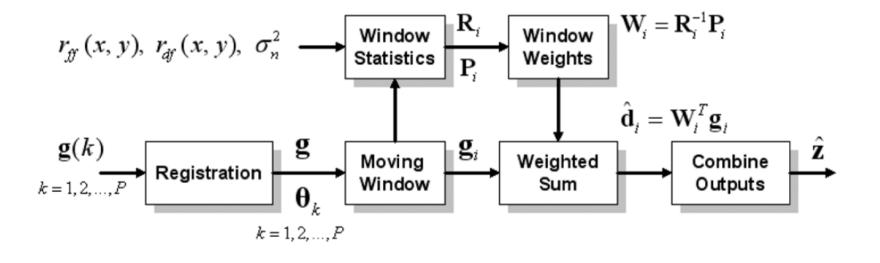
• Observation model relating a desired 2-D continuous scene, d(x,y), with a set of corresponding LR frames

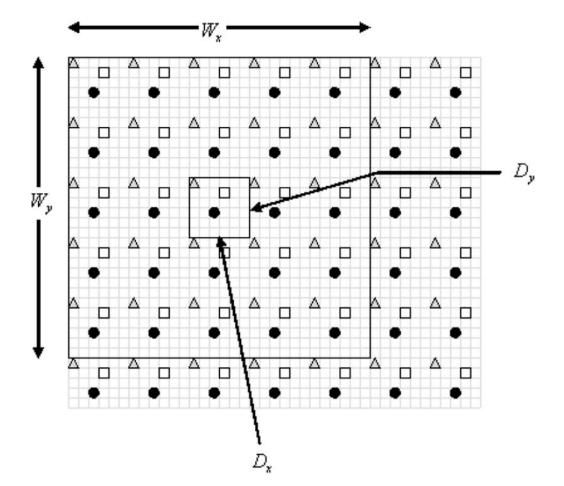


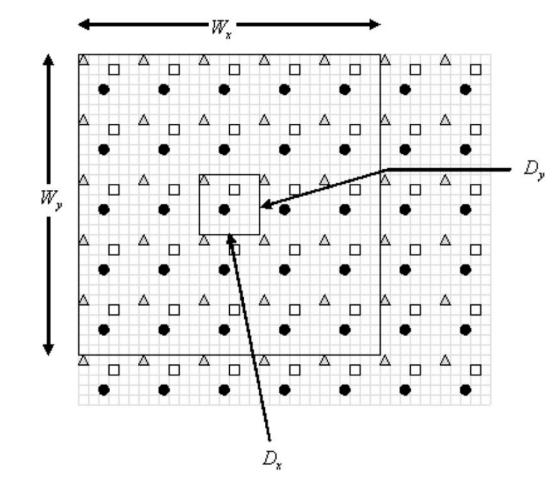
• Alternative observation model



• Overview of the proposed SR algorithm







$$\hat{\mathbf{d}}_i = \mathbf{W}_i^T \mathbf{g}_i$$

$$\mathbf{W}_i = \mathbf{R}_i^{-1} \mathbf{P}_i$$

• The formulation of an LR image from the unknown HR image can be formulated as follows:

$$\mathbf{I}^l = (\mathbf{I}^h * g) \downarrow_s$$

where D is the down-sampling matrix, and G is the point spread function (PSF) which is generally a smoothing kernel.

• The underlying criterion is that the reconstructed HR image should produce the same LR image if passing it through the same image formation process.

$$\mathbf{I}^l = (\mathbf{I}^h * g) \downarrow_s$$

• The reconstruction error is defined as

$$\mathbf{e}_r(\mathbf{I}) = \mathbf{I}^l - (\mathbf{I} * g) \downarrow_s$$

- Given an LR image, the updating procedure can be summarized as follows
 - Compute the LR error $\mathbf{e}_r(\mathbf{I}_t^h)$ by $\mathbf{e}_r(\mathbf{I}) = \mathbf{I}^l (\mathbf{I} * g) \downarrow_s$
 - Update the HR image by back-projecting the error as follows

$$\mathbf{I}_{t+1}^h = \mathbf{I}_t^h + \mathbf{e}_r(\mathbf{I}_t^h) \uparrow_s * p$$

Theorem 1 By updating the HR image with the back-projection iteration, \mathbf{I}_t^h will converge to a desired image \mathbf{I}^c , which satisfies Eqn. 1, with an exponential rate for all $s \ge 1$, given $||\delta - g * p \downarrow_s||_1 < 1$.

• Bilateral filtering

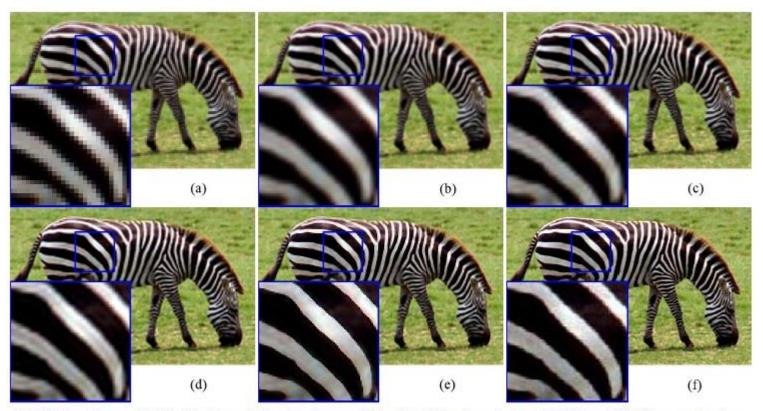
$$\mathbf{h}(x) = \frac{1}{k(x)} \sum_{y} \mathbf{I}(y) c(x, y) s(\mathbf{I}(x), \mathbf{I}(y))$$

$$k(x) = \sum_{y} c(x, y) s(\mathbf{I}(x), \mathbf{I}(y))$$

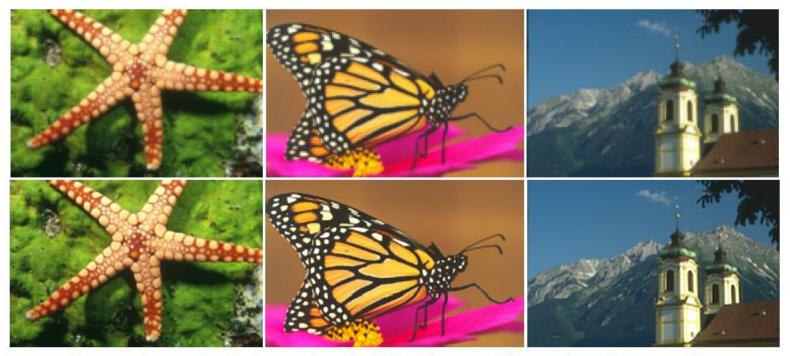
• Bilateral filtering

$$\mathbf{h}(x) = \frac{1}{k(x)} \sum_{y} \mathbf{I}(y) c(x, y) s(\mathbf{I}(x), \mathbf{I}(y))$$

$$c(x,y) = \exp(\frac{-||x-y||_2^2}{2\sigma_c^2})$$
$$s(u,v) = \exp(\frac{-||u-v||_2^2}{2\sigma_s^2})$$



(a) LR input image (b) bicubic interpolation (c) sharpened bicubic (d) back-projection (e) bilateral BP (f) ground truth



More experiment results, the first row shows the LR input images, and the second row shows our results.

Bicubic

IBP

Bicubic

