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Recap of the definitions of limits

1. lim
x→x0

f(x) = L

∀ϵ > 0, ∃δ > 0 s.t. ∀x, 0 < |x − x0| < δ ⇒ |f(x)− L| < ϵ

2. lim
x→x0

f(x) = ∞

∀M > 0, ∃δ > 0 s.t. ∀x, 0 < |x − x0| < δ ⇒ f(x) > M
3. lim

x→∞
f(x) = L

∀ϵ > 0, ∃N > 0 s.t. ∀x > N ⇒ |f(x)− L| < ϵ

4. lim
x→∞

f(x) = ∞

∀M > 0, ∃N > 0 s.t. ∀x > N ⇒ f(x) > M



Uniform and Pointwise Convergence
Consider a sequence of functions {fk(x), x ∈ D}∞k=1

1. Uniform Convergence: fk(x) converges uniformly to f(x)
∀ϵ > 0, ∃K > 0 s.t. ∀x ∈ D, k > K ⇒ |fk(x)− f(x)| < ϵ

▶ You have to find one K that works for all x to prove uniform
convergence (K only depends on ϵ, thus uniform)

2. Pointwise Convergence: fk(x) converges pointwise to f(x)
∀ϵ > 0, ∀x ∈ D, ∃K > 0 s.t. ∀k > K ⇒ |fk(x)− f(x)| < ϵ

▶ You can find different values of K for different values of x to
prove pointwise convergence (K can depend on x, thus
pointwise)



Uniform and Pointwise Convergence

1. Uniform Convergence: fk(x) converges uniformly to f(x)
∀ϵ > 0, ∃K > 0 s.t. ∀x ∈ D, k > K ⇒ |fk(x)− f(x)| < ϵ

≡ ∀ϵ > 0, ∃K > 0 s.t. ∀k > K ⇒ sup
x∈D

|fk(x)− f(x)| < ϵ

≡ lim
k→∞

sup
x∈D

|fk(x)− f(x)| = 0

2. Pointwise Convergence: fk(x) converges pointwise to f(x)
∀ϵ > 0, ∀x ∈ D, ∃K > 0 s.t. ∀k > K ⇒ |fk(x)− f(x)| < ϵ

≡ ∀x ∈ D, ∀ϵ > 0, ∃K > 0 s.t. ∀k > K ⇒ |fk(x)− f(x)| < ϵ

≡ ∀x ∈ D, lim
k→∞

fk(x) = f(x)



Uniform and Pointwise Convergence

Properties
1. fk(x) is continuous ̸⇒ f(x) is continuous if only pointwise

convergence is guaranteed.
2. fk(x) is continuous ⇒ f(x) is continuous if uniform

convergence is guaranteed.
3. uniform convergence ⇒ pointwise convergence
4. lim

k→∞

∫ t1
t0 fk(t)dt =

∫ t1
t0 f(t)dt if uniform convergence



Uniform and Pointwise Convergence

fk(t) =


0 t ≤ 0

kt 0 < t < 1/k
1 t ≥ 1/k

f(t) =
{
0 t ≤ 0

1 t > 0

fk

t
1/k

1

t

f

1



Uniform and Pointwise Convergence

fk(t) =


0 t ≤ 0

kt 0 < t < 1/k
1 t ≥ 1/k

f(t) =
{
0 t ≤ 0

1 t > 0

1. It is clear that ∀t, lim
k→∞

fk(t) = f(t) ∴ pointwise convergence

2. sup
t

|fk(t)− f(t)| = 1 ⇒ lim
k→∞

sup
t

|fk(t)− f(t)| = 1 ̸= 0 ∴ not
uniform convergence



Uniform and Pointwise Convergence
Prove that lim

k→∞

∫ t1
t0 fk(t)dt =

∫ t1
t0 f(t)dt if uniform convergence

|
∫ t1

t0
fk(t)dt −

∫ t1

t0
f(t)dt| ≤

∫ t1

t0
|fk(t)− f(t)|dt

≤
∫ t1

t0
sup

x
|fk(x)− f(x)|dt

= sup
x

|fk(x)− f(x)|(t1 − t0)

∵ ∀ϵ > 0 ∃K > 0 s.t. ∀k > K, sup
x

|fk(x)− f(x)| < ϵ

Let ϵ′ = ϵ(t1 − t0)
∴ ∀ϵ′ > 0 ∃K > 0 s.t. ∀k > K, |

∫ t1
t0 fk(t)dt −

∫ t1
t0 f(t)dt| < ϵ′



Convergence in Distribution
Definition
A sequence of random variables {Xk, k = 1, 2, ...} with CDF
{FXk , k = 1, 2, ...} converges in distribution to the random variable
X with CDF FX if

lim
k→∞

FXk(x) = FX(x)

at all points x where FX(x) is continuous

▶ From the definition, we find that convergence in distribution
has a lot to do with pointwise convergence. Indeed, if {FXk}
converges pointwise to FX, then {Xk} converges in
distribution to X. However, the converse may not be true
since convergence in distribution only requires convergence in
the continuity points.



Convergence in Distribution

Definition
A sequence of random variables {Xk, k = 1, 2, ...} with CDF
{FXk , k = 1, 2, ...} converges in distribution to the random variable
X with CDF FX if

lim
k→∞

FXk(x) = FX(x)

at all points x where FX(x) is continuous

▶ Convergence in distribution is the weakest form of
convergence. However, it is involved in the central limit
theorem.

▶ Convergence in distribution is denoted as Xk
d→X



Convergence in Probability

Definition
A sequence of random variables {Xk, k = 1, 2, ...} converges in
probability towards the random variable X if ∀ϵ > 0

lim
k→∞

P(|Xk − X| > ϵ) = 0

▶ ∀ϵ > 0, ∀ϵ′ > 0, ∃K > 0 s.t. if k > K
|P(|Xk − X| > ϵ)− 0| < ϵ′, i.e. P(|Xk − X| < ϵ) < 1− ϵ′

→ the probability that {Xk} equals X is asymptotically
increasing and approaches 1 but never actually reaches 1.



Convergence in Probability

Definition
A sequence of random variables {Xk, k = 1, 2, ...} converges in
probability towards the random variable X if ∀ϵ > 0

lim
k→∞

P(|Xk − X| > ϵ) = 0

▶ Convergence in probability is widely encountered in statistics.
For example, an estimator is called consistent if it converges
in probability to the quantity being estimated. Convergence in
probability is also involved in the weak law of large numbers.

▶ Convergence in probability is denoted as Xk
p→X



Convergence in Probability

Definition
A sequence of random variables {Xk, k = 1, 2, ...} converges in
probability towards the random variable X if ∀ϵ > 0

lim
k→∞

P(|Xk − X| > ϵ) = 0

▶ The continuous mapping theorem states that for every
continuous function g, if Xk

p→X, then g(Xk)
p→ g(X)



Almost Sure Convergence

Definition
A sequence of random variables {Xk, k = 1, 2, ...} converges almost
surely towards the random variable X if

P( lim
k→∞

Xk = X) = 1

▶ P(∀ϵ > 0, ∃K > 0 s.t. if k > K ⇒ |Xk − X| < ϵ) = 1

∴ ∀ϵ > 0, ∃K > 0, s.t. if k > K ⇒ P(|Xk − X| < ϵ) = 1

→ the probability that {Xk} equals X is asymptotically
increasing and will eventually reach 1.



Almost Sure Convergence

Definition
A sequence of random variables {Xk, k = 1, 2, ...} converges almost
surely towards the random variable X if

P( lim
k→∞

Xk = X) = 1

▶ Almost sure convergence is involved in the strong law of large
numbers.

▶ Almost sure convergence is denoted as Xk
a.s.→ X



Sure Convergence
Definition
A sequence of random variables {Xk, k = 1, 2, ...} converges surely
or everywhere or pointwise towards the random variable X if

lim
k→∞

Xk = X

▶ ∀ϵ > 0, ∃K > 0 s.t. if k > K ⇒ |Xk − X| < ϵ

▶ Sure convergence of a random variable is the strongest.
However, almost sure convergence has already been almost
identical to sure convergence. The difference between the two
only exists on sets with probability zero. Thus, this is why
sure convergence is very rarely used.



Convergence in the rth Mean

Definition
Given a real number r ≥ 1, a sequence of random variables
{Xk, k = 1, 2, ...} converges in the rth mean towards the random
variable X if

1. E[|Xk|r] of Xk and E[|X|r] of X exist
2. lim

k→∞
E[|Xk − X|r] = 0

▶ When r = 1, we say that Xk converges in mean to X. When
r = 2, we say that Xk converges in mean square to X.

▶ Convergence in mean square is involved in the
Karhunen-Loéve expansion



Convergence in the rth Mean

Definition
Given a real number r ≥ 1, a sequence of random variables
{Xk, k = 1, 2, ...} converges in the rth mean towards the random
variable X if

1. E[|Xk|r] of Xk and E[|X|r] of X exist
2. lim

k→∞
E[|Xk − X|r] = 0

▶ Convergence in the rth mean is denoted as Xk
Lr
→X

▶ Xk
Lr
→X ⇒ lim

k→∞
E[|Xk|r] = E[|X|r]



Properties of Convergence of Random Variables

Ls
−→

⇒
s>r≥1

Lr
−→
⇓

a.s.−→ ⇒ p−→ ⇒ d−→
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A General Inequality

P(|X| ≥ a) ≤ E[|X|p]
ap for any p = 1, 2, ... and a > 0

Proof.

E[|X|p] =
∫
R
|x|pfX(x)dx

≥
∫
|X|≥a

|x|pfX(x)dx

≥ ap
∫
|X|≥a

fX(x)dx = apP(|X| ≥ a)



The Markov Inequality

Apply p = 1 to the general inequality and we can get the Markov
inequality

P(|X| ≥ a) ≤ E[|X|]
a

We can have two natural intuitions from this inequality.

▶ When a gets larger, it is harder for |X| to take values that
exceed a

▶ When a is fixed, there will be more probability mass above a
or below −a if E[|X|] is larger. Thus, it is easier for |X| to
take values exceeding a.



The Chebyshev Inequality
Apply p = 2 to the general inequality and we can get the
Chebyshev inequality

P(|X − E[X]| ≥ a) ≤ Var(X)
a2 a > 0

We can have two natural intuitions from this inequality.

▶ When a gets larger, it is harder for X to take values that are a
units away from the mean

▶ The variance quantifies how dispersed X is around its mean.
Thus, it is easier for X to take values that are a units away
from the mean if Var(X) is larger.



The Chebyshev Inequality

Apply p = 2 to the general inequality and we can get the
Chebyshev inequality

P(|X − E[X]| ≥ a) ≤ Var(X)
a2 a > 0

It is useful to express a as kσ, where k > 0 and σ is the standard
deviation of X. We can get

P(|X − E[X]| ≥ kσ) ≤ 1

k2



The Chebyshev Inequality

P(|X − E[X]| ≥ kσ) ≤ 1

k2

▶ The probability of encountering an observation that is at least
k standard deviations away from the mean is bounded above,
and the upper bound is inversely proportional to k2. It is
strikingly unlikely to run into values that are several standard
deviations away from the mean value.



The Chebyshev Inequality

P(|X − E[X]| ≥ kσ) ≤ 1

k2
▶ Consider there are N i.i.d. samples Xi, i = 1, 2, ...,N, of X

with mean E[X] = µ and variance Var(X) = σ2. Let
XN = X1+X2+...+XN

N .

P(|XN − E[XN]| ≥ kStd(XN)) ≤
1

k2

⇒P((XN − µ)2 ≥ k2σ
2

N ) ≤ 1

k2

⇒P((XN − µ)2 ≥ k2σ2) ≤ 1

k2N
When the number of samples N gets larger, it is more likely
that the sample mean lies near the true mean.
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For N i.i.d. samples Xi, i = 1, 2, ...,N, of X with mean E[X] = µ
and variance Var(X) = σ2. Let XN = X1+X2+...+XN

N . WLLN states
that XN

p→µ when N → ∞, i.e., ∀ϵ > 0 lim
N→∞

P(|XN − µ| < ϵ) = 1

Proof.
Apply the Chebyshev inequality on XN and we can get

P(|XN − µ| ≥ ϵ) ≤ σ2/N
ϵ2

⇒ lim
N→∞

P(|XN − µ| ≥ ϵ) ≤ lim
N→∞

σ2

Nϵ2
= 0
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Limit Supremum / Infimum of A Set

To talk about the limit supremum or infimum of a set, we should
introduce the concept of limit points first.

Definition
A point is a limit point or a cluster point or an accumulation point
of a set if any neighborhood of that point contains an element of
that set other than the point itself.



Limit Supremum / Infimum of A Set

Definition
A point is a limit point or a cluster point or an accumulation point
of a set if any neighborhood of that point contains an element of
that set other than the point itself.

▶ Within any neighborhood of a limit point, we can get further
smaller neighborhoods containing an element of that set other
than the limit point. Thus, any neighborhood of a limit point
contains infinitely many elements of the set. So, for a set to
have limit points, it must have infinitely many elements.



Limit Supremum / Infimum of A Set

Definition
A point is a limit point or a cluster point or an accumulation point
of a set if any neighborhood of that point contains an element of
that set other than the point itself.



Limit Supremum / Infimum of A Set

Definition
The limit supremum of a set is the supremum of the limit points of
the set.
The limit infimum of a set is the infimum of the limit points of the
set.

▶ Limit points are points around which a set accumulates or
clusters around. The largest and the smallest of such limit
points are the limit supremum and the limit infimum of a set.



Limit Supremum / Infimum of A Sequence of Real
Numbers

Definition
The limit supremum / infimum of a sequence of real numbers is
the smallest / largest real number that is greater / smaller than or
equal to infinitely many members of the sequence.

Comparison:
▶ Supremum / infimum is the least / greatest of all upper /

lower bounds of the whole sequence.
Limit supremum / limit infimum is the least / greatest of all
upper / lower bounds of infinitely many members of the
sequence



Limit Supremum / Infimum of A Sequence of Real
Numbers

Definition
The limit supremum / infimum of a sequence of real numbers is
the smallest / largest real number that is greater / smaller than or
equal to infinitely many members of the sequence.

How do we translate this literal definition to mathematical
definition?



Limit Supremum / Infimum of A Sequence of Real
Numbers

For a sequence of real numbers {an}, the limit supremum and the
limit infimum are respectively defined as

lim sup
n→∞

an = inf
n>0

sup
m≥n

am lim inf
n→∞

an = sup
n>0

inf
m≥n

am



Limit Supremum / Infimum of A Sequence of Real
Numbers

For a sequence of real numbers {an}, the limit supremum and the
limit infimum are respectively defined as

lim sup
n→∞

an = inf
n>0

sup
m≥n

am lim inf
n→∞

an = sup
n>0

inf
m≥n

am

▶ Any tail of the sequence ({am,m ≥ n, n > 0}) is infinitely
long. Hence, the supremum / infimum of any tail
(sup
m≥n

am, n > 0) is greater / smaller than or equal to infinitely

many members of the sequence. Thus, the supremum /
infimum of any tail is a candidate for limit supremum / limit
infimum.



Limit Supremum / Infimum of A Sequence of Real
Numbers

For a sequence of real numbers {an}, the limit supremum and the
limit infimum are respectively defined as

lim sup
n→∞

an = inf
n>0

sup
m≥n

am lim inf
n→∞

an = sup
n>0

inf
m≥n

am

▶ The infimum / supremum of all candidates is indeed the
smallest / largest, which matches the mathematical definition.
However, whether can we construct a sub-sequence with
infinitely many elements and different from any tail of the
sequence, and supremum / infimum of this sub-sequence is
smaller / larger than inf

n>0
sup
m≥n

am / sup
n>0

inf
m≥n

am?



Limit Supremum / Infimum of A Sequence of Real
Numbers

In the following, we discuss the limit supremum since the limit
infimum just parallels the discussion. Consider there exists a
sub-sequence S with infinitely many elements. The elements of S
are all from {an}. Suppose the supremum of S is aj, which is
certainly an element in {an}. Also suppose inf

n>0
sup
m≥n

am = ak.

Since ak = inf
n>0

sup
m≥n

am, ak = sup
m≥k

am and ak ≤ inf
n>k

sup
m≥n

am,

which implies ak = ak+1 = ... Now since S contains infinitely many
elements, S must contain aℓ, where ℓ ≥ k. That the supremum of
S is aj implies aj ≥ aℓ = ak.

Thus, we verify that we cannot construct a sub-sequence S with
supremum smaller than inf

n>0
sup
m≥n

am.



Limit Supremum / Infimum of A Sequence of Sets
For a sequence of sets (An)∞n=1, the limit supremum and the limit
infimum are sets given by

lim sup
n→∞

An =
∩
n≥1

∪
j≥n

Aj lim inf
n→∞

An =
∪
n≥1

∩
j≥n

Aj



Limit Supremum / Infimum of A Sequence of Sets

For a sequence of sets (An)∞n=1, the limit supremum and the limit
infimum are sets given by

lim sup
n→∞

An =
∩
n≥1

∪
j≥n

Aj lim inf
n→∞

An =
∪
n≥1

∩
j≥n

Aj

▶ The limit supremum embodies an eliminative process. The
initial set (the first union with n=1) has already contained all
the elements of the limit supremum. During the process,
finitely-occurring elements are successively eliminated (by
taking intersections). When n → ∞, what are left are
elements that occur infinitely often (i.o) and those elements
compose the limit supremum.



Limit Supremum / Infimum of A Sequence of Sets

For a sequence of sets (An)∞n=1, the limit supremum and the limit
infimum are sets given by

lim sup
n→∞

An =
∩
n≥1

∪
j≥n

Aj lim inf
n→∞

An =
∪
n≥1

∩
j≥n

Aj

▶ The limit infimum embodies a constructive process whereby
the limit infimum is constructed by successively adding
(through union) infinitely-occurring elements (intersection of
an infinite number of sets).



Limit Supremum / Infimum of A Sequence of Sets

For a sequence of sets (An)∞n=1, the limit supremum and the limit
infimum are sets given by

lim sup
n→∞

An =
∩
n≥1

∪
j≥n

Aj lim inf
n→∞

An =
∪
n≥1

∩
j≥n

Aj

Comparison: The elements of the limit supremum and the limit
infimum both occur in infinitely many sets. For the limit
supremum, the elements are not necessary to be in consecutive
sets. That is, an element x can be in Aj and Ak but not in Aℓ,
where j < ℓ < k. However, for the limit infimum, once an element
x is in Aj, x must also be in Aj+1,Aj+2, ...



Limit Supremum / Infimum of A Sequence of Sets

For a sequence of sets (An)∞n=1, the limit supremum and the limit
infimum are sets given by

lim sup
n→∞

An =
∩
n≥1

∪
j≥n

Aj lim inf
n→∞

An =
∪
n≥1

∩
j≥n

Aj

In the probability theory, a sequence of events is a sequence of sets
and each element of an event is an outcome.
▶ The limit supremum of a sequence of events is the collection

of all outcomes that occur in the sequence infinitely often
(i.o), i.e., that never leave the sequence for good.

▶ The limit infimum of a sequence of events is the collection of
all outcomes that occur in the sequence eventually, i.e., that
from some point onward stays in the sequence for good.



Limit Supremum / Infimum of A Function

The limit supremum and limit infimum of a function, f(x), at a
given point x0 are defined as

lim sup
x→x0

f(x) = inf
ϵ>0

sup{f(x) : x ∈ (x0 − ϵ, x0 + ϵ)\x0}

lim inf
x→x0

f(x) = sup
ϵ>0

inf{f(x) : x ∈ (x0 − ϵ, x0 + ϵ)\x0}

▶ The limit supremum / infimum of a function at a given point
is the limit (infimum / supremum) of the supremums /
infimums of the function over successively decreasing
neighborhoods of the point excluding the point itself.



Limit Supremum / Infimum of A Function



Limit Supremum / Infimum of A Sequence of Functions
The (pointwise) limit supremum and limit infimum of a sequence
of functions, (fn(.))∞1 are functions defined as

f(x) = lim sup
n→∞

{fn(x)} ∀x

f(x) = lim inf
n→∞

{fn(x)} ∀x
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The First Borel-Cantelli Lemma
Let {En} be a sequence of events in some probability space. If the
sum of the probabilities of all events is finite, i.e.,

∞∑
n=1

P(En) < ∞,
then the probability that an outcome occurs infinitely many times
is 0, i.e. P(lim sup

n→∞
En) = 0

Proof.
P(lim sup

n→∞
En) = P(

∩
n≥1

∪
k≥n

Ek) ≤ inf
n≥1

P(
∪
k≥n

Ek) ≤ lim
n→∞

P(
∪
k≥n

Ek)

≤ lim
n→∞

∞∑
k=n

P(Ek)

∵
∞∑

n=1
P(En) < ∞ ∴ lim

n→∞

∞∑
k=n

P(Ek) = 0



The Second Borel-Cantelli Lemma

If
∑
n≥1

P(En) = ∞ and the events (En)∞n=1 are independent, then

P(lim sup
n→∞

En) = 1

Proof.
It is sufficient to prove that P((

∩
n≥1

∪
k≥n

Ek)c) = 0

P((
∩

n≥1

∪
k≥n

Ek)c) = P(
∪

n≥1

∩
k≥n

Ec
k) ≤

∑
n≥1

P(
∩

k≥n
Ec

k)

∵ (En)∞n=1 are independent ∴ P(
∩

k≥n
Ec

k) =
∏

k≥n
(1− P(Ek))

∵ 1− x ≤ e−x, x ≥ 0

∴
∏

k≥n
(1− P(Ek)) ≤

∏
k≥n

e−P(Ek) = e
−

∑
k≥n

P(Ek)
= e−∞ = 0 ∀n



The Second Borel-Cantelli Lemma

A famous application is the infinite monkey theorem: a monkey
hitting keys at random on a typewriter keyboard for an infinite
amount of time will almost surely type any string, including the
complete works of William Shakespeare.
Proof.
Divide the random infinite string, typed by the monkey, into
non-overlapping blocks whose size match that of the desired string.
Let En denote the event where the nth block equals the desired
string. P(En) ≪ 1 but is non-zero. Thus

∞∑
n=1

P(En) = ∞.

Furthermore, (En)∞n=1 are independent since the monkey hits keys
at random. Applying the second Borel-Cantelli lemma can prove
this theorem.
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For N i.i.d. samples Xi, i = 1, 2, ...,N of X with mean E[X] = µ
and variance Var(X) = σ2. Let XN = X1+X2+...+XN

N . SLLN states
that XN

a.s.→ µ when N → ∞, i.e., P( lim
N→∞

XN = µ) = 1



We prove under the additional constraint that σ2 = E[X2] < ∞
and E[X4] < ∞. Without loss of generality, we assume µ = 0.

P( lim
N→∞

XN = 0) = 1 is equivalent to P( lim
N→∞

XN ̸= 0) = 0.

lim
N→∞

XN ̸= 0 means that ∃ϵ > 0 such that for infinitely many N

|XN| ≥ ϵ, i.e. |SN| ≥ Nϵ, where SN =
N∑

i=1
Xi. Thus, it is sufficient

to prove that ∃ϵ > 0 such that P(|SN| ≥ Nϵ i.o.) = 0. Indeed, we
will prove a stricter version -

∀ϵ > 0,P(|SN| ≥ Nϵ i.o.) = 0

For each N, we want to bound P(|SN| ≥ Nϵ). Apply p = 4 to
the general inequality, we can get

P(|SN| ≥ Nϵ) ≤
E[S4

N]

N4ϵ4



E[S4
N] = E[

∑
1≤i,j,k,ℓ≤N

XiXjXkXℓ]. When the sums are multiplied

out there will be terms of the form: E[X3
i Xj], E[X2

i XjXk],
E[XiXjXkXℓ], E[X4

i ] and E[X2
i X2

j ] = (E[X2])2. The first three terms
are all zero since E[Xi] = 0 and the random variables are
independent. The latter two terms are non-zero. There are N
terms of the form E[X4

i ] and
(N
2

)(
4
2

)
= 3N(N − 1) terms of the

form E[X2
i X2

j ]. Thus

E[S4
N] = NE[X4] + 3N(N − 1)σ4

= 3σ4N2 + (E[X4]− 3σ4)N
≤ CN2 for sufficiently large N (say N0) and C

can be chosen to be 3σ4 + 1



Hence, up to now we have proved that

P(|SN| ≥ Nϵ) ≤
E[S4

N]

N4ϵ4
≤ C

N2ϵ4
∀N ≥ N0

Thus
∞∑

N=1

P(|SN| ≥ Nϵ) ≤ (N0 − 1) +
∑

N≥N0

P(|SN| ≥ Nϵ)

≤ (N0 − 1) +
∑

N≥N0

C
N2ϵ4

< ∞

By the first Borel-Cantelli lemma, we can derive that
∀ϵ > 0,P(|SN| ≥ Nϵ i.o.) = 0

which proves the SLLN under the two additional constraints.
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For N i.i.d. samples Xi, i = 1, 2, ...,N of X with mean E[X] = µ
and variance Var(X) = σ2 < ∞. Let XN = X1+X2+...+XN

N . CLT
states that

√
N(

XN − µ

σ
)

d→Normal(0, 1)



Let YN =
√

N(XN−µ
σ ) =

N∑
i=1

(Xi−µ√
Nσ

). The moment generating

function MYN(t) is

MYN(t) = E[eYNt] = E[e
(

N∑
i=1

(
Xi−µ√

Nσ
))t
]

= E[
N∏

i=1

e(
Xi−µ√

Nσ
)t
]

=

N∏
i=1

E[e(
Xi−µ√

Nσ
)t
] ∵ X′

is are independent

= (E[e(
X−µ√

Nσ
t)
])N ∵ X′

is are identically distributed

= (MX−µ(
t√
Nσ

))N



MX−µ(
t√
Nσ

) = MX−µ(
t√
Nσ

= 0) + M′
X−µ(

t√
Nσ

= 0)
t√
Nσ

+
M′′

X−µ(
t√
Nσ

= 0)

2
(

t√
Nσ

)2

+
M′′′

X−µ(
t√
Nσ

= 0)

3!
(

t√
Nσ

)3 + ...

= 1 + 0 ∗ t√
Nσ

+
σ2

2
(

t√
Nσ

)2 + O(

1√
N t3

N ) + O(
1
N t4
N ) + ...

= 1 +
t2 + O( 1√

N t3) + O( 1N t4) + ...

2N



⋆ If lim
N→∞

aN = a, then lim
N→∞

(1 + aN
N )N = ea

∴ lim
N→∞

MYN(t) = e 1
2

t2 , which is the moment generating function

of Normal(0,1)
∵ Pointwise convergence of CDFs implies convergence in

distribution of random variables
∵ Pointwise convergence of moment generating functions also

implies convergence in distribution of random variables
∵ YN =

√
N(X−µ

σ )
d→ Normal(0,1)



Two Problems about The CLT

One key assumption of the CLT is that each member of a sample
should be independent. For a time-series data {xt}, what if xi and

xj are dependent for some i and j?

▶ We consider a particular kind of dependence: M-dependence.
▶ A time-series xt is M-dependent if the set of values xs, s ≤ t is

independent of the set of values xs, s ≥ t + M + 1
⇒ time points separated by more than M units are

independent.



Two Problems about The CLT

Theorem (M-Dependent Central Limit Theorem)

If xt is a strictly stationary M-dependent sequence of random
variables with mean zero and autocovariance function γ(.) and if

Vm =

M∑
u=−M

γ(u),

where Vm ̸= 0,
1

n

n∑
i=1

xi
d→Normal(0,Vm/n)

▶ This theorem can be proved using the CLT and the Basic
Approximation Theorem.



Two Problems about The CLT

The other key assumption of the CLT is that X should have finite
mean and variance. What if this is not the case?

→ e.g. The Cauchy random variable: f(x) = 1
π

1
1+(x−µ)2

→ the mean and variance are both undefined.

▶ Many financial models assume that the price changes are
drawn from the Cauchy distribution.

▶ The median of the Cauchy random variable exists and is µ.
→ consider the median instead?

▶ There are situations where the sample median converges to a
nice distribution while the sample mean does not.
→ the Median theorem
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Definition
The median µ̃ of a random variable X are all points x such that

Pr(X ≤ x) ≥ 1

2
and Pr(X ≥ x) ≥ 1

2

▶ The median may not be unique but an interval of values.
▶ The median may be unique.

▶ For continuous distributions, as long as the density never
vanishes except on an interval of the form (−∞, a), (−∞, a],
[b,∞), or (b,∞), there is a unique median.

▶ Let X be a random variable with density p that is symmetric
about its mean µ. Then the median µ̃ equals the mean µ.
→ we can get the estimation for the mean once we can

estimate the median.
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Suppose that the random variables X1,X2, ...,Xn form a sample of
size n from an infinite population with the continuous density. It is
often useful to reorder them from the smallest to the largest and

produce Y1,Y2, ...Yn.

▶ Y1 = min
i
(X1, ...,Xn)

▶ Yn = max
i

(X1, ...,Xn)

▶ Yr is called the rth order statistic of the sample.
▶ If n is odd, the median is Y(n+1)/2, while if n is even, the

median is any value in [Yn/2,Yn/2+1].



Theorem
For a random sample of size n from an infinite population having
values x and continuous density f(x), the probability density of the
rth order statistic Yr is given by

gr(yr) =
n!

(r − 1)!(n − r)!

[∫ yr

−∞
f(x)dx

]r−1

f(yr)

[∫ ∞

yr
f(x)dx

]n−r

▶ If X1,X2, ...,Xn are i.i.d. uniform random variables on [0,1],
then
▶ g1(y1) = n(1− y1)n−1 ⇒ E[g1(y1)] = 1

n+1

▶ gn(yn) = nyn
n ⇒ E[gn(yn)] =

n
n+1
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Theorem (The Median Theorem)
Let a sample of size n = 2m + 1 with n large be taken from an
infinite population with a density function f(x) that is nonzero at
the population median µ̃ and continuously differentiable in a
neighborhood of µ̃. The sample distribution of the median is
approximately normal with mean µ̃ and variance 1

8mf(µ̃)2 .



1. Let the median random variable X̃ have values x̃ and density
g(x̃). The median is the (m + 1)th statistic, so

g(x̃) = (2m + 1)!

m!m!
[F(x̃)]m f(x̃) [(1− F(x̃))]m

2. Using the Stirling’s formula: n! = (n
e )

n√2πn(1 + O(n−1))

g(x̃) ≈ (2m + 1)4m
√
πm [F(x̃)]m f(x̃) [(1− F(x̃))]m

3. Taylor’s series expansion of F(x̃) about µ̃

F(x̃) = F(µ̃) + F′(µ̃)(x̃ − µ̃) +
F′′(µ̃)

2
(x̃ − µ̃)2 + O((x̃ − µ̃)3)

=
1

2
+ f(µ̃)(x̃ − µ̃) +

f′(µ̃)
2

(x̃ − µ̃)2 + O((x̃ − µ̃)3)

This expansion is useful only when (x̃− µ̃) is small; that is, we
need lim

m→∞
|x̃ − µ̃| = 0 (see appendix)



4. Plug the Taylor’s series expansion into g(x̃) and let t = x̃ − µ̃

g(x̃) ≈ (2m + 1)4m
√
πm f(x̃)

[
1

4
− (f(µ̃)t)2 + O(t3)

]m

=
(2m + 1)f(x̃)√

πm
[
1− 4(f(µ̃)t)2 + O(t3)

]m

5. Simplify the term
[
1− 4(f(µ̃)t)2 + O(t3)

]m

[
1− 4m(f(µ̃)t)2 + O(t3)

]m
= exp(m log(1− 4(f(µ̃)t)2) + O(t3))

Use the Taylor series expansion: log(1− x) = −x + O(x2).
Hence,[
1− 4(f(µ̃)t)2 + O(t3)

]m
= exp(−m ∗ 4(f(µ̃)t)2 + O(mt3))

= exp(− (x̃ − µ̃)2

1/(4m(f(µ̃)2))) ∗ exp(O(mt3))



5. [
1− 4(f(µ̃)t)2 + O(t3)

]m ≈ exp(− (x̃ − µ̃)2

1/(4m(f(µ̃))2))

∵ mt3 → 0 as m → ∞ (see appendix)
6.

g(x̃) ≈ (2m + 1)f(x̃)√
πm exp(− (x̃ − µ̃)2

1/(4m(f(µ̃))2))

Since f(x) is continuously differentiable in a neighborhood of
µ̃, using the mean value theorem: f(x̃)−f(µ̃)

x̃−µ̃ = f′(cx̃,µ̃), where
cx̃,µ̃ is some constant between x̃ and µ̃. Thus,

g(x̃) ≈ (2m + 1)(f(µ̃) + f′(cx̃,µ̃)(x̃ − µ̃))√
πm exp(− (x̃ − µ̃)2

1/(4m(f(µ̃))2))

≈ (2m + 1)f(µ̃)√
πm exp(− (x̃ − µ̃)2

1/(4m(f(µ̃))2))

∵ lim
m→∞

|x̃ − µ̃| = 0 (see appendix)



7.
g(x̃) ≈ (2m + 1)f(µ̃)√

πm exp(− (x̃ − µ̃)2

1/(4m(f(µ̃))2))

Let 2σ2 = 1
4m(f(µ̃))2

g(x̃) ≈ (2m + 1)f(µ̃)√
πm

√
π√

4m(f(µ̃))2
1√
2πσ2

exp(−(x̃ − µ̃)2

2σ2
)

=
2m + 1

2m
1√
2πσ2

exp(−(x̃ − µ̃)2

2σ2
)

≈ 1√
2πσ2

exp(−(x̃ − µ̃)2

2σ2
) as m → ∞

Q.E.D



Appendix

Lemma
Suppose f(x) is continuously differentiable in some neighborhood of
µ̃. Then for any c > 0, we have

lim
m→∞

P(|X̃ − µ̃| ≥ c) = 0

That is, X̃ converges in probability to µ̃ (X̃ p→ µ̃)



This is equivalent to proving that lim
m→∞

P(X̃ ≤ µ̃− c) = 0 and
lim

m→∞
P(X̃ ≥ µ̃+ c) = 0. We focus on the former because the proof

of the latter is similar.
1.

g(x̃) ≈ (2m + 1)4mf(x̃)√
πm F(x̃)m(1− F(x̃))m

Consider the function h(θ) = θ(1− θ)
▶ h(θ) is max when θ = 1/2

▶ max h(F(x̃)) = 1/2 holds only when x̃ = µ̃

▶ h(θ) is increasing for θ < 1/2
▶ ∵ F(x̃) is also increasing, h(F(x̃)) increases as x̃ increases.

F(x̃)m(1− F(x̃))m ≤ F(µ̃− c)m(1− F(µ̃− c))m

< F(µ̃)m(1− F(µ̃))m = (
1

4
)m

Let α
4 = F(µ̃− c)(1− F(µ̃− c)). (h(F(x̃)))m ≤ (α4 )

m < (14)
m



2.

P(X̃ ≤ µ̃− c) =
∫ µ̃−c

−∞
g(x̃)dx̃

≈
∫ µ̃−c

−∞

(2m + 1)4m
√
πm f(x̃)F(x̃)m(1− F(x̃))mdx̃

<
(2m)4m
√

m

∫ µ̃−c

−∞
f(x̃)F(x̃)m(1− F(x̃))mdx̃

∵ 2m > (2m + 1)/
√
π for m sufficiently large

=
(2m)4m
√

m (
α

4
)m

∫ µ̃−c

−∞
f(x̃)dx̃

< 2αm√m
∫ µ̃

−∞
f(x̃)dx̃

= αm√m → 0 as m → ∞ ∵ α < 1



If we want to argue that lim
m→∞

P(ma(|X̃ − µ̃|)b ≥ c) = 0 for
a > 0, b > 0, we have to deal with lim

m→∞
P(X̃ ≤ µ̃− ( c

ma )1/b) and
lim

m→∞
P(X̃ ≥ µ̃+ ( c

ma )1/b). Because µ̃− ( c
ma )1b is also smaller than

µ̃, we can come up with the same result by following the same
proving argument. Specifically, we obtain

lim
m→∞

P(m|X̃ − µ̃|3 ≥ c) = 0



Comparison with The CLT

Consider the normal distribution with mean µ and variance σ2.
▶ The median theorem:

▶ median µ̃ is also µ
▶ variance is 1

(8mf(µ̃)2 = 1
8mf(µ)2 = πσ2

4m

Hence, the sample median is asymptotically normal with mean
µ and variance πσ2

4m

▶ The CLT:
▶ mean is µ
▶ variance is σ2

n = σ2

2m+1

Hence, the sample mean is normal with mean µ and variance
σ2

2m+1



Comparison with The CLT

variance of sample median
variance of sample mean =

πσ2/4m
σ2/(2m + 1)

=
π

2

2m + 1

2m

For large m, this ratio is π
2 ≈ 1.57

⇒ Although the sample median and sample mean have the same
expected value, the sample median has larger fluctuations

⇒ The median value theorem cannot replace the CLT whenever
the mean and the median are equal. The CLT can give better
results. The median theorem is useful when the CLT does not
work.
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