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Abstract

In this tutorial, we give a fruitful introduction about concepts of
optimization in multiple aspects with mathematical rigorous. Chapter
one provides some fundamental knowledge of convex analysis, which
is mostly devoted when making mathematical derivations in chapter
three. Chapter two provides some fundamental knowledge of linear
algebra, which is mostly devoted to chapter four and five. In chapter
three, we introduce abundant algorithms for solving unstructured op-
timization problems. The paradigms of those algorithms can be seen
in some important viewpoints. The EM algorithm explained in the
last section is an important algorithm to deal with maximum likeli-
hood estimation problems, which can also be seen as a kind of un-
structured optimization problem. In chapter four, we focus on the ℓ0
minimization problem with which the compressive sensing problems
and the sparse representation tasks have close relationship. ℓ1 min-
imization approaches, greedy algorithms and hard-thresholding-based
algorithms are covered. In chapter five, we elaborate a few crucial tech-
niques, e.g., the L-curve method, model order selection and dictionary
screening, which prove to be helpful when tackling optimization prob-
lems. Issues about standard procedures to conduct experiments and
evaluate performance for the compressive sensing problems are also
briefly discussed.



Notation

1. N : the set of natural numbers
2. Rn : the set of n-dimensional real vectors
3. Re· : the operation of taking the real part of a complex scalar
4. ⟨·, ·⟩ : the operation of taking the inner product of two complex

vectors
5. inf · : the operation of taking the infimum of an objective function
6. sup · : the operation of taking the supremum of an objective

function
7. A∗ : the conjugate transpose of a matrix A
8. f ∗ : the convex conjugate of a function f
9. ∇f : the gradient vector of a differentiable function f

10. ∇2f : the Hessian matrix of a twice differentiable function f
11. ∂f : the subdifferential of a function f
12. [N ] : the set {i ∈ N | i ≤ N}

13. a[i] : If a ∈ Rm and i is an integer less than or equal to m, then
a[i] denotes the i-th entry of a

14. x(k) : In an iterative algorithm, we use x(k) to denote the iterate x
at the k-th iteration

15. xs : x is an n-dimensional vector and s is a positive integer. In
the context of compressive sensing or sparse representation,
we use xs to denote two possible vectors. One is an s-dimensional
vector whose entries are the s largest components of x in
modulus. The other one is an n-dimensional vector obtained
by holding the s largest components of x in modulus
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unchanged and setting the remaining components of x to be
zero. It depends on the context to determine which vector we
denote.

16. x|T : x is an n-dimensional vector and T is a subset of [n]. In the
context of compressive sensing or sparse representation, we
use x|T to denote two possible vectors. One is obtained by
retaining all x[i], i ∈ T and setting all the other components

to be zero. That is, x|T =

{
x[i] i ∈ T

0 otherwise
. The other

one is obtained by retaining all x[i], i ∈ T and removing all
the other components. Thus, the resulting vector x|T has
dimension equal to the cardinality of T . It depends on the
context to determine which vector we denote.

17. AT : A is an m× n-dimensional matrix and T is a subset of [n].
In the context of compressive sensing or sparse representation,
we denote AT as the column submatrix of A whose columns
are listed in the set T

18. card(S) : the cardinality of a set S
19. ≡ : be equivalent to
20. ≜ : be defined as
21. := : be defined as
22. ⪰ : vector inequality or component-wise inequality. If a vector

a ∈ Rm ⪰ another vector b ∈ Rm, then a[i] ≥ b[i] ∀i ∈ [m]

23. ⇒ : implies

24. D→ : convergence in distribution to
25. p→ : convergence in probability to
26. N(µ,Σ) : the Gaussian probability density function with mean µ

and covariance Σ. We will also use the notationN(y;µ,Σ)

if we want to point out the random variable y that
follows the Gaussian probability density functionN(µ,Σ).
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27. sgn(·) : the sign function. If z is a complex scalar,

sgn(z) :=

{
z
|z| , when z ̸= 0

0 , when z = 0

If z ∈ Cn, we denote sgn(z) as the vector with
components sgn(z[j]), j ∈ [n].
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Chapter 1

Fundamental Knowledge of Convex Anal-
ysis

1.1 Optimality Condition
Theorem 1.1.1 (optimality condition). Assume f : Rn → (−∞,∞]

is a convex and differentiable function. Let X ⊆ RD be a closed
and convex set. Then x∗ ∈ arginf

x∈X
f (x) if and only if

⟨∇f (x∗), x− x∗⟩ ≥ 0 ∀x ∈ X (1.1)

Proof. Assume 1.1 holds. Because f is a convex function,

f (y) ≥ f (x∗) + ⟨∇f (x∗), y − x∗⟩ ≥ f (x∗)

Hence, x∗ ∈ arginf
x∈X

f (x). Assume 1.1 does not hold for some y ∈ X .

Let ϕ(a) := f (x∗ + a(y − x∗)), a ∈ [0, 1]. ϕ(0) = f (x∗) and ϕ′(0) =
⟨∇f (x∗), y − x∗⟩ < 0. Hence, we have f (x∗ + a(y − x∗)) < f (x∗) for
some small enough a. Therefore, we prove the ”only if ” part.

An important application of the optimality condition is the pro-
jection theorem.
Theorem 1.1.2 (projection theorem). Let X be a closed and convex
subset of Rn and let z ∈ Rn. There exists a unique vector x∗ ∈ X
that minimizes ∥z−x∥2 over x ∈ X , called the projection of z onto
X . Moreover, x∗ is the projection of z onto X if and only if

⟨z − x∗, x− x∗⟩ ≤ 0, ∀x ∈ X (1.2)

Proof. Minimizing ∥z−x∥2 is equivalent to minimizing f ≜ 1
2∥z−x∥

2
2.

Since f is a convex and differentiable function, by the optimality con-

4



dition, the necessary and sufficient condition for x∗ to be the projection
of z onto X is clearly 1.2. Assume there are such vectors x∗1 and x∗2.
To prove the uniqueness, we need to verify that x∗1 = x∗2 = x∗. Indeed,
since x∗1 is the projection of z onto X , ⟨z − x∗1, x

∗
2 − x∗1⟩ ≤ 0 because

of 1.2. Similarly, ⟨z−x∗2, x
∗
1−x∗2⟩ ≤ 0. Adding these two inequalities,

we get ∥x∗2 − x∗1∥22 ≤ 0, which implies x∗1 = x∗2 = 0.

Because of the projection theorem, we can verify the non-expansive
property of the projector.1Assume there are two vectors z1 ∈ Rn and
z2 ∈ Rn. We want to prove that

∥x∗1 − x∗2∥2 ≤ ∥z1 − z2∥2 (1.3)

where x∗1 ∈ X and x∗2 ∈ X are the projections of z1 and z2 onto X .
Because of 1.2, we have

⟨z1 − x∗1, x
∗
2 − x∗1⟩ ≤ 0

⟨z2 − x∗2, x
∗
1 − x∗2⟩ ≤ 0

Adding these two inequalities, we get ⟨x∗2−x∗1+ z1− z2, x
∗
2−x∗1⟩ ≤ 0.

As a result,
∥x∗1 − x∗2∥22 ≤ ⟨z1 − z2, x

∗
1 − x∗2⟩

≤ ∥z1 − z2∥2∥x∗1 − x∗2∥2
⇒ ∥x∗1 − x∗2∥2 ≤ ∥z1 − z2∥2

The second inequality is due to the Hölder’s inequality 2.6.

1.2 Strong Convexity
Definition 1.2.1 (strong convexity). A function f : Rn → (−∞,∞]

is m-strongly convex for some m > 0 if one of the following equivalent
conditions holds
1. The function f is twice differentiable and satisfies

∇2f (x) ≥ mI ∀x ∈ Rn (1.4)
1We will introduce the concept of non-expansive mapping in more detail in section 1.9.
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2. The function f is differentiable and satisfies

⟨∇f (y)−∇f (x), y − x⟩ ≥ m∥y − x∥22 ∀x, y ∈ Rn (1.5)

3. The function f is differentiable and satisfies

f (y) ≥ f (x) + ⟨∇f (x), y − x⟩ + m

2
∥y − x||22 ∀x, y ∈ Rn (1.6)

An important consequence of strong convexity is that a differentiable
strongly convex function has a unique minimizer on a closed convex set.
To prove this, we assume f : Rn → (−∞,∞] is a m-strongly convex
function and X ⊆ Rn is a closed convex set. First, we need to prove
the existence of a minimizer. Assume y ∈ X

f (x) ≥ f (y) + ⟨∇f (y), x− y⟩ + m

2
∥x− y∥22 ∀x ∈ X

≥ f (y)− ∥∇f (y)∥2∥x− y∥2 +
m

2
∥x− y∥22

≥ f (y) if ∥x− y∥2 >
2∥∇f (y)∥2

m

Hence, the set {x ∈ X |f (x) ≤ f (y)} is bounded. According to the
extreme value theorem, a continuous function attains its maximum and
minimum on a closed and bounded set. Next, assume a minimizer of
f is x∗.

f (x) ≥ f (x∗) + ⟨∇f (x∗), x− x∗⟩ + m

2
∥x− x∗∥22 ∀x ∈ X

≥ f (x∗) +
m

2
∥x− x∗∥22 ∵ 1.1

Hence, f (x) = f (x∗) if and only if x = x∗, which indicates the unique-
ness of the minimizer.

1.3 Smoothness
Definition 1.3.1 (smoothness). A function f : Rn → R is M -
smooth for some M > 0 if one of the following equivalent conditions
holds
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1. The function f is twice differentiable and satisfies

∇2f (x) ≤MI ∀x ∈ Rn (1.7)

2. The function f is differentiable and satisfies

⟨∇f (y)−∇f (x), y − x⟩ ≤M∥y − x∥22 ∀x, y ∈ Rn (1.8)

3. The function f is differentiable and satisfies

f (y) ≤ f (x) + ⟨∇f (x), y − x⟩+M

2
∥y− x||22 ∀x, y ∈ Rn (1.9)

Furthermore, if the gradient of f is M -Lipschitz with respect to the
ℓ2 norm, i.e.,

∥∇f (y)−∇f (x)∥2 ≤M∥y − x||2 ∀x, y ∈ Rn (1.10)

then
⟨∇f (y)−∇f (x), y − x⟩

≤ ∥∇f (y)−∇f (x)∥2∥y − x∥2
≤M∥y − x∥22

Hence, f is M -smooth.

1.4 Relative Smoothness
Definition 1.4.1 (Bregman divergence). Let h : Rn → (−∞,∞]

be a convex function. The Bregman divergence associated with h is
defined as

Dh(y, x) := h(y)− h(x)− ⟨∇h(x), y − x⟩ (1.11)

Since h is convex, Dh(y, x) is non-negative. If h(x) = 1
2∥x∥

2
2, then

Dh(y, x) =
1

2
∥y − x∥22 (1.12)
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If h(x) =
n∑
i=1

x[i] logx[i], which is called the negative entropy, then

Dh(y, x) =
n∑
i=1

y[i] log y[i]
x[i]

(1.13)

which is the relative entropy.
Definition 1.4.2 (relative smoothness). A function is calledM -smooth
relative to a convex function h for some M > 0 if and only if

f (y) ≤ f (x) + ⟨∇f (x), y − x⟩ +MDh(y, x) (1.14)

If h(x) = 1
2∥x∥

2
2, then the relative smoothness coincides with smooth-

ness introduced in section 1.3. Furthermore, it can be easily verified
that a function f is M -smooth relative to a convex function h if and
only if the function Mh− f is convex.

1.5 Subdifferential
Definition 1.5.1 (subdifferential). Assume f : Rn → R is a convex
function. The subdifferential of f at x ∈ Rn is defined as

∂f (x) := {v ∈ Rn : f (z) ≥ f (x) + ⟨v, z − x⟩ ∀z ∈ Rn} (1.15)

The elements of ∂f (x) are called the subgradients of f at x.

Theorem 1.5.1. A vector x∗ is a minimizer of a function f :

Rn → R if and only if
0 ∈ ∂f (x∗) (1.16)

Proof. First, we prove the ”if” part. Since 0 ∈ ∂f (x∗), f (z) ≥ f (x∗)

∀z ∈ Rn. Hence x∗ is a minimizer of f . Next, we prove the ”only if”
part. Since x∗ is a minimizer of f , f (z) ≥ f (x∗) ∀z ∈ Rn. 0 belongs
to ∂f (x∗) because f (z) ≥ f (x∗) + ⟨0, z − x∗⟩ ∀z ∈ Rn
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Theorem 1.5.2. Assume f1 : Rn → R and f2 : Rn → R. A
sufficient condition for x∗ to be a minimizer of f1 + f2 is

∃v∗ ∈ ∂f1(x
∗) and − v∗ ∈ ∂f2(x

∗) (1.17)

Proof. If v∗ ∈ ∂f1(x
∗), f1(z) ≥ f1(x

∗) + ⟨v∗, z − x∗⟩ ∀z ∈ Rn

If −v∗ ∈ ∂f2(x
∗), f2(z) ≥ f2(x

∗) + ⟨−v∗, z − x∗⟩ ∀z ∈ Rn

Hence, f1(z) + f2(z) ≥ f1(x
∗) + f2(x

∗) ∀z ∈ Rn

Theorem 1.5.3. Given a function f : Rn → R and any x, x′, v, v′ ∈
Rn such that v ∈ ∂f (x) and v′ ∈ ∂f (x′), we have ⟨x−x′, v−v′⟩ ≥ 0

Proof. ∵ v ∈ ∂f (x) ∴ f (x′) ≥ f (x) + ⟨v, x′ − x⟩
∵ v′ ∈ ∂f (x′) ∴ f (x) ≥ f (x′) + ⟨v′, x− x′⟩

⇒ f (x′) + f (x) ≥ f (x) + f (x′) + ⟨v − v′, x′ − x⟩
⇒ ⟨x− x′, v − v′⟩ ≥ 0

Theorem 1.5.4. Suppose f : Rn → R and g : Rn → R are convex
functions and g is differentiable. Then ∀x ∈ Rn

∂(f + g)(x) = ∂f (x) +∇g(x) = {y +∇g(x)|y ∈ ∂f (x)} (1.18)

Proof. See theorem 23.8 and 25.1 of [34].
This theorem conforms to the intuition that adding a differentiable

convex function g to the convex function f simply translates the set of
subgradients at each point x by ∇g(x)

Theorem 1.5.5. Given any function f : Rn → R, a vector z ∈ Rn,
and a scalar c > 0, there is at most one way to write z = x + cv,
where v ∈ ∂f (x). Furthermore, if f is proper, closed and convex2,
then there is exactly one way to write z = x+ cv, where v ∈ ∂f (x)

Proof. See lemma 3 and proposition 6 of [10].
2A function is called proper if its domain is non-empty and its range does not include −∞.
A function is called closed if its epigraph is a closed set.
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1.6 Convex Conjugate
Definition 1.6.1 (convex conjugate). Given a function F : Rn →
(−∞,∞], the convex conjugate function of F is the function F ∗ de-
fined as follows

F ∗(y) := sup
x∈Rn

{⟨x, y⟩ − F (x)} (1.19)

Assume θ ∈ [0, 1], y1 ∈ Rn and y2 ∈ Rn

F ∗(θy1 + (1− θ)y2)

= sup
x∈Rn

{⟨x, θy1 + (1− θ)y2⟩ − F (x)}

= sup
x∈Rn

{[⟨x, θy1⟩ − θF (x)] + [⟨x, (1− θ)y2⟩ − (1− θ)F (x)]}

≤ sup
x∈Rn

{⟨x, θy1⟩ − θF (x)} + sup
x∈Rn

{⟨x, (1− θ)y2⟩ − (1− θ)F (x)}

=θF ∗(y1) + (1− θ)F ∗(y2)

Hence, although F may not be convex, F ∗ is always a convex function.

1.7 Proximal Mapping
Definition 1.7.1 (proximal mapping). The proximal mapping asso-
ciated with a function F : Rn → (−∞,∞] is defined as

PF (z) := arginf
x∈Rn

F (x) +
1

2
∥x− z∥22 (1.20)

We will illustrate in the following some examples which will be quite
helpful in the derivations of some optimization algorithms .
1. F (x) = 1

2∥x∥
2
2 , then PF (z) = 1

2z

2. F (x) is the characteristic function of a closed convex set X ⊆ RD,
then

PF (z) = projX (z) := arginf
x∈X

1

2
∥x− z∥22 (1.21)
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3. F (x) = λ|x|, then

PF (z) = Sλ(z) =

{
0 |z| < λ

z − sgn(z)λ |z| ≥ λ
(1.22)

where Sλ(z) is called the soft thresholding operator
4. F (x) = λ∥x∥1, then PF (z) is the entry-wise soft thresholding op-

erator operating on each entry of z
Assume x = PF (z), then

0 ∈ ∂F (x) + x− z

⇒ z ∈ x + ∂F (x)
(1.23)

Hence, z ∈ (Id + ∂F )(x), which means

PF (·) = (Id + ∂F )−1(·) (1.24)

Besides, in the following chapters, we will adopt the notation PF (σ, ·)
to denote PσF (·), i.e.,

PF (σ, ·) := PσF (·) (1.25)

1.8 Moreau Envelope
Definition 1.8.1 (Moreau envelope). Let g : RD → (−∞,∞] be a
proper closed convex function. The Moreau envelope of g is defined as

gη(x) := inf
y∈RD

g(y) +
1

2η
∥y − x∥22 (1.26)

As a comparison, the proximal mapping associated with the function
ηg is Pηg(x) = arginf

y∈RD
ηg(y) + 1

2∥y − x∥22. The Moreau envelope can

be proved to be convex, differentiable and 1/η-smooth. Furthermore,

∇gη(x) =
1

η
(x− Pηg(x)) =

1

η
(Id − (Id + η∂g)−1)(x) (1.27)

Intuitively, we can approximate the operator (Id+η∂g)−1 by Id−η∂g.
Hence, 1

η(Id− (Id+η∂g)
−1)(x) ≈ 1

η(Id− (Id−η∂g))(x) = ∂g(x). Due
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to this intuition, the operator 1
η(Id− (Id+ η∂g)

−1) is called the Yosida
approximation of ∂g. The reader can refer to [25] and [42] for detailed
and thorough introductions.

1.9 Non-expansive Mapping
Definition 1.9.1 (non-expansive mapping). A non-expansive map-
ping N : Rn → Rn is a mapping that satisfies

∥N(x)−N(x′)∥ ≤ ∥x− x′∥ ∀x, x′ ∈ Rn (1.28)

Theorem 1.9.1. Given two closed, proper and convex functions
f1 : Rn → R and f2 : Rn → R and a scalar c > 0, the mapping
Ncf1 : Rn → Rn is given by Ncf1(z) = x1 − cv1 where x1, v1 ∈ Rn

satisfy v1 ∈ ∂f1(x1) and z = x1+cv1；the mapping Ncf2 : Rn → Rn

is given by Ncf2(z) = x2−cv2 where x2, v2 ∈ Rn satisfy v2 ∈ ∂f2(x2)

and z = x2 + cv2

1. Ncf1 and Ncf2 are both everywhere uniquely defined and non-
expansive

2. The fixed points of Ncf1 are precisely the minimizers of f1
3. The fixed points of Ncf2 are precisely the minimizers of f2
4. The composite Ncf1 ◦Ncf2 is also non-expansive
5. The fixed points of Ncf1 ◦Ncf2 are the set of points {x+ cv|v ∈
∂f1(x),−v ∈ ∂f2(x)}

Proof. For the first, second and third results, see proposition 7 of [10]
for the proof. For the fourth result, it can be verified as follows

∥Ncf1(Ncf2(x))−Ncf1(Ncf2(x
′))∥ ≤ ∥Ncf2(x)−Ncf2(x

′)∥
≤ ∥x− x′∥ ∀x, x′ ∈ Rn

assuming the correctness of the first result. For the fifth result, see
lemma 14 of [10] for the proof.
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Hence, according to the fifth result, finding a fixed point of Ncf1 ◦
Ncf2 is equivalent to finding x, v ∈ Rn satisfying v ∈ ∂f1(x) and
−v ∈ ∂f2(x). Such x is a minimizer of f1 + f2 as have been proved in
theorem 1.5.2

Theorem 1.9.2. Let the sequence {ρk} satisfy inf
k
{ρk} > 0 and

sup
k
{ρk} < 2. Starting from some arbitrary x(0) ∈ Rn, if N has any

fixed points and {x(k)} follows the iteration rule that

x(k+1) =
ρk
2
N(x(k)) + (1− ρk

2
)x(k) (1.29)

, then {x(k)} converges to a fixed point of N
Proof. See theorem 10 of [10] for details

Note that if the Lipschitz modulus of N is less than 1, then the
iterate sequence {x(k)} can converge to a fixed point by simply iterating
the non-expansive mapping recursively with the iteration rule x(k+1) =

N(x(k)). However, if the Lipschitz modulus happens to be 1, then the
iterates could simply orbit at fixed distance from each other without
converging. Theorem 1.9.2 states how we can avoid such situation.
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Chapter 2

Fundamental Knowledge of Linear Al-
gebra

2.1 Vector and Matrix Norms
2.1.1 Metric, Norm and ℓp-Norm
Definition 2.1.1 (metric). Let X be a set. A function d : X×X →
[0,∞) is called a metric if
1. d(x, y) = 0 if and only if x = y

2. d(x, y) = d(y, x) ∀x, y ∈ X

3. d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ X

If only the second and the third conditions hold, then d is called a
pseudometric. The set X endowed with a metric d is called a metric
space.

Definition 2.1.2 (norm). Let X be a set. A function ∥ · ∥ : X →
[0,∞) is called a norm if
1. ∥x∥ = 0 if and only if x = 0 (definiteness)
2. ∥λx∥ = |λ|∥x∥ for all scalars λ and all vectors x ∈ X (homogene-

ity)
3. ∥x + y∥ ≤ ∥x∥ + ∥y∥ ∀x, y ∈ X (triangle inequality)

If the definiteness condition does not hold, then ∥ · ∥ is called a semi-
norm.
If the triangle inequality does not hold but is replaced by the weaker
quasitriangle inequality

∥x + y∥ ≤ C(∥x∥ + ∥y∥) (2.1)
14



for some constant C ≥ 1, then ∥·∥ is called a quasinorm. The smallest
constant C is called its quasinorm constant.
The set X endowed with a norm ∥ · ∥ is called a normed space.
A norm ∥ · ∥ on X induces a metric on X by d(x, y) = ∥x− y∥ and a
seminorm induces a pseudometric in the same way.

Definition 2.1.3 (ℓp-norm). The ℓp norm (or p-norm) on Rn is de-
fined for 1 ≤ p <∞ as

∥x∥p :=

 n∑
j=1

|x[j]|p
1/p

(2.2)

and for p = ∞ as
∥x∥∞ := max

j∈[n]
|x[j]| (2.3)

For 0 < p < 1, the expression 2.2 only defines a quasinorm with the
quasinorm constant C = 21/p−1. This can be proved via the p-triangle
inequality

∥x + y∥pp ≤ ∥x∥pp + ∥y∥pp (2.4)
Hence, the ℓp-quasinorm induces a metric via d(x, y) = ∥x − y∥pp for
0 < p < 1.

We want to verify that the ℓp norm 2.2 for p ≥ 1 is indeed a norm
function. The definiteness condition and the homogeneity condition are
trivial. Our main concern is whether the ℓp-norm satisfies the triangle
inequality; that is, whether the following inequality is true or not.

∥x + y∥p ≤ ∥x∥p + ∥y∥p for p ≥ 1 (2.5)

Such inequality is called the Minkowski’s inequality. To prove the
Minkowski’s inequality, we need to introduce another important in-
equality - Hölder’s inequality in advance. The Hölder’s inequality is
expressed as follows.

|⟨x, y⟩| ≤ ∥x∥p∥y∥q ∀x, y (2.6)
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for p, q ∈ [1,∞] such that 1
p +

1
q = 1. The proof for the Hölder’s in-

equality relies on a simple generalized form of the arithmetic-geometric
mean inequality

AθB1−θ ≤ θA + (1− θ)B if A,B ≥ 0, and 0 ≤ θ ≤ 1 (2.7)

Proof. Assume B ̸= 0, and replace A by AB, we see that it suffices
to prove that Aθ ≤ θA + (1 − θ). Let f (x) = xθ − θx − (1 − θ).
It is simple to verify that f (x) attains a maximum at x = 1, where
f (1) = 0. Hence, f (A) ≤ 0.
With the generalized arithmetic-geometric mean inequality at hand,
we can prove the Hölder’s inequality as follows.
Proof. If either ∥x∥p or ∥y∥q is 0, then |⟨x, y⟩| = 0, which obviously
verifies the Hölder’s inequality. Hence, we assume that neither of these
norms vanish, and after replacing x by x/∥x∥p and y by y/∥y∥q, we
further assume that ∥x∥p=1 and ∥y∥q=1. Now it suffices to prove that
|⟨x, y⟩| ≤ 1. We apply the generalized arithmetic-geometric mean
inequality by setting A to be (x[j])p, B to be (y[j])q, and θ to be 1/p

∀j ∈ [n]. Therefore,

x[j]y[j] ≤ 1

p
(x[j])p +

1

q
(y[j])q

⇒|x[j]y[j]| ≤ |1
p
(x[j])p +

1

q
(y[j])q| ≤ 1

p
|x[j]|p + 1

q
|y[j]|q

|⟨x, y⟩| = |
n∑
j=1

x[j]y[j]|

≤
n∑
j=1

|x[j]y[j]|

≤
n∑
j=1

[
1

p
|x[j]|p + 1

q
|y[j]|q

]
=

1

p
∥x∥pp +

1

q
∥y∥qq =

1

p
+

1

q
= 1
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We make a remark that a useful inequality relating the ℓp-norm and
ℓq-norm of an n-dimensional vector x :

∥x∥p ≤ n1/p−1/q∥x∥q (2.8)

can be derived using the Hölder’s inequality.
Proof. We replace the role of x, y, p, and q by [|x[1]|p, |x[2]|p, · · · , |x[n]|p]T ,
[1, 1, · · · , 1]T , q/p and q/(q − p) respectively. Then we can come up
with the inequality : ∥x∥pp ≤ n(q−p)/q∥x∥pq, which is equivalent to
2.8.
Specifically, we can get ∥x∥1 ≤

√
n∥x∥2 ≤ n∥x∥∞ with 2.8. Let’s get

down to business to prove the Minkowski’s inequality as follows.
Proof. For p=1,

|x[j] + y[j]| ≤ |x[j]| + |y[j]| ∀j ∈ [n]

⇒
n∑
j=1

|x[j] + y[j]| ≤
n∑
j=1

|x[j]| +
n∑
j=1

|y[j]|

⇒∥x + y∥1 ≤ ∥x∥1 + ∥y∥1
When p>1,
|x[j] + y[j]|p = |x[j] + y[j]||x[j] + y[j]|p−1 ∀j ∈ [n]

≤ (|x[j]| + |y[j]|)|x[j] + y[j]|p−1

= |x[j]||x[j] + y[j]|p−1 + |y[j]||x[j] + y[j]|p−1

⇒
n∑
j=1

|x[j] + y[j]|p ≤
n∑
j=1

|x[j]||x[j] + y[j]|p−1 +

n∑
j=1

|y[j]||x[j] + y[j]|p−1

≤ (∥x∥p + ∥y∥p)

 n∑
j=1

|x[j] + y[j]|q(p−1)

1/q

(by the Hölder′s inequality)

Hence, ∥x + y∥pp ≤ (∥x∥p + ∥y∥p)∥x + y∥p/qp ∵ 1
p +

1
q = 1

⇒ ∥x + y∥p ≤ ∥x∥p + ∥y∥p
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Now we turn our attention to the case when 0 < p < 1. First, we
give a proof for the p-triangle inequality as follows.
Proof.

∥x + y∥pp =
n∑
j=1

|x[j] + y[j]|p, ∥x∥pp =
n∑
j=1

|x[j]|p, ∥y∥pp =
n∑
j=1

|y[j]|p

It suffices to prove that |x[j] + y[j]|p ≤ |x[j]|p + |y[j]|p for ∀j ∈ [n].
We prove by contradiction. If |x[j] + y[j]|p > |x[j]|p + |y[j]|p, then it
implies that |x[j]+y[j]|1−p > |x[j]|1−p+ |y[j]|1−p since 0 < 1−p < 1.
In this way,

|x[j] + y[j]| > (|x[j]|p + |y[j]|p)(|x[j]|1−p + |y[j]|1−p)
= |x[j]| + |y[j]| + |x[j]|p|y[j]|1−p + |y[j]|p|x[j]|1−p

≥ |x[j]| + |y[j]|

which contradicts with the triangle inequality for ℓ1 norm. Hence,
|x[j] + y[j]|p ≤ |x[j]|p + |y[j]|p ∀j ∈ [n] for 0 < p < 1.
Then, we can use the p-triangle inequality to prove that the quasinorm
constant for the ℓp-quasinorm is indeed 21/p−1 as follows
Proof.

∥x + y∥p =

 n∑
j=1

|x[j] + y[j]|p
1/p

≤

 n∑
j=1

|x[j]|p +
n∑
j=1

|y[j]|p
1/p

= 21/p

1

2

n∑
j=1

|x[j]|p + 1

2

n∑
j=1

|y[j]|p
1/p
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≤ 21/p

1
2

 n∑
j=1

|x[j]|p
1/p

+
1

2

 n∑
j=1

|y[j]|p
1/p


= 21/p−1 (∥x∥p + ∥y∥p)

The first inequality is due to the p-triangle inequality and the mono-
tonicity of the ℓ1/p-norm. The second inequality is due to the convexity
of the ℓ1/p-norm and the application of the Jenson’s inequality.

2.1.2 Dual Norm
Definition 2.1.4 (dual norm). Let ∥ · ∥ be a norm on Rn. Its dual
norm ∥ · ∥∗ is defined by

∥x∥∗ : = sup
∥y∥≤1

|⟨y, x⟩| , x ∈ Rn

= sup
y ̸=0

|⟨y, x⟩|
∥y∥

(2.9)

From the definition of the dual norm, we can easily derive the
useful inequality

|⟨y, x⟩| ≤ ∥y∥∥x∥∗, ∀x, y ∈ Rn (2.10)

Furthermore, we want to introduce two important properties of the
dual norm. The first one is that the dual of the dual norm is the norm
itself and the second one is that the dual of the ℓp-norm is the ℓq-norm
with 1

p +
1
q = 1. From the second one, we find that the ℓ2-norm is

self-dual and the dual norm of the ℓ1-norm is the ℓ∞-norm. In the
following, we give proofs for the two properties respectively.
Proof for the first property. Consider the problem :

min
y

∥y∥ subject to y = x
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Its optimal value is obviously ∥x∥. Its Lagrangian is

L(y, ν) = ∥y∥ + νT (x− y)

and the Lagrange dual function is
g(ν) = min

y
∥y∥ + νTx− νTy

= νTx− max
y
νTy − ∥y∥

Assume z∗ = argmax
∥z∥≤1

νTz, then ∥ν∥∗ = νTz∗. If ∥ν∥∗ > 1, we can

select y = tz∗, t > 0 so that νTy − ∥y∥ = t(∥ν∥∗ − ∥z∗∥) approaches
∞ as t approaches ∞. If ∥ν∥∗ ≤ 1, then νTy ≤ ∥y∥ ∀y ∈ Rn; that
is, νTy − ∥y∥ ≤ 0 ∀y ∈ Rn and we can obtain the maximum 0 when
y = 0. Therefore, the Lagrange dual function is

g(ν) =

{
νTx , when ∥ν∥∗ ≤ 1

−∞ , when ∥ν∥∗ > 1

The dual problem will be

max
ν
νTx subject to ∥ν∥∗ ≤ 1

Its optimal value is ∥x∥∗∗. By the strong duality, we have ∥x∥ =

∥x∥∗∗.
Note that this proof involves the application of the duality theory. The
readers can refer to section 3.1.1.
Proof for the second property. We want to show that ∥z∥p = sup

∥x∥q≤1

⟨x, z⟩.

We may assume without generality that z ̸= 0; otherwise, ∥z∥p =

sup
∥x∥q≤1

⟨x, z⟩ is trivially true. Let x ∈ Rn satisfy ∥x∥q ≤ 1.

⟨x, z⟩ ≤ |⟨x, z⟩| ≤ ∥x∥q∥z∥p ≤ ∥z∥p
by the Hölder’s inequality. Hence, sup

∥x∥q≤1

⟨x, z⟩ ≤ ∥z∥p. In order to

show that sup
∥x∥q≤1

⟨x, z⟩ is exactly ∥z∥p, it suffices to find an y ∈ Rn
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with ∥y∥q ≤ 1 such that ⟨y, z⟩ = ∥z∥p. Let x ∈ Rn be a vector with
each component x[j] = sgn(z[j])|z[j]|p−1.

⟨x, z⟩ =
n∑
j=1

|z[j]|p = ∥z∥pp

and

∥x∥qq =
n∑
j=1

|x[j]|q =
n∑
j=1

|z[j]|(p−1)q =

n∑
j=1

|z[j]|p = ∥z∥pp

Now choose y = x
∥x∥q (∵ z ̸= 0 ∴ ∥x∥q = ∥z∥p/qp ̸= 0).

⟨y, z⟩ = ⟨ x

∥x∥q
, z⟩ =

∥z∥pp
∥x∥q

=
∥z∥p
∥z∥p/qp

= ∥z∥p−p/qp = ∥z∥p

Hence, we successfully find an y ∈ Rn with ∥y∥q ≤ 1 such that ⟨y, z⟩ =
∥z∥p.

2.1.3 Operator Norm
Definition 2.1.5 (operator norm). Let A : X → Y be a linear
mapping between two normed spaces (X, ∥ · ∥) and (Y, ∥| · ∥|). The
operator norm of A is defined as

∥A∥ := sup
∥x∥≤1

∥|Ax∥| = sup
x ̸=0

∥|Ax∥|
∥x∥

(2.11)

In particular, let A ∈ Rm×n, X be the ℓp space and Y be the ℓq space,
1 < p, q ≤ ∞. We define the matrix norm (operator norm) between
ℓp and ℓq as

∥A∥p→q := sup
∥x∥p≤1

∥Ax∥q = sup
x ̸=0

∥Ax∥q
∥x∥p

(2.12)

From 2.11, we can easily derive the inequality

∥|Ax∥| ≤ ∥A∥∥x∥ ∀x ∈ X (2.13)
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From 2.12, we easily derive the inequality
∥AB∥p→r = sup

∥x∥p≤1

∥ABx∥r

≤ sup
∥x∥p≤1

∥A∥q→r∥Bx∥q

= ∥A∥q→r∥B∥p→q

(2.14)

where A ∈ Rm×n, B ∈ Rn×k and 1 ≤ p, q, r ≤ ∞. Combining 2.12,
the definition of dual norm and the duality between ℓp and ℓp′ norms
(ℓq and ℓq′ norms) where 1

p +
1
p′ =

1
q +

1
q′ = 1, we can derive a useful

inequality as follows

∥A∥p→q = ∥A∗∥q′→p′ (2.15)

We verify it as follows
∥A∥p→q = sup

∥x∥p≤1

∥Ax∥q

= sup
∥x∥p≤1

sup
∥y∥q′≤1

⟨y, Ax⟩

= sup
∥x∥p≤1

sup
∥y∥q′≤1

⟨x,A∗y⟩

= sup
∥y∥q′≤1

∥A∗y∥p′

= ∥A∗∥q′→p′

In the following, we excerpt some important results regarding the ma-
trix norm from lemma A.5, lemma A.7, lemma A.9 and remark A.10
of [13].
Theorem 2.1.1. Let A ∈ Rm×n.
1.

∥A∥2→2 =
√
λmax(A∗A) = σmax(A) (2.16)

where λmax(A
∗A) denotes the largest eigenvalue of A∗A and

σmax(A) the largest singular value of A. In particular, if B ∈
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Rn×n is self-adjoint, then

∥B∥2→2 = max
j∈[n]

|λj(B)| (2.17)

where λj(B), j ∈ [n] denotes the eigenvalues of B.
2. For 1 ≤ p ≤ ∞,

∥A∥1→p = max
k∈[n]

∥ak∥p (2.18)

where ak represents the k-th columns of A. In particular,

∥A∥1→1 = max
k∈[n]

m∑
j=1

|Aj,k| (2.19)

∥A∥1→2 = max
k∈[n]

∥ak∥2 (2.20)

3.
∥A∥∞→∞ = max

j∈[m]

n∑
k=1

|Aj,k| (2.21)

Theorem 2.1.2. Let A ∈ Rm×n.

∥A∥2→2 = sup
∥y∥2≤1

sup
∥x∥2≤1

|⟨Ax, y⟩| (2.22)

If B ∈ Rn×n is self-adjoint, then

∥B∥2→2 = sup
∥x∥2≤1

|⟨Bx, x⟩| (2.23)

Theorem 2.1.3. The operator norm ∥ · ∥p→q (1 ≤ p, q ≤ ∞) of
a submatrix is bounded by the whole matrix. More precisely, if
A ∈ Rm×n has the form

A =

[
A(1) A(2)

A(3) A(4)

]
then ∥A(ℓ)∥p→q ≤ ∥A∥p→q for ℓ = 1, 2, 3, 4. In particular, any entry
of A satisfies |Aj,k| ≤ ∥A∥p→q.
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Definition 2.1.6 (Frobenius norm). The Frobenius norm of a matrix
A ∈ Rm×n is defined as

∥A∥F :=
√
tr(AA∗) =

√
tr(A∗A) =

 ∑
j∈[m],k∈[n]

|Aj,k|2
1/2

(2.24)

The Frobenius norm can give an upper bound on the operator norm
∥ · ∥2→2; that is,

∥A∥2→2 ≤ ∥A∥F (2.25)
Proof.

∥Ax∥22 =
m∑
j=1

(
n∑
k=1

Aj,kx[k]

)2

≤
m∑
j=1

(
n∑
k=1

|x[k]|2
)(

n∑
ℓ=1

|Aj,ℓ|2
)

(by the Hölder′s inequality)

= ∥A∥2F∥x∥22
Therefore, ∀x ∈ Rn\{0}, ∥A∥F ≥ ∥Ax∥2

∥x∥2
; that is, ∥A∥F ≥ sup

x ̸=0

∥Ax∥2
∥x∥2

=

∥A∥2→2

2.2 The Singular Values and Eigenvalues
2.2.1 The Singular Value Decomposition
Theorem 2.2.1 (the singular value decomposition). For A ∈ Rm×n,
there exist unitary matrices U ∈ Rm×m, V ∈ Rn×n, and uniquely
defined non-negative numbers σ1 ≥ σ2 ≥ · · · ≥ σmin{m,n} ≥ 0, called
singular values of A, such that

A = UΣV ∗ where Σ = diag[σ1, · · · , σmin{m,n}] ∈ Rm×n (2.26)

24



The column vectors of U are called the left singular vectors while
those of V are called right singular vectors.

The readers can refer to proposition A.13 of [13] for the proof of
this theorem. The equation 2.26 is famous for being the singular value
decomposition of the matrix A. Assume A has r positive singular
values. Sometimes, it is more convenient to work with the reduced
singular value decomposition.

A = Ũ Σ̃Ṽ ∗ =

r∑
j=1

σjujv
∗
j (2.27)

where Σ̃ = diag(σ1, · · · , σr) ∈ Rr×r, Ũ = [u1| · · · |ur] ∈ Rm×r and
Ṽ = [v1| · · · |vr] ∈ Rn×r are submatrices of U = [u1| · · · |um] ∈ Rm×m

and V = [v1| · · · |vn] ∈ Rn×n. We want to make an important con-
nection between the singular value decomposition of a matrix A and
its four fundamental subspaces, i.e., the row space, the null space, the
column space and the left null space. The row space of A is the set of
all x ∈ Rn such that Ax is nonzero. The null space of A is the set of
all x ∈ Rn such that Ax = 0. The column space of A is the set of all
y ∈ Rm such that A∗y is nonzero. The left null space of A is the set of
all y ∈ Rm such that A∗y = 0. Hence, we see that the row space and
null space are orthogonal to each other and together span the whole
Rn. The column space and left null space are also orthogonal to each
other and together span the whole Rm. From the relations 2.26 and
2.27, we know that

Avi = σiui , i = 1, 2, · · · , r
Avi = 0 , i = r + 1, · · · , n
A∗uj = σjvj , j = 1, 2, · · · , r
A∗uj = 0 , j = r + 1, · · · ,m

Hence,
1. [v1|v2| · · · |vr] ∈ Rn×r forms an orthonormal basis of the row space.
2. [vr+1| · · · |vn] ∈ Rn×(n−r) forms an orthonormal basis of the null
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space.
3. [u1|u2| · · · |ur] ∈ Rm×r forms an orthonormal basis of the column

space.
4. [ur+1| · · · |um] ∈ Rm×(m−r) forms an orthonormal basis of the left

null space.
In the following, we list some important properties about the sin-

gular values.
1.

σmax(A) = ∥A∥2→2 = max
∥x∥2=1

∥Ax∥2 (2.28)

σmin(A) = min
∥x∥2=1

∥Ax∥2 (2.29)

Proof. see proposition A.13 of [13].

2.

σj(A) =
√
λj(A∗A) =

√
λj(AA∗) j ∈ [min{m,n}] (2.30)

Proof.
A∗A = V Σ2V ∗

AA∗ = UΣ2U ∗

3. If A has rank r, then its r largest singular values σ1 ≥ · · · ≥ σr are
positive, while σr+1 = σr+2 = · · · = 0.

Proof. First we prove that rank(A) = rank(A∗A) as follows. If
x ∈ Rn lies in the null space of A (i.e., Ax = 0), then it is also
in the null space of A∗A since A∗Ax = 0. On the other hand, if
x ∈ Rn lies in the null space of A∗A (i.e., A∗Ax = 0), then it
is also in the null space of A since x∗A∗Ax = 0, which implies
∥Ax∥22 = 0 (hence, Ax = 0). Therefore, the nullity of A and A∗A

are the same, which implies the rank of A and A∗ are also the
same. Now since A∗A = V Σ2V ∗, rank(A∗A) = rank(V Σ2V ∗) =
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rank(Σ2). Since rank(A) = r, there are exactly r positive singular
values σ1, · · · , σr.

4. The largest and smallest singular values are 1-Lipschitz functions
with respect to the operator norm and the Frobenius norm. That
is,

|σmax(A)− σmax(B)| ≤ ∥A− B∥2→2 ≤ ∥A− B∥F (2.31)
|σmin(A)− σmin(B)| ≤ ∥A− B∥2→2 ≤ ∥A− B∥F (2.32)

for all matrices A and B of equal dimensions.

Proof. see proposition A.16 of [13].

5.
∥A∗A− Id∥2→2 ≤ δ for some δ ∈ [0, 1] (2.33)

if and only if

σmax(A) ≤
√
1 + δ and σmin ≥

√
1− δ (2.34)

Proof.
∥A∗A− Id∥2→2 = max

j∈[n]
|λj(A∗A− Id)|

= max
j∈[n]

|λj(A∗A)− 1|

= max
j∈[n]

|σ2j (A)− 1|

= max{σ2max(A)− 1, 1− σ2min(A)}

If ∥A∗A− Id∥2→2 ≤ δ, then

σ2max(A)− 1 ≤ δ

1− σ2min(A) ≤ δ

which implies 2.34. If σmax(A) ≤
√
1 + δ and σmin ≥

√
1− δ,

then
σ2max(A)− 1 ≤ δ

1− σ2min(A) ≤ δ

which implies 2.33.
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6. For two matrices X ∈ Rm×n and Y ∈ Rm×n, any k ∈ [ℓ], where
ℓ := min{m,n},

k∑
j=1

|σj(X)− σj(Y )| ≤
k∑
j=1

σj(X − Y ) (2.35)

Proof. see lemma A.18 of [13].

2.2.2 The Schatten p-norm
Definition 2.2.1 (Schatten p-norm). For a matrix A ∈ Rm×n and
all 1 ≤ p ≤ ∞, the Schatten p-norm of A is defined as

∥A∥Sp :=

min{m,n}∑
j=1

σj(A)
p

1/p

(2.36)

The Schatten p-norm is indeed a norm function; that is, it satis-
fies the definiteness condition, the homogeneity condition and the tri-
angle inequality. One can easily verify the definiteness condition and
the homogeneity condition. As for the triangle inequality, although we
do not give a proof here, we can use the inequality 2.35 to verify the
Schatten 1-norm case as follows.

ℓ∑
j=1

σj(X)−
ℓ∑

j=1

σj(Y ) =

ℓ∑
j=1

|σj(X)| − |σj(Y )|

≤
ℓ∑

j=1

|σj(X)− σj(Y )|

≤
ℓ∑

j=1

σj(X − Y )

Choose X = A+B and Y = B, we can derive the triangle inequality
for the Schatten 1-norm. Specifically, we will denote the Schatten 1-
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norm as

∥A∥∗ :=
min{m,n}∑

j=1

σj(A) (2.37)

and call it the nuclear norm. Further note that the Schatten p-norm
reduces to the Frobenius norm for p = 2 and to the operator norm
∥ · ∥2→2 for p = ∞. The reasons are simple. For p = 2

∥A∥S2 =

√√√√min{m,n}∑
j=1

σ2j (A)

=

√√√√min{m,n}∑
j=1

λj(A∗A)

=
√
tr(A∗A)

= ∥A∥F
For p = ∞, ∥A∥S∞ = max

j∈[ℓ]
σj(A) = σmax(A) = ∥A∥2→2.

2.2.3 Moore-Penrose Pseudo-Inverse
Definition 2.2.2 (Moore-Penrose pseudo-inverse). Let A ∈ Rm×n of
rank r with reduced singular value decomposition

A = Ũ Σ̃Ṽ ∗ =

r∑
j=1

σj(A)ujv
∗
j

then its Moore-Penrose pseudo-inverse A† ∈ Rn×m is defined as

A† = Ṽ Σ̃−1Ũ ∗ =

r∑
j=1

σ−1
j (A)vju

∗
j (2.38)

We list some important properties of the Moore-Penrose pseudo-
inverse (or simply pseudo-inverse).
1. A† has the same rank r as A
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2.
σmax(A

†) = ∥A†∥2→2 = σ−1
r (A) (2.39)

3. If A is an invertible square matrix, then A† = A−1

4. If A∗A is invertible (implying m ≥ n), then

A† = (A∗A)−1A∗ (2.40)

If AA∗ is invertible (implying n ≥ m), then

A† = A∗(AA∗)−1 (2.41)

The first and second property can be easily verified from the defini-
tion of the pseudo-inverse. For the third property, we can verify it by
checking that AA† = A†A = Im (when m = n). As for the fourth
property,

(A∗A)−1A∗ = (Ṽ Σ̃2Ṽ ∗)−1Ṽ Σ̃Ũ ∗

= Ṽ Σ̃−2Ṽ ∗Ṽ Σ̃Ũ ∗

= Ṽ Σ̃−1Ũ ∗

= A†

A∗(AA∗)−1 = Ṽ Σ̃Ũ ∗(Ũ Σ̃2Ũ ∗)−1

= Ṽ Σ̃Ũ ∗Ũ Σ̃−2Ũ ∗

= Ṽ Σ̃−1Ũ ∗

= A†

2.2.4 Gershgorin’s Disk Theorem
Theorem 2.2.2 (Gershgorin’s disk theorem). Let λ be an eigenvalue
of a square matrix A ∈ Rm×n. There exists an index j ∈ [n] such
that

|λ− Aj,j| ≤
∑

ℓ∈[n]\{j}

|Aj,ℓ| (2.42)

The readers can refer to theorem A.11 of [13] for the proof. The
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Gershgorin’s disk theorem states that for a given eigenvalue λ, there
is at least one diagonal entry of A whose distance with λ is within the
absolute sum of all the other off-diagonal entries of the same row.

2.3 Least-Squares Problems
In this section, we consider two kinds of least squares problems.

The first one has the following objective

minimize
x

∥Ax− y∥2 (2.43)

where y ∈ Rm and A ∈ Rm×n (m ≥ n) has full rank n. We introduce
two methods to solve it. One method involves projection of y onto
the column space of A. Assume the orthogonal projection of y onto
the column space of A be Ax for some x ∈ Rn. The residual vector
y −Ax will be orthogonal to the column space of A (hence, to all the
n column vectors of A). Therefore, we can write

A∗(y − Ax) = 0

⇒A∗Ax = A∗y
(2.44)

The equation 2.44 is called the normal equation and we can come up
with the solution x = (A∗A)−1A∗y = A†y from it. The other method
transforms the original problem to an equivalent quadratic problem.
Precisely speaking,

arginf
x

∥Ax− y∥2

= arginf
x

∥Ax− y∥22

= arginf
x

⟨A∗Ax, x⟩ − 2⟨Ax, y⟩

Take the first derivative of ⟨A∗Ax, x⟩−2⟨Ax, y⟩ with respect to x and
we can exactly get the normal equation 2.44. As a result, we derive that
the orthogonal projection of y onto the column space of A is AA†y.
We can define the orthogonal projection matrix onto the column space
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of A as
PA := AA† (2.45)

If we compute the SVD of A as UΣV ∗, where U ∈ Rm×m and V ∈
Rn×n are two orthonormal matrices, and Σ ∈ Rm×n has rank r. In
section 2.2, we have verified that C ≜ [u1| · · · |ur] ∈ Rm×r forms a
basis for the column space of A, L ≜ [ur+1| · · · |um] ∈ Rm×(m−r) forms
a basis for the left null space of A, R ≜ [v1| · · · |vr] ∈ Rn×r forms a
basis for the row space of A and N ≜ [vr+1| · · · |vn]Rn×(n−r) forms
a basis for the null space of A. If we plug the matrices C,L,R and
N into 2.45, we can have the resulting important result : CC∗, LL∗,
RR∗ and NN ∗ are all orthogonal projection matrices onto the column
space, left null space, row space and null space of A, respectively.

The second kind of least-squares problem has the following objec-
tive

minimize
x

∥x∥2 subject to Ax = y (2.46)

where y ∈ Rm and A ∈ Rm×n (n ≥ m) has full rank m. We can
solve it using the duality theory, which will be introduced in section
3.1.1. Note that we can transform the problem 2.46 to an equivalent
quadratic problem

minimize
x

∥x∥22 subject to Ax = y

We can construct the Lagrangian L(x, ν) = ∥x∥22 + νT (Ax− y). The
gradient of the Lagrangian at the primal-dual optimal pair (x∗, ν∗)

should be zero. That is,

2x∗ + (A∗ν∗) = 0

Hence, x∗ = −1
2A

∗ν∗. Plugging it into the equality Ax∗ = y, we
can get −1

2AA
∗ν∗ = y. Therefore, ν∗ = −2(AA∗)−1y and x =

A∗(AA∗)−1y = A†y.
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2.4 The Generalized Singular Value Decompo-
sition (GSVD)

Assume P ∈ Rℓ×ℓ is an unitary matrix. We partition P as

P =
[
P1 P2

k q

]
=

[
P3 m

P4 p

]
=

[
P11 P12 m

P21 P22 p

k q

]
, ℓ = k + q = m + p

P ∗
1P1 = P ∗

11P11 + P ∗
21P21 = Ik, where Ik ∈ Rk×k denotes the identity

matrix. Assume ui ∈ Rk is an eigenvalue of P ∗
11P11 corresponding to

the eigenvalue λi. Therefore,
P ∗
11P11ui = λiui

⇒ (P ∗
1P1 − P ∗

21P21)ui = λiui

⇒P ∗
21P21ui = (1− λi)ui

Hence, P11 and P21 have the same right singular vectors. Assume P11

has singular values 1 of multiplicity r, αi (i = 1, 2, · · · , s, 1 > α1 ≥
· · · ≥ αs > 0). It follows that P21 has singular values 1 of multiplicity
k−r−s, βi (i = 1, 2, · · · , s, 0 < β1 ≥ · · · ≥ βs < 1 and α2

i +β
2
i = 1).

Assume SVD of P11 is WΣ11U
∗, where W ∈ Rm×m, U ∈ Rk×k and

Σ11 =

r I

s C

m− r − s 0c
r s k − r − s

 ∈ Rm×k, C=diag(α1, · · · , αs),

I denotes the identity matrix and 0c denotes the matrix with all en-
tries 0. Assume SVD of P21 is ZΣ21U

∗, where Z ∈ Rp×p and Σ21 =p− k + r 0s
s S

k − r − s I

r s k − r − s

 ∈ Rp×k, S=diag(β1, · · · , βs) and 0s also

denotes the matrix with all entries 0.
P3P

∗
3 = P11P

∗
11 + P12P

∗
12 = Im, where Im ∈ Rm×m denotes the

identity matrix. Similarly, we can derive that P11 and P12 have the
same left singular vectors and assume SVD of P12 is WΣ12V

∗, where
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Σ12 =

r 0∗s
s S

m− r − s I

p− k + r s m− r − s

 ∈ Rm×q and V ∈ Rq×q.

Finally, we can derive that P22 and P21 have the same left singular
vectors and P22 and P12 have the same right singular vectors. SVD of
P22 can be expressed as ZΣ22V

∗, where

Σ22 =

p− k + r Q

s T

k − r − s 0∗c
p− k + r s m− r − s

 ∈ Rp×q, Q may be ±I

and T may be ±C.
Hence, we can decompose P as P = DΣE∗, where

D =

[
m W 0

p 0 Z

m p

]
(2.47)

Σ =



r I ... 0∗s
s C ... S

m− r − s 0c
... I

· · · · · · · · · · · · · · · · · · · · ·
p− k + r 0s

... Q

s S ... T

k − r − s I ... 0∗s
r s k − r − s p− k + r s m− r − s


(2.48)

E∗ =

[
k U ∗ 0

q 0 V ∗

k q

]
(2.49)

Since P,W,Z, U, V are all unitary, Σ is also unitary. Therefore, CS +

ST = 0, which means T should be −C. Furthermore, since P12 =

WΣ12V
∗, we know that P12vi = 0 for i = 1, 2, · · · , p − k + r, where

vi denotes the i-th column of V . Since P22 = ZΣ22V
∗, P22vi = −zi
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if Q = −I , where zi denotes the i-th column of Z. If this is the case,
we can simply change vi to −vi and then we can change Q to I . As
a summary, we can decompose each block P11, P12, P21 and P22 of an
unitary matrix P as
1.

P11 = WΣ11U
∗ = W

I C

0c

U ∗ (2.50)

2.

P12 = WΣ12V
∗ = W

0∗s S

I

V ∗ (2.51)

3.

P21 = ZΣ21U
∗ = Z

0s S

I

U ∗ (2.52)

4.

P22 = ZΣ22V
∗ = Z

I −C
0∗c

V ∗ (2.53)

Given two matrices A ∈ Rm×n and B ∈ Rp×n, in the following we
will demonstrate how to derive a generalized singular value decompo-
sition (GSVD) of A and B step by step.

1. Form F =

[
A

B

]
∈ R(m+p)×n. Let k denote the rank of F .

2. Compute SVD of F . Assume it is P
[
R 0

0 0

]
Q∗, where P ∈ R(m+p)×(m+p)

and Q ∈ Rn×n are two orthonormal matrices. R ∈ Rk×k is non-
singular with diagonal entries being the singular values of F .

3. Partition P as P =

[
P11 P12

P21 P22

]
, where P11 ∈ Rm×k and P21 ∈ Rp×k
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4. Compute SVD of P11. Assume it is WΣAU
∗, where W ∈ Rm×m

and U ∈ Rk×k are two orthonormal matrices. ΣA ∈ Rm×k isr IA
s SA

m− r − s 0A
r s k − r − s

, where SA is a diagonal matrix

with all entries being the non-one singular values of A, 0A denotes
the matrix with all entries 0 and IA denotes an identity matrix.

5. Let SB ∈ Rs×s be Is − S2
A, where Is denotes an identity matrix.

Form ΣB ∈ Rp×k as

p− k + r 0B
s SB

k − r − s IB
r s k − r − s

, where 0B also

denotes the matrix with all entries 0 and IB also denotes an identity
matrix.

6. Compute Z = P21Σ
∗
BU . Then SVD of P21 can be expressed as

ZΣBU
∗

7. F =

[
A

B

]
=

[
P11 P12

P21 P22

] [
R 0

0 0

]
Q∗

⇒
[
A

B

]
Q =

[
P11R 0

P21R 0

]
=

[
WΣAU

∗R 0

ZΣBU
∗R 0

]
Therefore, we have the following two equations which denote a
GSVD of A and B.

W ∗AQ = ΣA
[
U ∗R 0

]
(2.54)

Z∗BQ = ΣB
[
U ∗R 0

]
(2.55)

If p = n and B is non-singular, then k = n. Hence,

W ∗AQ =

[
SA

0A

]
U ∗R, Z∗BQ =

[
SB

IB

]
U ∗R
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We can derive that[
SB

IB

]
W ∗AQ =

[
SB

IB

] [
SA

0A

]
U ∗R

=

[
SB

IB

] [
SA

0A

] [
S−1
B

IB

]
Z∗BQ

=

[
SA

0A

]
Z∗BQ

Therefore, we have
ΣBW

∗A = ΣAZ
∗B (2.56)

In this section, we make detailed explanations about the GSVD
and decomposition of an unitary matrix, which are introduced in [30].

2.5 Tikhonov Regularized Least-Squares Prob-
lems

Given L ∈ Rp×n and A ∈ Rm×n, m ≥ n ≥ p. Define F ≜
[
L

A

]
.

Assume rank L = p and rank F = n. From the discussion of the last
section, we can construct a generalized singular value decomposition of
the matrices L and A as

W ∗LQ = ΣLU
∗R

Z∗AQ = ΣAU
∗R

where ΣL ∈ Rp×n is
[
r IL 0

s SL 0

r s n− r − s

]
=
[
Mp 0

]
(Mp = diag(µi))

and ΣA ∈ Rm×n is

m− n + r 0A
s SA

n− p IA
r s n− p

 =

m− n 0 0

Σp 0

0 In−p


(Σp = diag(σi)). The µ′is and σ′is satisfy 0 ≤ σ1 ≤ · · · ≤ σp, 1 ≥ µ1 ≥
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· · · ≥ µp > 0, σ2i + µ2i = 1. 1 Hence, we can write A = Y ΣX−1 and
L = WΣLX

−1, where Y ∈ Rm×n is [zm−n+1 zm−n+2 · · · zm], Σ ∈ Rn×n

is
[
Σp 0

0 In−p

]
and X ∈ Rn×n is (U ∗RQ∗)−1 = QR−1U .

Consider a least-squares problem with Tikhonov regularization as
follows.

min
x
{∥Ax− b∥2 + λ2∥Lx∥2} (2.57)

where b ∈ Rm and λ is the regularization parameter that controls the
weight given to minimization of the seminorm ∥Lx∥ relative to mini-
mization of the residual norm ∥Ax− b∥. Let xλ denote the Tikhonov
regularized solution of the least-squares problem. We can analytically
solve the least-squares problem by assigning the gradient of the objec-
tive function to zero. That is,

2A∗Axλ − 2A∗b + 2λ2L∗Lxλ = 0

As a result,
xλ = (A∗A + λ2L∗L)−1A∗b

=

p∑
i=1

σi
σ2i + λ2µ2i

(y∗i b)xi +

n∑
i=p+1

(y∗i b)xi

Define βi ≜ y∗i b and the generalized singular values γi as γi ≜ σi
µi

. We
can derive that

xλ =

p∑
i=1

γ2i
γ2i + λ2

βi
σi
xi +

n∑
i=p+1

βixi (2.58)

We call ϕi ≜ γ2i
γ2i+λ

2 as the filter factors for Tikhonov regularization,
which can dampen or filter out the contributions to xλ corresponding
to the generalized singular values γi smaller than λ. Note that if there
are indeed perturbation errors added on b, y∗i b will deviate from its
original correct value. The largest corresponding perturbation to the

1Note that L corresponds to the matrix A and A corresponds to the matrix B of the last sec-
tion. Besides, we interchange the notation of p and m, that is, the p in this section corresponds
to the m of the last section and the m in this section corresponds to the p of the last section.
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ordinary least-squares solution is associated with the smallest σi (and
thus associated with the smallest γi). The existence of the regulariza-
tion parameter λ effectively alleviates such error.

Define δ0 ≜ ∥(Im − Y Y ∗b)∥. It can be derived that

∥Lxλ∥2 =
p∑
i=1

(
γ2i

γ2i + λ2
βi
σi

)2

(2.59)

∥Axλ − b∥2 =
p∑
i=1

(
λ2

γ2i + λ2
βi

)2

+ δ20 (2.60)

The physical meaning of δ0 is that it is the norm of the component of b
which is outside the range ofA. The systemAx = b is consistent if δ0 =
0; hence, δ0 is also viewed as the incompatibility measure. We further
define x0 as the solution of the unregularized least-squares problem;
that is, x0 ≡ lim

λ→0
xλ = XΣ†Y ∗b and δ∞ ≡ δ0 + ∥YpY ∗

p b∥ where
Yp = [y1, · · · , yp]. We observe that when there is no regularization,
i.e., λ = 0, the residual norm ∥Ax0 − b∥ = δ0 and the seminorm is
∥Lx0∥. When there is infinite regularization, i.e., λ→ ∞, the residual
norm is δ∞ and the seminorm is 0. Moreover, For 0 < λ < ∞, we
can verify that ∥Axλ−b∥ and ∥Lxλ∥ simultaneously the following two
equations :

∥Axλ − b∥ = min
x

∥Ax− b∥ subject to ∥Lx∥ ≤ ∥Lxλ∥ (2.61)

∥Lxλ∥ = min
x

∥Lx∥ subject to ∥Ax− b∥ ≤ ∥Axλ − b∥ (2.62)

The reason is as follows. We know that xλ = argmin
x

{∥Ax − b∥2 +

λ2∥Lx∥2}. Assume there exists an x1 such that ∥Ax1−b∥ < ∥Axλ−b∥
and ∥Lx1∥ ≤ ∥Lxλ∥. Then ∥Ax1 − b∥2 + λ2∥Lx1∥2 < ∥Axλ − b∥2 +
λ2∥Lxλ∥2. This contradicts with the fact that xλ = argmin

x
{∥Ax −

b∥2+λ2∥Lx∥2}. Assume there exists an x2 such that ∥Lx2∥ < ∥Lxλ∥
and ∥Ax2 − b∥ ≤ ∥Axλ − b∥. Then ∥Ax2 − b∥2 + λ2∥Lx2∥2 <

∥Axλ − b∥2 + λ2∥Lxλ∥2. This again contradicts with the fact that
xλ = argmin

x
{∥Ax− b∥2 + λ2∥Lx∥2}.
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In this section, we introduce the Tikhonov regularization least-
squares problem and some properties regarding the seminorm ∥Lxλ
and the residual norm ∥Axλ − b∥. Actually, it is useful to plot the
seminorm ∥Lxλ∥ versus the residual norm ∥Axλ − b∥ to visualize the
compromise between the minimization of these two quantities. The
corresponding graph is called the L-curve, which consists of all points
(∥Axλ−b∥, ∥Lxλ∥) for λ ∈ [0,∞). In section 5.1, we will delve deeply
into the properties of the L-curve and present the L-curve method, as
well as other methods, e.g., the discrepancy principle, for determining
a good regularization parameter λ.

2.6 Sparsity and Compressiblity
The support of a vector x ∈ Rn is the index set of its nonzero

entries, which is defined as
Definition 2.6.1 (support).

supp(x) := {j ∈ [N ] : x[j] ̸= 0} (2.63)

x is called s-sparse if at most s of its entries are nonzero. We
quantify the concept of sparsity using the ℓ0 norm defined as follows.
Definition 2.6.2 (sparsity).

∥x∥0 := card(supp(x)) (2.64)

Hence, if x is s-sparse, ∥x∥0 ≤ s. The notation ∥ · ∥0 comes
from the observation that the p-th power of the ℓp-quasinorm of x (i.e.,
∥x∥pp =

n∑
j=1

|x[j]|p approaches card(supp(x)) as p approaches zero.

Therefore, the notation ∥ · ∥00 is actually more appropriate but ∥ · ∥0 is
customary to use in the literature. Furthermore, the term ℓ0 norm is
actually a misuse since it is neither a norm nor a quasinorm but it is
also customary to call it ℓ0 ”norm” in the literature. If x is not s-sparse,
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we may want to ”measure” how close it is to be s-sparse, which results
in the concept of best s-term approximation.
Definition 2.6.3 (best s-term approximation). For p > 0, the ℓp
error of best s-term approximation to a vector x ∈ Rn is defined by

σs(x)p := inf{∥x− z∥p, z ∈ Rn is s− sparse} (2.65)

Clearly, the infimum is achieved by xs, which is an s-sparse vector
whose nonzero entries equal the s largest (in modulus) components of
x. We call xs the best s-term approximation to x. Note that σs(x)p
satisfies the following useful inequality.

σs(x)p ≤
1

s1/q−1/p
∥x∥q (2.66)

for any p > q > 0 and any x ∈ Rn. This inequality is the same
as that stated in the proposition 2.3 of [13]. Actually, we can easily
verify this inequality by the inequality 2.8. We may also introduce the
notations Hs(x) for the best s-term approximation to x and Ls(x) for
the support of it. That is,

Ls(x) := index set of s largest absolute entries of x (2.67)
Hs(x) := x|Ls(x) (2.68)

We call the nonlinear operator Hs(x) the hard thresholding operator
of order s.

The sparsity condition may somehow be too stringent for a signal
to satisfy. We may rather consider the compressibility condition. First,
we introduce the non-increasing rearrangement of a vector x.
Definition 2.6.4 (non-increasing rearrangement). The non-increasing
rearrangement of a vector x ∈ Rn is the vector x∗ ∈ Rn for which

x∗[1] ≥ x∗[2] ≥ · · · ≥ x∗[n] ≥ 0

and x∗[j] = |x[I(j)]| ∀j ∈ [n]
(2.69)

where I indexes the sorted components of x.
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Then we define the compressibility as follows.
Definition 2.6.5 (compressibility). An n-dimensional vector x is said
to be r-compressible with magnitude G if the sorted components of the
vector obey the power law :

x∗[i] ≤ Gi−1/r (2.70)

where x∗ ∈ Rn denotes the non-increasing rearrangement of x and
r ∈ (0, 1].

We can approximate an r-compressible vector with a sparse signal
and bound the approximation error as follows

σs(x)p =

(
n∑

i=s+1

|x[i]|p
)1/p

≤

(
n∑

i=s+1

(Gi−1/r)p

)1/p

≤ G

(∫ n

s

i−p/rdi

)1/p

≤ G

(∫ ∞

s

i−p/rdi

)1/p

= G

(
r

p− r

)1/p

s
r−p
pr

≤ G

(
p

p− r

)1/p

s
r−p
pr

= G(rk)−1/ps−k

where k ≜ 1
r −

1
p and p ≥ 1.
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2.7 Random Matrices
A random matrix has random variables as their entries. It plays an

important role in the field of compressive sensing since compared with a
deterministic matrix, a random matrix can satisfy the restricted isom-
etry property with asymptotically fewer number of rows, which in turn
leads to fewer number of measurements required for reconstruction of
a signal. We will cover the restricted isometry property in the next
section and also introduce how a random matrix behaves in the aspect
of it. In this section, we will introduce two important categories of ran-
dom matrices, which are subgaussian random matrices and structured
random matrices respectively.

2.7.1 Subgaussian Random Matrices
To introduce subgaussian random matrices, we need to introduce

what a subgaussian random variable is first.
Definition 2.7.1 (subgaussian random variable). A random variable
X is called subgaussian if ∃ constants β, κ > 0 such that

P(|X| ≥ t) ≤ βe−κt
2 ∀t > 0 (2.71)

From the definition, we know that a random variable X is sub-
gaussian if its tail distribution is dominated by that of the standard
Gaussian random variable. A standard Gaussian random variable is
subgaussian with β = 1 and κ = 1/2. We can prove it as follows. Let
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g be a standard Gaussian random variable.

P(|g| ≥ t) =
2√
2π

∫ ∞

t

e−u
2/2du

=
2√
2π

∫ ∞

0

e−(u+t)2/2du

=
2√
2π
e−t

2/2

∫ ∞

0

e−tue−u
2/2du

≤ 2√
2π
e−t

2/2

∫ ∞

0

e−u
2/2du ∵ e−tu ≤ 1 for t, u ≥ 0

= e−t
2/2

A zero-mean and bounded random variable is also subgaussian. Indeed,
due to theorem 7.20 of [13], we know that it is subgaussian with β = 2

and κ = 1
2B2 if |X| ≤ B. A Rademacher variable (sometimes also

called symmetric Bernoulli variable) is an important example of a zero-
mean and bounded random variable, which is defined as follows.
Definition 2.7.2 (Rademacher variable). A Rademacher variable is
a random variable ϵ that takes the values +1 and -1 with equal prob-
ability, i.e.

P(ϵ = +1) = P(ϵ = −1) =
1

2
(2.72)

Hence, a Rademacher variable is a subgaussian random variable with
β = 2 and κ = 1/2. Besides the definition 2.7.1, the proposition 7.24
of [13] presents another equivalent condition related to the moment
generating function of a subgaussian random variable X .
Theorem 2.7.1. Let X be a random variable.
1. If X is subgaussian with mean zero, then there exists a constant

c (depending only on β and κ) such that

E[exp(θX)] ≤ exp(cθ2) ∀θ ∈ R (2.73)

2. Conversely, if 2.73 holds, then the mean of X is zero and X is
subgaussian with parameters β = 2 and κ = 1/(4c).
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Any valid constant c in 2.73 is called a subgaussian parameter of
X . Of course, it is preferable to choose the minimal possible c. It can
be derived that the moment generating function of a standard Gaussian
random variable is

E[exp(θg)] = exp(θ2/2) (2.74)

where g is a standard Gaussian random variable and θ ∈ R. Therefore,
c = 1/2 is a valid subgaussian parameter for a standard Gaussian
random variable. As for a zero-mean and bounded random variable,
its moment generating function has been derived in the theorem 7.20
of [13] to be

E[exp(θX)] ≤ exp(θ2B2/2) (2.75)
where X is a zero-mean and bounded random variable with |X| ≤ B.
Therefore, c = B2/2 is a valid subgaussian parameter for a zero-mean
and bounded random variable, which implies that c = 1/2 is a valid
subgaussian parameter for a Rademacher variable.

Let’s pay our attention back to the subgaussian random matrices.
Definition 2.7.3 (subgaussian random matrices). Let A ∈ Rm×n

be a random matrix. If the entries of A are independent zero-mean
subgaussian random variables with variance 1 and same subgaussian
parameters β, κ in 2.71, i.e.,

P(|Aj,k| ≥ t) ≤ βe−κt
2 ∀t > 0, j ∈ [m], k ∈ [n] (2.76)

then A is called a subgaussian random matrix. Specifically,
1. If the entries of A are independent Rademacher variables, then A

is called a Bernoulli random matrix.
2. If the entries of A are independent standard Gaussian random vari-

able, then A is called a Gaussian random matrix.

Note that the entries of a subguassian random matrix do not nec-
essarily have to be identically distributed. They only need to satisfy
the equation 2.76.
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2.7.2 Structured Random matrices
Structured random matrix is a structured matrix generated by a

random choice of parameters. Why do we need structured random
matrices? In some applications, the measurement matrices have certain
structures due to physical or other constraints and because of this fact,
fast matrix-vector algorithms, e.g. fast Fourier transform (FFT), are
allowed. Furthermore, since a structured matrix is generated by a
number of parameters much fewer than the matrix entries, so that
it consumes less space to store a structured random matrix than a
unstructured one. In this section, we will introduce an important kind
of structured random matrices - random sampling matrices, which are
associated with bounded orthonormal systems (BOSs).
Definition 2.7.4 (bounded orthonormal system). Let D ⊂ Rd be
endowed with a probability measure ν. Φ = {ϕ1, · · · , ϕn} is called a
bounded orthonormal system (BOS) of complex-valued functions on D
with constant K if
1.
∫
D ϕj(t)ϕk(t)dν(t) = δj,k (orthonormal)

2. ∥ϕj∥∞ := sup
t∈D

|ϕj(t)| ≤ K, ∀j ∈ [n] (bounded)
where K should be independent of n and be no less than one
(K ≥1).

Definition 2.7.5 (random sampling matrix). A random sampling
matrix A ∈ Rm×n associated with a BOS with constant K is con-
structed by

Aℓ,k = ϕk(tℓ) ℓ ∈ [m], k ∈ [n] (2.77)
where t1, · · · , tm are sampling points selected independently at random
according to the probability measure ν.

Hence, A has stochastically independent rows, but the entries
within each row are not independent. Indeed, for fixed ℓ, the entries
Aℓ,k, k ∈ [n], all depend on the single random sampling point tℓ. In
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the following, we will introduce some important BOSs and random
sampling matrices associated with them.

Trigonometric Polynomials Systems

A trigonometric polynomials system is defined as

{ϕk(t) = ej 2πkt , k ∈ Z} (2.78)

The domain D of each element is [0, 1] and the probability measure is
chosen as the uniform distribution. Clearly, the boundedness condition
is satisfied with the constant K = 1. The orthonormal condition can
also be easily verified since

∫ 1

0 ϕk(t)ϕj(t)dt = δj,k for j, k ∈ Z. There-
fore, a trigonometric polynomials system is indeed a BOS. Random
sampling matrices associated with it can be constructed by

Aℓ,k = ej 2πktℓ ℓ ∈ [m], k ∈ Γ ⊂ Z of size n (2.79)

The corresponding random sampling matrices are called non-equispaced
Fourier matrices and a common choice of Γ is {−q,−q+1, · · · , q−1, q}
(n = 2q + 1).

Discrete Orthonormal Systems

A discrete orthonormal system is defined as

{
√
nuk , k ∈ [n]} (2.80)

where uk are columns of a unitary matrix U. The domain D of each
element is [n] and the probability measure is chosen as the uniform
distribution. The orthonormal condition is satisfied since

1

n

n∑
t=1

√
nuk(t)

√
nuℓ(t) = ⟨uk, uℓ⟩ = δk,ℓ , k, ℓ ∈ [n]

Therefore, a discrete orthonormal system is a BOS if the boundedness
condition is satisfied with a constant K; that is,

max
k,t∈[n]

|
√
nuk(t)| = max

k,t∈[n]
|
√
nUt,k| ≤ K
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Random sampling matrices associated with it can be constructed by
selecting rows of

√
nU independently and uniformly at random, i.e.,

ak =
√
nRTuk , k ∈ [n] (2.81)

where ak denotes the k-th column of A, T = {t1, · · · , tm} and RT :

Rn → Rm denotes the random subsampling operator

(RTuk)[ℓ] = (uk)[tℓ] , ℓ ∈ [m] (2.82)

Note that it may happen that a row of
√
nU is selected more than

once. Hence, A may have repeated rows.
If we choose the unitary matrix U to be the discrete Fourier matrix

F with entries

Fℓ,k =
1√
n
ej 2π(ℓ−1)(k−1)/n ℓ, k ∈ [n] (2.83)

then a BOS with the constant 1 can be established. The correspond-
ing random sampling matrix is famous for being the random par-
tial Fourier matrix. It can be viewed as a special case of the non-
equispaced Fourier matrix with the points tℓ chosen from the grid
Zn/n := {0, 1/n, · · · , (n − 1)/n} instead of the whole interval [0, 1].
Taking measurements Ax with a random partial Fourier matrix A

amounts to observing m random frequencies of the signal x. A crucial
advantage of the random partial Fourier matrix is that it possesses a
fast matrix-vector multiplication, namely, the FFT.

Suppose we choose U to be

U = W ∗V (2.84)

where W ∈ Rn and V ∈ Rn are two unitary matrices. That is, their
columns form two orthonormal bases of Rn. Since

U ∗U = UU ∗ = In
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U is indeed an unitary matrix. A BOS thus can be established if the
boundedness condition is satisfied with a constant K; that is,

max
ℓ,k∈[n]

|
√
n⟨vℓ, wk⟩| ≤ K (2.85)

where vℓ denotes the ℓ-th column of V and wk denotes the k-th column
of W . The bases {vℓ, ℓ ∈ [n]} and {wk, k ∈ [n]} are called incoherent
if K can be chosen small. Note that the random partial Fourier matrix
falls into this setting by choosing one of the bases as the canonical
basis, say W = In and we can observe that the Fourier basis and the
canonical basis are maximally incoherent since K = 1.

2.8 Restricted Isometry Property
The s-th restricted isometry constant of a sampling matrix A ∈

Rm×n is the smallest number δs such that

(1− δs)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δs)∥x∥22 (2.86)

for any s-sparse vector x ∈ Rn. The intuition is that we want the
geometry of sparse signals to be preserved under the action of the
sampling matrix. We can also view this inequality relation in another
aspect. Consider two vectors a1 ∈ R2 and a2 ∈ R2 with unit norm.
Construct a vector y = x1a1 + x2a2 = Ax, where A = [a1, a2], x =

[x1, x2]
T and

√
x21 + x22 = 1. ∥Ax∥22 = x21 + x22 + 2⟨x1a2, x2a2⟩ =

1 + 2x1x2⟨a1, a2⟩. Hence if the correlation of a1 and a2 are smaller,
the restricted isometry constant will be smaller. Intuitively speaking,
if vectors correlate with each other lesser, then they are ”dissimilar” to
each other more. In this way, given a linear combination y = Ax, it
is more possible that x is the unique combination coefficient that can
give rise to y (or at least, if there exists another vector z satisfying
y = Az, then ∥z − x∥2 is small enough). Rigorously speaking, if
there is a subset of 2s (we denote such index set as Ω3) columns of
A with nonzero nullity, then there exists a nonzero 2s-sparse vector
x3 satisfying Ax3 = 0. Arbitrarily choose a subset of s entries of
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Ω3 and denote it as Ω1. In this way, x3 = (x3)Ω1 − (−x3)Ωc1. Let
(x3)Ω1 be denoted as x1 and (−x3)Ωc1 be denoted as x2. Hence, Ax3 =
A(x1−x2) = 0, i.e. Ax1 = Ax2. If x3 happens to be an 1-sparse vector,
then we choose x1 = 1

2x3 and x2 = −1
2x3. Therefore, to uniquely

recover an s-sparse signal, it is necessary that every subset of 2s columns
of A be independent (equivalently, δ2s < 1), which in turn requires that
m ≥ 2s.

In the following, we collect some important properties and results
relating to the restricted isometry constant.
1. For any two integers s ≤ t, δs ≤ δt. That is, the restricted isometry

constant is monotonically increasing with the sparsity level.

Proof. This can be easily verified by the definition of the re-
stricted isometry constant.

2. Let c and s be two positive integers. Then δcs ≤ cδ2s.

Proof. see corollary 3.4 of [26]

This property states that δ2s can give an upper bound of higher-
order restricted isometry constants.

3. Suppose A has s-th restricted isometry constant δs. Let T be a set
of s indices or fewer. Then the singular values of AT lie between√
1− δs and

√
1 + δs

• The singular values of A∗
T is the same as those of AT . Hence,√

1− δs∥u∥2 ≤ ∥A∗
Tu∥2 ≤

√
1 + δs∥u∥2 ∀u ∈ Rm (2.87)

• The singular values ofA†
T is the reciprocal of those ofAT . Hence,

1√
1 + δs

∥u∥2 ≤ ∥A†
Tu∥2 ≤

1√
1− δs

∥u∥2 ∀u ∈ Rm (2.88)

• The singular values ofA∗
TAT is the square of those ofAT . Hence,

(1− δs)∥u∥2 ≤ ∥A∗
TATu∥2 ≤ (1+ δs)∥u∥2 ∀u ∈ R|T | (2.89)
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• The singular values of (A∗
TAT )

−1 is the reciprocal of those of
A∗
TAT . Hence,

1

1 + δs
∥u∥2 ≤ ∥(A∗

TAT )
−1u∥2 ≤

1

1− δs
∥u∥2 ∀u ∈ Rm

(2.90)
4. Suppose ∥Ax∥2 ≤

√
1 + δs∥x∥2 for any s-sparse vectors x ∈ Rn.

Then for every signal v ∈ Rn,

∥Av∥2 ≤
√

1 + δs(∥v∥2 +
1√
s
∥v∥1) (2.91)

Proof. see proposition 3.5 of [26].

5. Suppose A has s-th restricted isometry constant δs. Let S and T be
disjoint sets of indices whose combined cardinality does not exceed
s. Then

∥A∗
SAT∥2→2 ≤ δs (2.92)

Proof. see proposition 3.2 of [26].

Assume a vector x has support supp(x) satisfying the cardi-
nality of the union of T and supp(x) does not exceed s. Then

∥A∗
TAx|T c∥2 = ∥A∗

TAx|S∥2, where S ≜ supp(x)\T
= ∥A∗

TASx|S∥2 ≤ ∥A∗
TAS∥2→2∥x|S∥2

≤ δs∥x|T c∥2
Let S and T be disjoint sets of indices whose combined cardi-

nality does not exceed s and a ∈ R|S| and b ∈ R|T | be two vectors.
It can be verified that

|⟨ASa,ATb⟩| ≤ δs∥a∥2∥b∥2 (2.93)

6. Let y ∈ Rm, A ∈ Rm×n, I, J ⊂ [n] be two disjoint sets. Assume
y ∈ span(AI) and let the projection of y onto span(AJ) be yp =
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AJA
†
Jy. Then

∥yp∥2 ≤
δ|I|+|J |

1− δmax(|I|,|J |)
∥y∥2 (2.94)

Let yr = y − yp. We can further derive that

(1−
δ|I|+|J |

1− δmax(|I|,|J |)
)∥y∥2 ≤ ∥yr∥2 ≤ ∥y∥2 (2.95)

Proof. see lemma 2 of [6].

In the following, we will introduce the restricted isometry property
of the subgaussian random matrices and the random sampling matrices.
We excerpt some theorems in section 9.1, 9.3 and 12.5 of [13].
Theorem 2.8.1. Let A ∈ Rm×n be a subgaussian random matrix.
Then there exists a constant C > 0 (depending only on the subgaus-
sian parameters β, κ) such that the restricted isometry constant
of 1√

m
A satisfies δs ≤ δ with probability at least 1− ϵ provided

m ≥ Cδ−2
(
s ln(eN/s) + ln(2ϵ−1)

)
(2.96)

Setting ϵ = 2 exp(−δ2m/(2C)) yields the condition

m ≥ 2Cδ−2 ln(eN/s) (2.97)

In this way, δs ≤ δ with probability at least 1− 2 exp(−δ2m/(2C)).

Theorem 2.8.2. Let A ∈ Rm×n be a Gaussian random matrix.
For η, ϵ ∈ (0, 1), assume that

m ≥ 2η−2
(
s ln(eN/s) + ln(2ϵ−1)

)
(2.98)

Then with probability at least 1−ϵ, the restricted isometry constant
δs of 1√

m
A satisfies

δs ≤ 2

(
1 +

1√
2 ln(eN/s)

)
η +

(
1 +

1√
2 ln(eN/s)

)2

η2 ≤ Cη

(2.99)
52



where C = 2(1 +
√
1/2) + (1 +

√
1/2)2 ≈ 6.3284.

Therefore, if
m ≥ 2C2δ−2

(
s ln(eN/s) + ln(2ϵ−1)

)
≈ 80.098δ−2

(
s ln(eN/s) + ln(2ϵ−1)

)
Then with probability at least 1 − ϵ, the restricted isometry constant
δs of 1√

m
A satisfies

δs ≤ C(
δ

C
) = δ

Theorem 2.8.3. Let A ∈ Rm×n be a random sampling matrix
associated to a BOS with constant K ≥ 1. For ϵ, η1, η2 ∈ (0, 1), if

m

ln(9m)
≥ C1η

−2
1 K2s ln2(4s) ln(8n) (2.100)

m ≥ C2η
−2
2 K2s ln(ϵ−1) (2.101)

then with probability at least 1− ϵ, the restricted isometry constant
δs of 1√

m
A satisfies δs ≤ η1+ η

2
1+ η2. The constants may be chosen

as C1 ≈ 5576 and C2 = 32/3.
Note that 2.100 and 2.101 can be implied by

m ≥ C ′K2δ−2smax{ln2(s)ln(K2δ−2sln(n))ln(n), ln(ϵ−1)} (2.102)

for some constant C ′ > 0. If ϵ is chosen to be n−ln3(n), then δs ≤ δ

with probability at least 1− n−ln
3(n) if

m ≥ C ′′K2δ−2sln4(n) (2.103)

for some constant C ′′ > 0.

Besides the common definition 2.86 of the restricted isometry prop-
erty. Some authors adopt the alternative definition as follows, e.g., the
restricted isometry condition introduced in [27] and [28]. The s-th
restricted isometry constant is defined as the smallest number δ̂s (to
differentiate this definition from 2.86, we adopt the notation δ̂s here)
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such that
(1− δ̂s)∥x∥2 ≤ ∥Ax∥2 ≤ (1 + δ̂s)∥x∥2 (2.104)

for any s-sparse vector x ∈ Rn. Assume a sampling matrix A ∈ Rm×n

satisfies δ̂2s = ϵ, then it has been proved in the proposition 3.2 of [27]
that
1. For every s-sparse vector x ∈ Rn and every set T ⊂ [n], |T | ≤ s,

the vector u = A∗Ax satisfies

∥u|T − x|T∥2 ≤ 2.03ϵ∥x∥2 (2.105)

2. For any vector z ∈ Rn and every set T ⊂ [n], |T | ≤ 2s, we have

∥(A∗z)|T∥2 ≤ (1 + ϵ)∥z∥2 (2.106)

3. Consider two disjoint sets I, J ⊂ [n], |I ∪ J | ≤ 2s. Let PI and
PJ denote the orthogonal projections in Rn onto range(AI) and
range(AJ), respectively. Then

∥PIPJ∥2→2 ≤ 2.2ϵ (2.107)

Because of the restricted isometry property, for any set T ⊂ [n]

with |T | ≤ s, submatrices AT are almost isometries. Therefore, u =

A∗Ax approximates x locally when restricted to a set of cardinality
s. We thus call the first result the local approximation property. The
third result states that range(AI) and range(AJ) are almost orthogonal.
Hence, range(AI) is close to the orthogonal complement of range(AJ)

in range(AI∪J).
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Chapter 3

Unstructured Optimization
In this chapter, we focus on optimization problems that are un-

structured, which means they do not take specific problem formula-
tions. Instead, we only assume the objective functions and the con-
straint functions to possess particular mathematical properties. For
instance, the differentiability, the convexity or the smoothness. Based
on these mathematical assumptions, we manage to design effective al-
gorithms in order to meet the purpose of optimization and also ana-
lyze them with mathematical rigorous accordingly. On the contrary,
in chapter four, we study ℓ0 minimization problems, which take specific
problem formulations and thus do not fall in the category of unstruc-
tured optimization.

3.1 ”Minorization-Maximization” Viewpoint
In this section, we will introduce the important duality theory

based on the concept of ”minorization-maximization”. First, we find
a lower bound of the objective function. Then we try to maximize
the lower bound hoping that the maximizer can ideally be a solution
of the original optimization problem. This is the reason why such
design methodology is called ”minorization-maximization”. Proceed-
ing with the duality theory, we introduce some algorithms, including
the Chambolle and Pock’s primal-dual algorithm, the augmented La-
grangian method and ADMM, that makes use of the theory of duality.
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3.1.1 Duality Theory
We consider a general optimization problem as follows.

inf
x
f0(x)

subject to fi(x) ≤ 0, i = 1, · · · ,m
hi(x) = 0, i = 1, · · · , p

(3.1)

The domain is D =
(
m
∩
i=0
domfi

)
∩
( p
∩
i=1
domhi

)
. Define

I−(u) :=

{
0 , u ≤ 0

∞ , u > 0

and

I0(u) :=

{
0 , u = 0

∞ , u ̸= 0

Then 3.1 is equivalent to

inf
x∈D

f0(x) +

m∑
i=1

I−(fi(x)) +

p∑
i=1

I0(hi(x)) (3.2)

To lower-bound 3.2, we replace I−(u) with the linear functions λiu, i =
1, · · · ,m, λi ≥ 0 and I0(u) with the linear functions νiu, i = 1, · · · , p
(since I−(u) ≥ λiu, I0(u) ≥ νiu ∀u). Hence we define a function called
Lagrangian as follows to be a lower bound of 3.2
Definition 3.1.1 (Lagrangian).

L(x, λ, ν) := f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x) (3.3)

λi, i = 1, · · · ,m and νi, i = 1, · · · , p are called Lagrange multipliers
and λ and ν are called dual variables or Lagrange multiplier vectors.

We further define the Lagrangian dual function as follows.
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Definition 3.1.2 (Lagrangian dual function).

g(λ, ν) := inf
x∈D

L(x, λ, ν) (3.4)

The domain of g is domg := {(λ, ν)|g(λ, ν) > −∞}.

Denoting the optimal value of 3.1 as p∗, we observe that for any λ ⪰ 0

and any ν g(λ, ν) will always be smaller than or equal to p∗, i.e., the
dual function yields a lower bound on the optimal value of 3.1. Hence,
we are motivated to maximize the Lagrangian dual function over the
variables λ and ν hoping to achieve p∗. This motivation gives rise to
defining the Lagrange dual problem associated with 3.1 as follows
Definition 3.1.3 (Lagrange dual problem).

sup
λ,ν

g(λ, ν) subject to λ ⪰ 0 (3.5)

As a counterpart, 3.1 is called the primal problem.

Note that since the Lagrangian dual function will always be concave,
the Lagrange dual problem (or simply dual problem) is always a con-
vex optimization problem no matter whether the primal problem is a
convex optimization problem or not.

Suppose x̂ satisfies fi(x̂) ≤ 0, i = 1, · · · ,m and hi(x̂), i =

1, · · · , p, then we call x̂ primal feasible. As a counterpart, a pair
(λ̂, ν̂) is called dual feasible if λ̂ ⪰ 0 and (λ̂, ν̂) ∈ domg. Suppose x∗
is optimal for the primal problem (hence, certainly primal feasible), we
call x∗ primal optimal (f0(x∗) = p∗). As a counterpart, if (λ∗, ν∗) is
optimal for the dual problem (hence, certainly dual feasible), we call
(λ∗, ν∗) dual optimal. Let d∗ denote the optimal value of the dual prob-
lem. Then g(λ∗, ν∗) = d∗. As a summary, we can have the following
inequality equation.

g(λ̂, ν̂) ≤ g(λ∗, ν∗) = d∗ ≤ p∗ = f0(x
∗) ≤ f0(x̂) (3.6)

We call the relation
d∗ ≤ p∗ (3.7)
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weak duality, which always holds. The corresponding difference

p∗ − d∗ (3.8)

is called the optimal duality gap. Attractively, we say that strong
duality holds if

p∗ = d∗ (3.9)
In such situation, the optimal duality gap is zero. Besides, if f0(x̂) −
g(λ̂, ν̂) = ϵ, then we say that x̂ is ϵ-suboptimal for the primal problem
since f0(x̂) − p∗ ≤ f0(x̂) − g(λ̂, ν̂) = ϵ and (λ̂, ν̂) is ϵ-suboptimal for
the dual problem since d∗ − g(λ̂, ν̂) ≤ f0(x̂)− g(λ̂, ν̂) = ϵ

Let x∗ be primal optimal and (λ∗, ν∗) be dual optimal. Suppose
the strong duality holds, then

f0(x
∗) = g(λ∗, ν∗) = inf

x
{f0(x) +

m∑
i=1

λ∗if
∗
i (x) +

p∑
i=1

ν∗i hi(x)}

≤ f0(x
∗) +

m∑
i=1

λ∗ifi(x
∗) +

p∑
i=1

ν∗i hi(x
∗)

≤ f0(x
∗)

The first equality is established because of the strong duality. The
second equality is established because of the definition of the Lagrange
dual function. The first inequality is established clearly and holds with
equality if x∗ minimizes the Lagrangian L(x, λ∗, ν∗) over x. The sec-
ond inequality is established because λ∗ is feasible (hence, λ∗i ≥ 0)
and x∗ is feasible (hence, fi(x∗) ≤ 0 and hi(x

∗) = 0). The second
inequality holds with equality if

m∑
i=1

λ∗ifi(x
∗) = 0. Since λ∗i ≥ 0 and

fi(x
∗) ≤ 0, λ∗ifi(x∗) = 0 ∀i ∈ [m], which is called the complementary

slackness condition. As a summary, we conclude that for any optimiza-
tion problem with differentiable objective and constraint functions for
which strong duality holds, any pair of primal and dual optimal points
(x∗, λ∗, ν∗) should satisfy the following necessary conditions

fi(x
∗) ≤ 0, i ∈ [m] and hi(x

∗) = 0, i ∈ [p] (3.10)
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λ∗i ≥ 0, i ∈ [m] (3.11)
λ∗ifi(x

∗) = 0, i ∈ [m] (3.12)

∇f0(x∗) +
m∑
i=1

λ∗i∇fi(x∗) +
p∑
i=1

ν∗i∇hi(x∗) = 0 (3.13)

Condition 3.10 is the primal feasible condition. Condition 3.11 is the
dual feasible condition. Condition 3.12 is the complementary slack-
ness condition. Condition 3.13 is made because ∇L(x∗, λ∗, ν∗) = 0.
As a whole, conditions 3.10, 3.11, 3.12 and 3.13 are jointly called the
Karush-Kuhn-Tucker (KKT) conditions.

Two questions arise naturally. One is that when KKT conditions
are sufficient conditions for primal and dual optimal points. The other
is that when the strong duality can hold. To answer these two ques-
tions, we consider the optimization problem to be convex in the subse-
quent discussion. That is, fi, i = 0, 1, · · · ,m are convex and hi, i ∈ [p]

are affine. Assume a primal feasible point x̂ and a pair of dual feasible
points (λ̂, ν̂) satisfy the KKT conditions. That is,

fi(x̂) ≤ 0, i ∈ [m]

hi(x̂) = 0, i ∈ [p]

λ̂i ≥ 0, i ∈ [m]

λ̂ifi(x̂) = 0, i ∈ [m]

∇f0(x̂) +
m∑
i=1

λ̂i∇fi(x̂) +
p∑
i=1

ν̂i∇hi(x̂) = 0

Since λ̂i ≥ 0, L(x, λ̂, ν̂) is convex in x. The last KKT condition states
that its gradient with respect to x vanishes at x = x̂, so x̂ minimizes
L(x, x̂, ν̂) over x. Therefore

g(λ̂, ν̂) = L(x̂, λ̂, ν̂)

= f0(x̂) +
m∑
i=1

λ̂ifi(x̂) +

p∑
i=1

ν̂ihi(x̂)

= f0(x̂)
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The last equality holds because λ̂ifi(x̂) = 0 and hi(x̂) = 0. Hence,
(x̂, λ̂, ν̂) is primal and dual optimal with zero duality gap. As a result,
for any convex optimization problem with differentiable objective and
constraint functions, any points that satisfy the KKT conditions are
primal and dual optimal, and have zero duality gap. KKT conditions
provide necessary and sufficient conditions for optimality. As for the
second question, we introduce the Slater’s condition first. A convex
optimization problem is said to satisfy the Slater’s condition if there
exists an x in the relative interior of D such that it is strictly feasible;
that is,

fi(x) < 0, i ∈ [m]

hi(x) = 0, i ∈ [p]
(3.14)

The Slater’s theorem states that if the Slater’s condition holds for a
convex optimization problem, then the strong duality holds. Hence, the
Slater’s condition is a sufficient condition for the strong duality. Fur-
thermore, if the first k constraint functions f1, f2, · · · , fk are affine, we
can refine the Slater’s condition so that fi(x) can equal zero for these
k constraint functions. As a special case, refined Slater’s condition re-
duces to feasibility when all the constraints are affine functions.

Based on the concept of strong duality, we may consider solving
the primal problem 3.1 by dealing with the following alternative opti-
mization problem

sup
λ∈Rm,ν∈Rp

inf
x∈D

f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x) (3.15)

The reader can refer to [5] for references of more details of the theory
of duality.

3.1.2 Chambolle and Pock’s Primal-Dual Algorithm
Assume A ∈ Rm×n and F : Rm → (−∞,∞] and G : Rn →

(−∞,∞] are two convex functions. Primal-dual algorithm deals with
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the following objective

inf
x∈Rn

F (Ax) +G(x) (3.16)

≡ inf
x∈Rn,z∈Rm

F (z) +G(x) subject to Ax = z (3.17)

We call 3.17 the primal problem. The associated Lagrange function is
defined as

L(x, z, ξ) := F (z) +G(x) + ⟨ξ, Ax− z⟩ (3.18)

The Lagrange dual function is defined as

H(ξ) := inf
x∈Rn,z∈Rm

L(x, z, ξ) = −F ∗(ξ)−G∗(−A∗ξ) (3.19)

where F ∗ and G∗ denote the convex conjugate of the function F and
G respectively.
Then we can come up with the dual problem defined as

sup
ξ∈Rm

H(ξ) (3.20)

x and z are called the primal variables and ξ is called the dual variable.
By the strong duality, the optimal objective function values of the
primal and dual problem are the same, i.e., if x∗ and z∗ are a pair of
minimizers of the primal problem and ξ∗ is a minimizer of the dual
problem, then F (z∗) + G(x∗) = H(ξ∗). Furthermore, as stated in
theorem B.30 of [13], (x∗, ξ∗) is a solution to the following saddle-point
problem

inf
x∈Rn

sup
ξ∈Rm

⟨Ax, ξ⟩ +G(x)− F ∗(ξ) (3.21)

The objective function of the saddle-point problem 3.21 is the funda-
mental concern of designing the primal-dual algorithm.

In the following, we will first explicitly describe the primal-dual
algorithm introduced in the chapter 15 of [13] and explain it using the
fixed-point iteration rules.1

1An optimization algorithm can be abstractly interpreted as a mapping M : Ω → Ω, where Ω
is the input domain and the output range of the mapping. A point θ∗ ∈ Ω is called a fixed point
of the algorithm if θ∗ = M(θ∗). Fixed point iteration is a method of designing an algorithm
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Algorithm 1 Primal-Dual Algorithm
Input: A ∈ Rm×n; convex functions F : Rm → (−∞,∞] and G : Rn → (−∞,∞]
Parameters : θ ∈ [0, 1], τ, σ > 0 such that ∥A∥22→2 < 1
Initialization : x(0) ∈ Rn, ξ(0) ∈ Rm, x̄(0) = x(0)

Iteration : repeat until a stopping criterion is met at k = k̄ :

ξ(n+1) := PF∗(σ, ξ(n) + σAx̄(n)) (PD1)

x(n+1) := PG(τ, x
(n) − τA∗ξ(n+1)) (PD2)

x̄(n+1) := x(n+1) + θ(x(n+1) − x(n)) (PD3)

Output: ξ(k̄), x(k̄)

Assume (x∗, ξ∗) is a solution pair of the saddle-point problem. On
one hand,

ξ∗ = argsup
ξ∈Rm

⟨Ax∗, ξ⟩ − F ∗(ξ)

= arginf
ξ∈Rm

−⟨Ax∗, ξ⟩ + F ∗(ξ)
(3.22)

On the other hand,

x∗ = arginf
x∈Rn

⟨Ax, ξ∗⟩ +G(x) (3.23)

Because of 3.22, we can make the following derivations
0 ∈ −Ax∗ + ∂F ∗(ξ∗)

⇒σAx∗ ∈ σ∂F ∗(ξ∗)

⇒ ξ∗ + σAx∗ ∈ ξ∗ + σ∂F ∗(ξ∗)

(3.24)

where σ is some positive constant
Because of 3.23, we can make the following derivations

0 ∈ A∗ξ∗ + ∂G(x∗)

⇒− τA∗ξ∗ ∈ τ∂G(x∗)

⇒x∗ − τA∗ξ∗ ∈ x∗ + τ∂G(x∗)

(3.25)

where τ is some positive constant
The results of 3.24 and 3.25 indicate two equations that a minimizer
pair (x∗, ξ∗) should satisfy. Based on those two equations, we can
derive the following fixed-point iteration rules

ξ(n) + σAx̄(n) ∈ ξ(n+1) + σ∂F ∗(ξ(n+1)) (3.26)
with the aim that the output of the algorithm will converge to a fixed point in the long run.
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x(n) − τA∗ξ(n+1) ∈ x(n+1) + τ∂G(x(n+1)) (3.27)
Equation 3.26 can be expressed as PD1 (P ∗

F is a proximal mapping
associated with the function F ∗) and equation 3.27 can be expressed
as PD2 (PG is a proximal mapping associated with the function G),
whereas PD3 is trivially a fixed-point iteration

Finally, a practical stopping criterion can be based on the primal-
dual gap

E(x, ξ) := F (Ax) +G(x) +G∗(−A∗ξ) + F ∗(ξ) (3.28)

We can terminate the algorithm once E(x(k), ξ(k)) ≤ η for some posi-
tive prescribed tolerance η with the iterates of the algorithm being x(k)
and ξ(k)

3.1.3 The Augmented Lagrangian Method
Assume A ∈ Rm×n and f : Rn → R is a closed, proper and convex

function. The augmented Lagrangian method deals with the following
convex optimization problem

inf
x∈Rn

f (x) subject to Ax = b (3.29)

We can construct the dual problem of the primal problem 3.29 as fol-
lows

sup
λ∈Rm

inf
x∈Rn

f (x) + ⟨λ,Ax− b⟩

= − inf
λ∈Rm

sup
x∈Rn

−f (x)− ⟨λ,Ax− b⟩

= − inf
λ∈Rm

d(λ)

(3.30)

where d(λ) := sup
x∈Rn

−f (x)−⟨λ,Ax−b⟩. According to lemma 8 of [10],

d(λ) is proved to be closed and convex. Assume the primal problem
3.29 is feasible; that is, there exists an x ∈ Rn satisfying Ax = b. Then
by the strong duality, we can solve the primal problem 3.29 by solving
its dual problem 3.30.

Given any µ ∈ Rm, suppose d is proper; that is, it is finite for

63



at least one choice of λ ∈ Rm, we can compute x̄ = arginf
x∈Rn

{f (x) +

⟨µ,Ax−b⟩+ c
2∥Ax−b∥

2
2}. Let λ = µ+c(Ax̄−b) and ν = b−Ax̄ ∈ Rm.

Then µ = λ+ cν and it is proved in the proposition 9 of [10] that ν ∈
∂d(λ). We can define the mapping Ncd(µ) = λ−cν = µ+2c(Ax̄−b).
Since d(λ) is proper, closed and convex, by theorem 1.9.1, Ncd is non-
expansive and any fixed point ofNcd is a minimizer of d, i.e., an optimal
solution to the dual problem 3.30.

Suppose for some scalar sequence {ρk} satisfying inf
k
{ρk} > 0 and

sup
k
{ρk} < 2. The sequences {x(k)} ⊂ Rn and {λ(k)} ⊂ Rm follow the

iteration rules
x(k+1) = arginf

x∈Rn
{f (x) + ⟨λ(k), Ax− b⟩ + c

2
∥Ax− b∥22}

λ(k+1) =
ρk
2
Ncd(λ

(k)) + (1− ρk
2
)λ(k)

=
ρk
2
(λ(k) + 2c(Ax(k+1) − b)) + (1− ρk

2
)λ(k)

= λ(k) + ρkc(Ax
(k+1) − b)

(3.31)

If the dual problem 3.30 possesses an optimal solution, then by theorem
1.9.2, we know that {λ(k)} converges to one of them. Furthermore, as
have been proved in the proposition 11 of [10], all limit points of {x(k)}
are optimal solutions to the primal problem 3.29. We can describe the
augmented Lagrangian method as the following algorithm If we set ρk
Algorithm 2 The Augmented Lagrangian Method
Input: b ∈ Rm；A ∈ Rm×n；f : Rn → R : closed, proper and convex
Parameter : c > 0
Initialization : λ(0) ∈ Rm

Iteration : repeat until a stopping criterion is met at k = k̄ :

x(k+1) = arginf
x∈RN

{f(x) + ⟨λ(k), Ax− b⟩+ c

2
∥Ax− b∥22}

λ(k+1) = λ(k) + ρkc(Ax
(k+1) − b) where 0 < ρk < 2

Output: x(k̄) and λ(k̄)
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to be 1 at each iteration, then the iteration rules 3.31 will become

x(k+1) = arginf
x∈Rn

{f (x) + ⟨λ(k), Ax− b⟩ + c

2
∥Ax− b∥22}

λ(k+1) = λ(k) + c(Ax(k+1) − b)
(3.32)

In this case, the augmented Lagrangian method minimizes the aug-
mented Lagrangian Lc(x, λ) = f (x) + ⟨λ,Ax− b⟩+ c

2∥Ax− b∥22 with
respect to x followed by a maximization over the dual variable λ. Note
that the iteration rule of λ is called the dual ascent step, which can be
seen as a fixed point iteration.

3.1.4 Alternating Direction Method of Multipliers (ADMM)
Assume A ∈ Rm×n, f : Rn → R and g : Rm → R are two

convex functions. ADMM deals with the following convex optimization
problem

inf
x∈Rn

f (x) + g(Mx)

≡ inf
x∈Rn,z∈Rm

f (x) + g(z) subject to Mx = z
(3.33)

We can construct the dual problem of the primal problem 3.33 as fol-
lows

sup
λ∈Rm

[ inf
x∈Rn

{f (x) + ⟨λ,Mx⟩} + inf
z∈Rm

{g(z) + ⟨λ,−z⟩} ]

= − inf
λ∈Rm

[ sup
x∈Rn

{−f (x)− ⟨λ,Mx⟩} + sup
z∈Rm

{−g(z)− ⟨λ,−z⟩} ]

= − inf
λ∈Rm

d1(λ) + d2(λ)

(3.34)
where d1(λ) := sup

x∈Rn
{−f (x)− ⟨λ,Mx⟩} and d2(λ) := sup

z∈Rm
{−g(z)−

⟨λ,−z⟩}. According to lemma 8 of [10], d1(λ) and d2(λ) are both
closed and convex. By the strong duality, we can solve the primal
problem 3.33 by solving its dual problem 3.34.

Given y(0) ∈ Rm, a scalar sequence {ρk} satisfying inf
k
{ρk} > 0

and sup
k
{ρk} < 2, we want to produce the iteration rule : y(k+1) =
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ρk
2 Ncd1(Ncd2(y

(k)))+ (1− ρk
2 )y

(k). In this way, by theorem 1.9.2, {y(k)}
can converge to a fixed point y(∞) ofNcd1◦Ncd2. Then by theorem 1.9.1,
we can find a minimizer λ(∞) of d1+d2, where y(∞) = λ(∞)+cν(∞) and
ν(∞) ∈ ∂d1(λ

(∞)), −ν(∞) ∈ ∂d2(λ
(∞)). We can produce such iteration

rule as the following four steps
1. express y(k) as y(k) = λ(k) + cν(k), where ν(k) ∈ ∂d2(λ

(k))

2. apply the mapping Ncd2

y(k+1) =
ρk
2
Ncd1(λ

(k) − cν(k)) + (1− ρk
2
)(λ(k) + cν(k))

3. express λ(k) − cν(k) as λ(k) − cν(k) = µ(k) + cw(k), where w(k) ∈
∂d1(µ

(k))

4. apply the mapping Ncd1

y(k+1) =
ρk
2
(µ(k) − cw(k)) + (1− ρk

2
)(λ(k) + cν(k))

= ρkµ
(k) + (1− ρk)λ

(k) + cν(k)

We can further organize the four steps into the following two steps.
Given λ(0), ν(0) ∈ Rm such that y(0) = λ(0) + cν(0).
1. Find µ(k), w(k) ∈ Rm such that λ(k) − cν(k) = µ(k) + cw(k) and
w(k) ∈ ∂d1(µ

(k))

2. Find λ(k+1), ν(k+1) ∈ Rm such that y(k+1) = λ(k+1) + cν(k+1) =

ρkµ
(k) + (1− ρk)λ

(k) + cν(k) and ν(k+1) ∈ ∂d2(λ
(k+1))

By the proposition 9 of [10], we can implement step 1 as follows

x(k+1) = arginf
x∈Rn

{f (x) + ⟨λ(k) − cν(k),Mx⟩ + c

2
∥Mx∥22}

µ(k) = λ(k) − cν(k) + cMx(k+1)

w(k) = −Mx(k+1)
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and we can implement step 2 as follows

z(k+1) = arginf
z∈Rm

{g(z) + ⟨ρkµ(k) + (1− ρk)λ
(k) + cν(k),−z⟩ + c

2
∥ − z∥22}

λ(k+1) = ρkµ
(k) + (1− ρk)λ

(k) + cν(k) − cz(k+1)

ν(k+1) = z(k+1)

We can summarize them as follows
x(k+1) = arginf

x∈Rn
{f (x) + ⟨λ(k) − cz(k),Mx⟩ + c

2
∥Mx∥22}

= arginf
x∈Rn

{f (x) + ⟨λ(k),Mx⟩ + c

2
∥Mx− z(k)∥22}

µ(k) = λ(k) − cz(k) + cMx(k+1)

z(k+1) = arginf
z∈Rm

{g(z) + ⟨ρkµ(k) + (1− ρk)λ
(k) + cz(k),−z⟩ + c

2
∥z∥22}

λ(k+1) = ρkµ
(k) + (1− ρk)λ

(k) + cz(k) − cz(k+1)

Since µ(k) = λ(k) − cz(k) + cMx(k+1),

ρkµ
(k) + (1− ρk)λ

(k) + cz(k)

= ρk(λ
(k) − cz(k) + cMx(k+1)) + (1− ρk)λ

(k) + cz(k)

=λ(k) + c(ρkMx(k+1) + (1− ρk)z
(k))

we can further summarize them as follows.

x(k+1) = arginf
x∈Rn

{f (x) + ⟨λ(k),Mx⟩ + c

2
∥Mx− z(k)∥22} (3.35)

z(k+1) = arginf
z∈Rm

{g(z)− ⟨λ(k), z⟩ + c

2
∥ρkMx(k+1) + (1− ρk)z

(k) − z∥22}

(3.36)
λ(k+1) = λ(k) + c(ρkMx(k+1) + (1− ρk)z

(k) − z(k+1)) (3.37)

We describe ADMM as the following algorithm. If we set ρk to be 1 at
each iteration and add some redundant terms, 3.35, 3.36 and 3.37 will
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Algorithm 3 ADMM
Input: A : Rm×n; f : Rn → R and g : Rm → R are two convex functions
Parameter : c > 0
Initialization : λ(0) ∈ Rm and z(0) ∈ Rm

Iteration : repeat until a stopping criterion is met at k = k̄ :

x(k+1) = arginf
x∈Rn

{f(x) + ⟨λ(k),Mx⟩+ c

2
∥Mx− z(k)∥22}

z(k+1) = arginf
z∈Rm

{g(z)− ⟨λ(k), z⟩+ c

2
∥ρkMx(k+1) + (1− ρk)z

(k) − z∥22} where 0 < ρk < 2

λ(k+1) = λ(k) + c(ρkMx(k+1) + (1− ρk)z
(k) − z(k+1))

Output: x(k̄), z(k̄) and λ(k̄)

become

x(k+1) = arginf
x∈Rn

{f (x) + g(z(k)) + ⟨λ(k),Mx− z(k)⟩ + c

2
∥Mx− z(k)∥22}

(3.38)
z(k+1) = arginf

z∈Rm
{f (x(k+1)) + g(z) + ⟨λ(k),Mx(k+1) − z⟩ (3.39)

+
c

2
∥Mx(k+1) − z∥22}

λ(k+1) = λ(k) + c(Mx(k+1) − z(k+1)) (3.40)

In this case, ADMM minimizes the augmented Lagrangian Lc(x, z, λ) =
f (x) + g(z) + ⟨λ,Mx − z⟩ + c

2∥Mx − z∥22 with respect to x and z

sequentially followed by a maximization over the dual variable λ. Note
that as we can see from algorithm 3, ADMM has a merit that it de-
couples the composite of the functions f and g, which enables us to
exploit the individual structure of the two functions.

Up to now, we find that the derivation of the ADMM is mainly
an application of the fixed-point algorithm to the non-expansive map-
ping Ncd1 ◦ Ncd2. Proposition 15 of [10] gives a theoretical guarantee
as follows
Theorem 3.1.1. Suppose there exists some optimal primal-dual
solution pair ((x∗, z∗), λ∗) to the original problem such that
1. x∗ minimizes f (x) + ⟨λ∗,Mx⟩ with respect to x
2. z∗ minimizes g(z)− ⟨λ∗, z⟩ with respect to z
3. Mx∗ = z∗
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Assume also that all subgradients of the function d1(λ) = sup
x∈Rn

{−f (x)−

⟨λ,Mx⟩} at each point λ ∈ Rm take the form −Mx̄, where x̄ at-
tains the stated supremum over x. Then if the sequences {x(k)} ⊂
Rn, {z(k)} ⊂ Rm, {λ(k)} ⊂ Rm follow the iteration rules, where
inf
k
{ρk} > 0 and sup

k
{ρk} < 2, then λ(k) converges to λ(∞), z(k)

converges to z(∞), and Mx(k) converges to Mx(∞) = z(∞), where
((x(∞), z(∞)), λ(∞)) is an optimal primal-dual solution pair to the
original problem.

3.2 ”Majorization-Minimization” Viewpoint
In this section, we will introduce the Bregman proximal gradi-

ent method and some methods that are special cases of it. Assume
f : Rn → (−∞,∞] is a convex and differentiable function and
g : Rn → (−∞,∞] is a convex function. The Bregman proximal
gradient method deals with the following objective

inf
x∈Rn

F (x) = f (x) + g(x) (3.41)

Algorithm 4 Bregman Proximal Gradient Method
Input: f : Rn → (−∞,∞] : a convex and differentiable function

g : Rn → (−∞,∞] :a convex function
h : Rn → (−∞,∞] : a convex and differentiable function

Parameters : η > 0
Initialization : x(0) ∈ Rn

Iteration : repeat until a stopping criterion is met at k = k̄ :

x(k+1) = arginf
x∈Rn

f(x(k)) + ⟨∇f(x(k)), x− x(k)⟩+ 1

η
Dh(x, x

(k)) + g(x) (3.42)

Output: x(k̄)

The Bregman proximal gradient method is described as algorithm 4

as above (Dh(x, x
(k)) is the Bregman divergence associated with h).

Assume f is M -smooth relative to h, then

F (x) = f (x)+g(x) ≤ f (x(k))+⟨∇f (x(k), x−x(k)⟩+MDh(x, x
(k))+g(x)
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Hence, if we choose the parameter η to be 1/M , then the iteration
3.42 is just to minimize the upper bound of the objective function
F (x). Such idea of designing an optimization algorithm is called ”
majorization-minimization”. In the following, we will introduce six spe-
cial cases of the Bregman proximal gradient method. Readers can refer
to [2],[22] and [36].

3.2.1 Proximal Gradient Method
This is a special case of the Bregman proximal gradient method

when h(x) = 1
2∥x∥

2
2. Hence, 3.42 becomes

x(k+1) = arginf
x∈Rn

f (x(k)) +∇f (x(k))T (x− x(k)) +
1

2η
∥x− x(k)∥22 + g(x)

= (I + η∂g)−1(I − η∇f )(x(k))
= Pg(η, x

(k) − η∇f (x(k)))

The proximal gradient method is described as the following algorithm.
Algorithm 5 Proximal Gradient Method
Input: f : Rn → (−∞,∞] : a convex and differentiable function

g : Rn → (−∞,∞] :a convex function
Parameters : η > 0
Initialization : x(0) ∈ Rn

Iteration : repeat until a stopping criterion is met at k = k̄ :

x(k+1) = Pg(η, x
(k) − η∇f(x(k))) (3.43)

Output: x(k̄)

We make a remark that the proximal gradient method is the same
as the forward-backward splitting method. We can split 3.43 into
a forward step and a backward step. The forward step is z(k) =

x(k) − η∇f (x(k)). It is a gradient descent method which will be in-
troduced later. We can think of it as forwarding to z(k) from the
current value x(k). The backward step is x(k+1) = Pg(η, z

(k)). It is
a proximal point method which will also be introduced later. Since
x(k+1) = (I + η∂g)−1(z(k)), z(k) = (I + η∂g)(x(k+1)). We can think of
it as backwarding to z(k) from the next value x(k+1).
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3.2.2 Proximal Point Method
The proximal point method is a special case of the Bregman prox-

imal gradient method when h(x) = 1
2∥x∥

2
2 and f (x) = 0 (or simply, a

special case of the proximal gradient method when f (x) = 0). Hence,
3.42 becomes

x(k+1) = arginf
x∈Rn

g(x) +
1

2η
∥x− x(k)∥22

= (I + η∂g)−1(x(k))

= Pg(η, x
(k))

The proximal point method is described as the following algorithm.
Algorithm 6 Proximal Point Method
Input: g : Rn → (−∞,∞] : a convex function
Parameters : η > 0
Initialization : x(0) ∈ Rn

Iteration : repeat until a stopping criterion is met at k = k̄ :

x(k+1) = Pg(η, x
(k)) (3.44)

Output: x(k̄)

3.2.3 Mirror Descent Method
Mirror descent method is a special case of the Bregman proximal

gradient method when g(x) is the characteristic function for a non-
empty, closed and convex set X ⊆ Rn. Therefore, the algorithm can
be described as follows
Algorithm 7 Mirror Descent Method
Input: f : Rn → (−∞,∞] : a convex and differentiable function

h : Rn → (−∞,∞] : a convex and differentiable function
X ⊆ Rn : a non-empty, closed and convex set

Parameters : η > 0
Initialization : x(0) ∈ X
Iteration : repeat until a stopping criterion is met at k = k̄ :

x(k+1) = arginf
x∈X

f(x(k)) + ⟨∇f(x(k)), x− x(k)⟩+ 1

η
Dh(x, x

(k)) (3.45)

Output: x(k̄)

3.2.4 Projected Gradient Descent Method
Projected gradient descent method is a special case of the Breg-

man proximal gradient method when h(x) = 1
2∥x∥

2
2 and g(x) is the
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characteristic function for a non-empty, closed and convex set X ⊆ Rn

(or simply, a special case of the mirror descent method when h(x) =
1
2∥x∥

2
2). Hence, 3.42 becomes

x(k+1) = argmin
x∈X

f (x(k)) + ⟨∇f (x(k)), x− x(k)⟩ + 1

2η
∥x− x(k)∥22

= argmin
x∈X

1

2
∥x− (x(k) − η∇f (x(k)))∥22

= projX (x
(k) − η∇f (x(k)))

where projX (·) is the projection operator defined in 1.21. We can de-
scribe the projected gradient descent method as the following algorithm
Algorithm 8 Projected Gradient Descent Method
Input: f : Rn → (−∞,∞] : a convex and differentiable function

X ⊆ Rn : a non-empty, closed and convex set
Parameters : η > 0
Initialization : x(0) ∈ X
Iteration : repeat until a stopping criterion is met at k = k̄ :

x(k+1) = projX (x(k) − η∇f(x(k))) (3.46)

Output: x(k̄)

3.2.5 Entropy Mirror Descent Method
Entropy mirror descent method is a special case of the Bregman

proximal gradient method when h(x) is the negative entropy and g(x)
is the characteristic function for the probability simplex ∆ (a vector
belonging to ∆ has the sum of its values of entries equal to one). Hence,
3.42 becomes

x(k+1) = arginf
x∈∆

f (x(k)) + ⟨∇f (x(k)), x− x(k)⟩ + 1

η

n∑
i=1

x[i] log x[i]

(x(k))[i]

⇒ (x(k+1))[i] =
(x(k))[i]e−η(∇f(x

(k))[i]

n∑
i=1

(x(k))[i]e−η(∇f(x
(k))[i]

∀i ∈ [n]

Therefore, we can describe the entropy mirror descent method as the
following algorithm
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Algorithm 9 Entropy Mirror Descent Method
Input: f : Rn → (−∞,∞] : a convex and differentiable function
Parameters : η > 0
Initialization : x(0) ∈ ∆
Iteration : repeat until a stopping criterion is met at k = k̄ :

(x(k+1))[i] =
(x(k))[i]e−η(∇f(x(k))[i]

n∑
i=1

(x(k))[i]e−η(∇f(x(k))[i]

∀i ∈ [n] (3.47)

Output: x(k̄)

3.2.6 Gradient Descent Method
Gradient descent method is a special case of the Bregman proximal

gradient method when h(x) = 1
2∥x∥

2
2 and g(x) = 0. Hence, 3.42

becomes

x(k+1) = arginf
x∈Rn

f (x(k)) + ⟨∇f (x(k)), x− x(k)⟩ + 1

2η
∥x− x(k)∥22

= x(k) − η∇f (x(k))

Hence, we can describe the gradient descent method as the following
algorithm
Algorithm 10 Gradient Descent Method
Input: f : Rn → (−∞,∞] : a convex and differentiable function
Parameters : η > 0
Initialization : x(0) ∈ Rn

Iteration : repeat until a stopping criterion is met at k = k̄ :

x(k+1) = x(k) − η∇f(x(k)) (3.48)

Output: x(k̄)

We can make a connection between the gradient descent method and
the proximal point method. Let g be a convex function. Since g is
not necessarily differentiable, we cannot apply gradient descent method
directly to g. However, the Moreau envelope gη is convex, differentiable
and ∇gη approximates ∂g (the reader can refer to section 1.8). We may
consider applying the gradient descent method to gη instead. In this
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way, 3.48 becomes

x(k+1) = x(k) − η∇gη(x(k))

= x(k) − η[
1

η
(I − (I + η∂g)−1)(x(k))]

= (I + η∂g)−1(x(k))

which coincides with the iteration rule 3.44 of the proximal point
method.

3.3 ”Minimization of First/Second Order Ap-
proximation” Viewpoint

In this section, our main concern is the steepest descent method,
which is designed based on the methodology of minimizing the first-
order approximation of the objective function. Gradient descent method
and Newton’s method can both be viewed as special cases of the steep-
est descent method. Furthermore, Newton’s method can also be inter-
preted as a method of minimizing the second-order approximation of
the objective function. Before introducing the steepest descent method,
we need to go through the concept of a general descent algorithm and
the idea of line search. Finally, we close this section by discussing how
to solve an equality-constrained minimization problem, including an
extension of the Newton’s method to solve it. The readers can refer to
[5] for references.

3.3.1 General Descent Algorithm
Suppose the objective function f : Rn → R of an unconstrained

minimization problem is convex and twice differentiable. Denote x∗
as an optimal point (i.e., minimizer) of the minimization problem and
p∗ = f (x∗) as the optimal value. Let x(0), x(1), · · · ∈ domf be a
minimizing sequence; that is, f (x(k+1)) ≤ f (x(k)) ∀k = 0, 1, · · · and
f (x(k)) → p∗ as k → ∞. For descent methods, minimizing sequences
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are chosen to be
x(k+1) = x(k) + t(k)∆x(k) (3.49)

∆x(k) ∈ Rn is called a step or search direction and t(k) ≥ 0 is called a
step size. From convexity of f , we know that

f (x(k+1)) ≥ f (x(k))+∇f (x(k))T (x(k+1)−x(k)) = f (x(k))+t(k)∇f (x(k))T∆x(k)

Since f (x(k+1)) ≤ f (x(k)), ∇f (x(k))T∆x(k) should be smaller than or
equal to zero. Such search direction is called a descent direction of f
at x(k). A general descent algorithm can be described as follows.
Algorithm 11 General Descent Algorithm
Input: f : Rn → R : convex and twice differentiable
Initialization : x(0) ∈ domf
Iteration : repeat until a stopping criterion is met at k = k̄:

determine a descent direction ∆x(k)

line search : choose a step size t(k) ≥ 0

update : x(k+1) = x(k) + t(k)∆x(k)

Output: x(k̄)

Different ways of determining a descent direction correspond to differ-
ent descent algorithms. We cover this issue in the next subsection. In
the following, we introduce two line search methods. The first one is
called exact line search.

t(k) = arginf
s≥0

f (x(k) + s∆x(k)) (3.50)

The second one is called backtracking line search. It can be described
as the following algorithm
Algorithm 12 Backtracking Line Search
Input: α ∈ (0, 0.5), β ∈ (0, 1)
Initialization : t(k) = 1

while f(x(k)) + t(k)∆x(k)) > f(x(k)) + αt(k)∇f(x(k))T∆x(k) do
t(k) := βt(k)

end while
Output: : t(k)

We can deduce from figure 3.1 that the output t(k) will be 1 or be-
long to (βt0, t0). Also note that f (x(k) + t(k)∆x(k)) ≈ f (x(k)) +

t(k)∇f (x(k))T∆x(k) < f (x(k)) + α∇f (x(k))T∆x(k) for t small enough.
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Figure 3.1: backtracking line search

Hence, the backtracking line search is guaranteed to terminate eventu-
ally.

3.3.2 Steepest Descent Method
First, we introduce the normalized steepest descent method. It is

a descent algorithm whose descent direction is determined by

∆x
(k)
nsd = arginf

v
{f (x(k)) +∇f (x(k))Tv | ∥v∥ = 1}

= arginf
v

{∇f (x(k))Tv | ∥v∥ = 1}
(3.51)

where ∥·∥ denotes some norm of a vector. Note that because ∇f (x(k))Tv
is a linear function of v, we need to add some constraint on v (i.e.,
∥v∥ = 1) or there will be no infimum. By Taylor series expansion, we
can approximate f (x) as f (x(k))+∇f (x(k))T (x−x(k)) when x is near
x(k). Hence, ∆x(k)nsd can be interpreted as a search direction that mini-
mizes the first order approximation of f (x) at x(k). Furthermore, it is
indeed a descent direction because ∇f (x)T∆xnsd = −∥∇f (x)∥∗ ≤ 0

(∥ · ∥∗ denotes the dual norm of a vector with respect to norm ∥ · ∥).
The descent direction of the steepest descent method is obtained by
multiplying ∆x

(k)
nsd by ∥∇f (x(k))∥∗. That is,

∆x
(k)
sd = ∥∇f (x(k))∥∗∆x(k)nsd (3.52)
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Once again, we can verify that ∆x(k)sd is indeed a descent direction be-
cause ∇f (x(k))T∆xsd = −∥∇f (x(k))∥2∗ ≤ 0

If we choose the norm to be Euclidean ℓ2 norm, then the steep-
est descent coincides with the gradient descent method whose descent
direction is

∆x
(k)
gd = −∇f (x(k)) (3.53)

Suppose f is m-strongly convex, then as have been introduced in sec-
tion 1.2.

f (x) +∇f (x)T (y − x) +
m

2
∥y − x∥22 ≤ f (y)

⇒ f (x)− 1

2m
∥∇f (x)∥22 ≤ p∗

If ∥∇f (x)∥2 ≤
√
2mϵ for some prescribed threshold ϵ > 0, then f (x)−

p∗ ≤ ϵ. Hence, a natural stopping criterion can be set as ∥∇f (x)∥2 ≤
η for some prescribed threshold η > 0. Furthermore, if f is also M -
smooth, it can be proved that (see [5])

f (x(k))− p∗ ≤ ck(f (x(0) − p∗) (3.54)

For exact line search, c = 1 − m
M < 1 and for backtracking line

search, c = 1−min{2mα, 2βαm
M} < 1. Hence, the convergence rate of

the gradient descent method depends greatly on the condition number
M/m of the Hessian matrix ∇2f (x).

If we choose the norm to be the quadratic P norm defined as

∥z∥P = (zTPz)1/2 = ∥P 1/2z∥2 (3.55)

where z ∈ Rn is a vector and P ∈ Rn×n is a positive definite ma-
trix. The descent direction of the normalized steepest descent for the
quadratic P norm can be derived as

∆x
(k)
nsd = −(∇f (x(k))TP−1∇f (x(k)))−1/2P−1∇f (x(k)) (3.56)

and that of the steepest descent for the quadratic P norm is

∆x
(k)
sd = −P−1∇f (x(k)) (3.57)
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The requirement of a search direction to be a descent direction ratio-
nalizes the positive definiteness of P (∵ ∇f (x(k))T∆x(k)sd

= −∇f (x(k))TP−1∇f (x(k)) < 0 if and only if P is positive definite).
We want to make an important connection between the steepest de-
scent for the quadratic P norm and the gradient descent in the follow-
ing. Let x̄ = P 1/2x and f̄ (x̄) = f (P−1/2x̄) = f (x). Suppose we apply
the gradient descent method to f̄ (x̄). The descent direction will be

∆x̄
(k)
gd = −∇f̄ (x̄(k)) = −P−1/2∇f (P−1/2x̄(k)) = −P−1/2∇f (x(k))

and the update step will become

x̄(k+1) = x̄(k) + t(k)∆x̄
(k)
gd

⇒x(k+1) = x(k) + t(k)(−P−1∇f (x(k)))
= x(k) + t(k)∆x

(k)
sd

Therefore, the steepest descent method in the quadratic P norm is
equivalent to the gradient descent method applied to the problem after
the change of coordinates x̄ = P 1/2x. The Hessian matrix after the
associated change of coordinates is

∇2f̄ (x̄(k)) = (P−1/2)T∇2f (p−1/2x̄(k))P−1/2

= (P−1/2)T∇2f (x(k))P−1/2

Since the convergence rate of the gradient method depends on the
condition number of the Hessian matrix, the steepest descent method
in the quadratic P norm converges very rapidly when the condition
number of the Hessian matrix (P−1/2)T∇2f (x(k))P−1/2 is small.

The Newton’s method is a special case of the steepest descent for
the quadratic P norm; however, instead of using a fixed positive definite
matrix P for every iterations, the Newton’s method uses different P
matrices depending on x(k) for every iterations. Concretely speaking,
the Newton’s method uses the matrix ∇2f (x(k)) for each iteration.
Hence the descent direction of the Newton’s method is defined as

∆x
(k)
nt = −(∇2f (x(k)))−1∇f (x(k)) (3.58)
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∆x
(k)
nt is also called the Newton step of f at x(k). Note that the Hessian

matrix ∇2f (x) of f should be positive definite so that ∆x(k)nt is indeed
a descent direction. Also note that since the Hessian matrix of each
iteration, which is (∇2f (x(k))−1/2)∇2f (x(k))∇2f (x(k))−1/2 = I , has
the smallest condition number one, we can expect the Newton’s method
converges very rapidly. Aside from interpreting the Newton’s method
as a special case of the steepest descent, there are two other important
interpretations of the Newton’s method. According to the optimality
condition introduced in section 1.1, we know that ∇f (x∗) = 0 at the
optimal point x∗ (the equality holds because there are no constraints on
x, i.e., x ∈ RN). We hope that x(k)+v, where v is a small perturbation
from x(k), can be an optimal point. Hence, we set the gradient vector
of f at x(k)+v to be zero; that is, ∇f (x(k)+v) = 0. Since v is a small
perturbation from x(k), we can linearize the gradient vector so that

∇f (x(k) + v) ≈ ∇f (x(k)) +∇2f (x(k))v = 0

In this way, v = −∇2f (x(k))−1∇f (x(k)), which is just the Newton
step. The Newton step can also be verified as a vector that minimizes
the second-order approximation of f at x(k), i.e.,

∆x
(k)
nt = arginf

v
f (x(k)) +∇f (x(k))Tv + 1

2
vT∇2f (x(k))v (3.59)

Denote the second-order approximation as

f̂k(v) = f (x(k)) +∇f (x(k))Tv + 1

2
vT∇2f (x(k))v (3.60)

We find that an estimate of the distance from f (x(k)) to the optimal
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value p∗ based on the second-order approximation is

f (x(k))− p∗

= f (x(k))− inf
x
f (x)

≈ f (x(k))− inf
v
f (x(k)) +∇f (x(k))Tv + 1

2
vT∇2f (x(k))v

= f (x(k))− f̂k(∆x
(k)
nt )

=
1

2
∇f (x)T∇2f (x)−1∇f (x)

We define the Newton decrement at x(k) as

λ(x(k)) := (∇f (x(k))T∇2f (x(k))−1∇f (x(k)))1/2 (3.61)

Hence, f (x(k)) − p∗ = 1
2λ(x

(k)). A natural stopping criterion can be
set as 1

2λ
2(x(k)) ≤ ϵ for some prescribed threshold ϵ > 0. Besides, the

Newton decrement can also be verified as equivalent to

((∆x
(k)
nt )

T∇2f (x(k))∆x
(k)
nt )

1/2 = ∥∆x(k)nt ∥∇2f(x(k)) (3.62)

which is the quadratic ∇2f (x(k)) norm of ∆x(k)nt . Finally, we present
some convergence results of the Newton’s method. Since the Hessian
matrix of f is required to be positive definite, f is m-strongly convex
for some m > 0. Suppose f is also M -smooth and the Hessian of f is
L-Lipschitz, i.e., ∥∇2f (x)−∇2f (y)∥2 ≤ L∥x− y∥2. It can be proved
that (see [5]) there exist two constants η and γ satisfying 0 < η ≤ m2

L

and γ > 0 such that

f (x(k+1))− f (x(k)) ≤ −γ if ∥∇f (x(k))∥2 ≥ η (3.63)
L

2m2
∥∇f (x(k+1))∥2 ≤ (

L

2m2
∥∇f (x(k))∥2)2 if ∥∇f (x(k))∥2 < η

(3.64)
If ∥∇f (x(k))∥2 ≥ η, we call x(k) is at the damped Newton phase; oth-
erwise, we call x(k) is at the quadratically convergent phase. Although
the Newton’s method converges fast, the cost of forming and storing
the Hessian matrix and that of computing the Newton step are high.
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3.3.3 Equality-Constrained Minimization Problems
In this subsection, we consider solving the following equality con-

strained minimization problem

inf
x
f (x) subject to Ax = b (3.65)

where f : Rn → R is a convex and twice differentiable function and
A ∈ Rp×n with rank equal to p < n. In the following, we introduce two
methods of solving 3.65. The first method solves 3.65 by converting it
to an unconstrained minimization problem. Concretely speaking, we
can express the constraint set {x|Ax = b} as

{x̂ + Fz|z ∈ Rn−p} (3.66)

where Ax̂ = b and F ∈ Rn×(n−p) is any matrix whose range is the
nullspace of A. Therefore, we can solve the following unconstrained
minimization problem instead

inf
z
f̃ (z) = f (Fz + x̂) (3.67)

The second method uses an extension of the Newton’s method to solve
3.65. Concretely speaking,

∆x
(k)
nt = argmin

v
f (x(k)) +∇f (x(k))Tv + 1

2
vT∇2f (x(k))v

subject to A(x(k) + v) = b
(3.68)

KKT conditions should be satisfied. They are listed as follows.

A(x(k) +∆x
(k)
nt ) = b (3.69)

∇2f (x(k))∆x
(k)
nt +∇f (x(k)) + ATw = 0 (3.70)

3.69 corresponds to the primal feasible condition. Since x(k) is feasible
(i.e., Ax(k) = b), A∆x(k)nt = 0. Such search direction is called a feasible
direction. Furthermore, it can be deduced that ∇f (x(k))T∆x(k)nt =

−(∆x
(k)
nt )

T∇2f (x(k))∆x
(k)
nt ≤ 0. Hence, the Newton step ∆x

(k)
nt is a

descent direction as desired. 3.70 corresponds to the condition that
the gradient of the Lagrangian should be zero (w is the associated dual
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variable for the primal problem 3.68). We can combine conditions 3.69
and 3.70 into a KKT linear system as follows.[

∇2f (x(k)) AT

A 0

] [
∆x

(k)
nt

w

]
=

[
−∇f (x(k))

0

]
(3.71)

We call
[
∇2f (x(k)) AT

A 0

]
the KKT matrix. In the following, we also

define the second-order approximation f̂k(v) as 3.60. We also derive
an estimate of the distance from f (x(k)) to the optimal value p∗ based
on the second-order approximation as follows

f (x(k))− p∗

= f (x(k))− inf
x
f (x)

≈ f (x(k))− inf
v
f (x(k)) +∇f (x(k))Tv + 1

2
vT∇2f (x(k))v

= f (x(k))− f̂k(∆x
(k)
nt )

= −∇f (x(k))T∆x(k)nt − 1

2
(∆x

(k)
nt )

T∇2f (x(k))∆x
(k)
nt

∵∇2f (x(k))∆x
(k)
nt + ATw = −∇f (x(k))

∴ (∆x
(k)
nt )

T∇2f (x(k))∆x
(k)
nt + (∆x

(k)
nt )

TATw = −(∆x
(k)
nt )

T∇f (x(k))
∵A∆x(k)nt = 0 ⇒ (∆x

(k)
nt )

TAT = 0

∴ (∆x
(k)
nt )

T∇2f (x(k))∆x
(k)
nt = −(∆x

(k)
nt )

T∇f (x(k)) = −∇f (x(k))T∆x(k)nt

∴ f (x(k))− f̂k(∆x
(k)
nt ) =

1

2
(∆x

(k)
nt )

T∇2f (x(k))∆x
(k)
nt

We also define the Newton decrement of f at x(k) as

λ(x(k)) := ((∆x
(k)
nt )

T∇2f (x(k))∆x
(k)
nt )

1/2 = ∥∆x(k)nt ∥∇2f(x(k)) (3.72)

A natural stopping criterion can also be set as 1
2λ

2(x(k)) ≤ ϵ for some
prescribed threshold ϵ > 0. Last, we prove that the Newton step of f
at x(k) derived by method 1 (denoted as (∆x(k)nt )1) is the same as that
derived by method 2 (denoted as (∆x(k)nt )2). The Newton step of f̃ at
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z(k), denoted as (∆z(k)nt )1, is calculated as

(∆z
(k)
nt )1 = −∇2f̃−1(z(k))∇f̃ (z(k)) = −(F T∇f (x(k))F )−1F T∇f (x(k))

∵ x(k) = Fz(k) + x̂ and x(k) + (∆x
(k)
nt )1 = F (z(k) + (∆z

(k)
nt )1) + x̂

∴ (∆x
(k)
nt )1 = F (∆z

(k)
nt )1 = −F (F T∇f (x(k))F )−1F T∇f (x(k))

As for method 2, since A(∆x(k)nt )2 = 0, (∆x(k)nt )2 = F (∆z
(k)
nt )2 for some

vector (∆z(k)nt )2. Hence,

∇2f (x(k))F (∆z
(k)
nt )2 + ATw = −∇f (x(k))

∵ AF = 0 ⇒ F TAT = 0

∴ F T∇2f (x(k))F (∆z
(k)
nt )2 = −F T∇f (x(k))

∴ (∆z
(k)
nt )2 = −(F T∇2f (x(k))F )−1F T∇f (x(k))

∴ (∆x
(k)
nt )2 = F (∆z

(k)
nt )2 = −F (F T∇2f (x(k))F )−1F T∇f (x(k))

Therefore, we successfully verify that (∆x
(k)
nt )1 = (∆x

(k)
nt )2. Further-

more, we can verify as follows that the Newton decrement of f̃ at z(k)
(denoted as λ̃2(z(k))) is the same as the Newton decrement of f at x(k)
(denoted as λ2(x(k))).

λ̃2(z(k)) = (∆z
(k)
nt )

T
1∇2f̃ (z(k))(∆z

(k)
nt )1

= (∆z
(k)
nt )

T
2∇2f̃ (z(k))(∆z

(k)
nt )2

= (∆z
(k)
nt )

T
2F

T∇2f (x(k))F (∆z
(k)
nt )2

= (∆x
(k)
nt )2∇2f (x(k))(∆x

(k)
nt )2

= λ2(x(k))

For this subsection, the readers can refer to [5] for references.
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3.4 Barrier Method
Barrier method (also called log barrier method or interior point

method) focuses on the following constrained minimization problem

inf
x
f0(x) subject to fi(x) ≤ 0, i = 1, 2, · · · ,m

and Ax = b
(3.73)

where f0, f1, · · · , fm : Rn → R are convex and twice differentiable
functions and A ∈ Rp×n has rank p < n. 3.73 is equivalent to

inf
x
f0(x) +

m∑
i=1

I−(fi(x)) subject to Ax = b (3.74)

where I−(u) =
{
0 u ≤ 0

∞ u > 0
. Since I−(u) is not differentiable, we con-

sider approximating it by a convex and differentiable function Î−(u) =
−1

t log(−u), where t > 0 is a parameter for the approximation ac-
curacy. As can be seen in figure 3.2, Î−(u) can approximate I−(u)
more and more accurately as t increases. Note that in section 3.1.1,
we replace I−(u) with a lower bound function λi(u), which results in a
”minorization-maximization” method. However, Î−(u) introduced in
this section is not a lower bound for I−(u) since Î−(u) is over I−(u)
when u is in the interval of -1 and 0. Hence, we do not cover the barrier
method in section 3.1.

As a result, the barrier method considers solving the following
alternative minimization problem instead of 3.73

inf
x
f0(x) +

m∑
i=1

−1

t
log(−fi(x)) subject to Ax = b

≡ inf
x
tf0(x) + ϕ(x) subject to Ax = b

(3.75)
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Figure 3.2: − 1
t log(−u)

where ϕ(x) = −
m∑
i=1

log(−fi(x)) with the domain domϕ = {x ∈

Rn|fi(x) < 0, i = 1, · · · ,m}2. ϕ(x) is called the logarithmic bar-
rier (or log barrier) for the original problem 3.73 and the alternative
problem 3.75 is called the centering problem. A minimizer x∗(t) of the
centering problem is called a central point and a central path associated
with the original problem is defined as

C = {x∗(t) | t > 0} (3.76)

Assume x∗(t) is primal optimal and ν∗(t) is dual optimal for the
centering problem. The following KKT conditions should be satisfied.

Ax∗(t) = b (3.77)
2since fi(x) is constrained to be strictly smaller than zero, feasible solutions of 3.75 always

lie in the interior of the constraint region of 3.73. This is why the barrier method is also called
the interior point method.
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fi(x
∗(t)) < 0 (3.78)

t∇f0(x∗(t)) +∇ϕ(x∗(t)) + ATν∗(t) = 0

⇒ t∇f0(x∗(t)) +
m∑
i=1

1

−fi(x∗(t))
∇fi(x∗(t)) + ATν∗(t) = 0

(3.79)

Conditions 3.77 and 3.78 correspond to the primal feasible conditions
and condition 3.79 corresponds to the requirement that the Lagrangian
of the centering problem be zero. Condition 3.79 is also called the cen-
trality condition.

Let λ̃i(t) = 1
−tfi(x∗(t))

, i = 1, · · · ,m and ν̃(t) = ν∗(t)/t. Since
t > 0 and fi(x

∗(t)) < 0, λ̃i(t) > 0. Furthermore, from the central-
ity condition, ∇f0(x∗(t)) +

m∑
i=1

λ̃i(t)∇fi(x∗(t)) + AT ν̃(t) = 0. Hence

x∗(t) minimizes the Lagrangian associated with the primal problem
3.73 L(x, λ, ν) = f0(x) +

m∑
i=1

λifi(x) + νT (Ax − b) for λ = λ̃(t)

and ν = ν̃(t), which implies that g(λ̃(t), ν̃(t)) > −∞. Actually,
g(λ̃(t), ν̃(t)) = f0(x

∗(t)) +
m∑
i=1

λ̃i(t)fi(x
∗(t)) + ν̃(t)T (Ax∗(t) − b) =

f0(x
∗(t)) − m

t . Therefore, (λ̃(t), ν̃(t)) is dual feasible for the original
primal problem 3.73. Considering the KKT conditions for the origi-
nal primal problem 3.73, we have verified that x∗(t) is primal feasible,
(λ̃(t), ν̃(t)) is dual feasible and ∇L(x∗(t), λ̃(t), ν̃(t)) = 0. However,
because λ̃i(t)fi(x∗(t)) = −1

t ̸= 0, i = 1, · · · ,m, the complementary
slackness condition is not satisfied. Hence, x∗(t) is not primal optimal
and (λ̃(t), ν̃(t)) is not dual optimal for the original problem 3.73. We
can conclude that

g(λ̃(t), ν̃(t)) < d∗ ≤ p∗ < f0(x
∗(t))

⇒ f0(x
∗(t))− p∗ < f0(x

∗(t))− g(λ̃(t), ν̃(t)) =
m

t

where p∗ represents the optimal value for the original problem 3.73 and
d∗ represents the optimal value for the dual problem of 3.73. As a re-
sult, we find that x∗(t) is m/t-suboptimal and converges to an optimal
point as t increases.
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Based on the above discussion, we can introduce the barrier method
as the following algorithm now.
Algorithm 13 Barrier Method
Input: fi(x) : Rn → R, i = 0, 1, · · · ,m : convex and twice differentiable functions

A ∈ Rp×n : a matrix with rank p < n
Parameters : µ > 1；tolerance ϵ > 0
Initialization : x(0) : strictly feasible (i.e., fi(x(0)) < 0, i = 1, 2, · · · ,m)；t(0) > 0
Iteration : repeat until m/t(k̄) < ϵ at k = k̄

centering step : compute x∗(t(k)) by minimizing t(k)f0(x) + ϕ(x) subject to Ax = b

starting at x(k) using the Newton′s method

update : x(k+1) = x∗(t(k))

increase t : t(k+1) = µt(k)

Output: x(k̄)

The barrier method solves a convex optimization problem with lin-
ear equality constraints and inequality constraints by reducing it to a
sequence of linear equality constrained problems, with twice differen-
tiable objective. The barrier method then applies the Newton’s method
to solve them. As what we have introduced in section 3.3, The New-
ton’s method solves a linear equality constrained optimization problem
with twice differentiable objective by reducing it to a sequence of lin-
ear equality constrained quadratic optimization problems. Each linear
equality constrained quadratic optimization problem can be solved an-
alytically by solving the KKT systems. As a whole, the barrier method
solves a convex optimization with linear equality constraints and in-
equality constraints by tackling a hierarchy of optimization problems
iteratively and progressively. Note that at each iteration within the
Newton’s method, we have a primal feasible point for the original prob-
lem 3.73. However, we do not have a dual feasible point until the end
of the execution of the Newton’s method (i.e., the end of the centering
step). What’s more, if we do not compute an exact minimizer of each
centering problem (inexact centering), then we still cannot have a dual
feasible point even at the end of each centering step.

Finally, we give a short remark on the choice of parameter µ. If we
choose a small µ, then a large number of centering steps are required to
meet the stopping criterion. But at each centering step, only a small
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number of iterations are required for the Newton’s method since we
start at the optimal point of last centering step and since the objective
does not change much due to small µ. Hence the iterates closely follow
the central path, which results in a path-following method. In contrast,
if we choose a large µ, a small number of centering steps are required
while the number of iterations for each centering step are large. Hence,
the iterates veer away off the central path. Empirically, a good choice
of µ is within 10 and 100. The readers can refer to [5] for materials of
the barrier method introduced in this section.

3.5 EM Algorithm
For signal processing, we often receive data from various sources. In

a parametric setting (or model-based setting), we assume the data to be
stochastic and generated from a probabilistic model. The probabilistic
model is governed by a probability density function which depends on
a set of unknown parameters. An important task is thus to estimate
the values of the parameters from the data (or called statistics) so
that we can have better understanding about the underlying generating
mechanism. Let the observation data vector y ∈ Rdy be a realization of
the random vector Y ∈ Rdy . Assume Y depends on a set of unknown
parameters θ0 ∈ Ω, which is the parameter space. The density of y
given a random parameter θ ∈ Ω3 is denoted as

p(y|θ) = p(Y = y|θ) (3.80)

which is also called the likelihood function of y. Clearly, our goal
is to estimate θ0 given y, which is known as an estimation problem.
A famous approach called the maximum likelihood estimation (MLE)
approach resorts to solving the following optimization problem in order

3Note that in this tutorial, we may interchangeably use the notation θ and θ0 depending on
the context of usage. If we want to express the deterministic nature of the true underlying
parameter, then we use θ0. On the other hand, if we are doing maximum likelihood estimation
or some other mathematical derivations, then we use θ to denote the random nature of the
unknown parameter.
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to deal with the estimation problem.

θ̂MLE = argsup
θ∈Ω

L(θ) := p(y|θ) = argsup
θ∈Ω

ℓ(θ) := log(p(y|θ)) (3.81)

We call θ̂MLE the MLE estimator of the true parameter vector θ0.
In some situations, y comes from the complete data x ∈ Rdx which

is a realization of the random vector X ∈ Rdx. The generation of X
also depends on the true parameter vector θ0. We cannot observe X
directly; however, we known the density function of x given a random
parameter θ ∈ Ω, which is

p(x|θ) = p(X = x|θ) (3.82)

The support of X , denoted as X , is thus the closure of the set of x
where p(x|θ) > 0. Since y comes from x, we also call y the incomplete
data as a counterpart of the complete data x. A full understanding
of x implies a full understanding of x. Hence, we can express the
conditional density of x given y and θ as

p(x|y, θ) = p(x|θ)
p(y|θ)

(3.83)

The support of X conditioned on y, denoted as X (y), is thus the clo-
sure of the set of x where p(x|y, θ) > 0. We can incorporate the
information of x (i.e., p(x|θ)) to deal with the maximum likelihood
estimation problem 3.81. We will introduce an example in the follow-
ing section to illustrate such cases. In some situations, because it is
difficult to directly solve the optimization problem 3.81 we are urged
to incorporate p(x|θ) or even construct fictitious such x if actually y
does not come from a complete data x. We will also introduce an ex-
ample in the following section to illustrate such cases. In either cases,
we can make use of the expectation-maximization (EM) algorithm to
fulfill the estimation task.

In the following sections, we first introduce the EM algorithm in
section 3.5.1. In section 3.5.2, we define some notations about the score
statistics and information matrices and also point out some important
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properties and notions regarding them. Those definitions and concepts
are useful and required for the analysis of convergence. In section 3.5.3,
we then present some convergence issues of the EM algorithm, includ-
ing the convergence of the likelihood function, the rate of convergence,
etc. In section 3.5.4, we introduce some useful variants of the EM al-
gorithm. Lastly, in section 3.5.5, we give some examples regarding the
use of the EM algorithm. The readers can refer to [8], [17], [20], [24]
and [29] for references of the EM algorithm.

3.5.1 The EM Algorithm
The EM algorithm is described as the following algorithm. As can

Algorithm 14 EM Algorithm
Input: p(y|θ) : the likelihood function of y given θ

p(x|θ) : the likelihood function of x given θ
Parameters : ϵ > 0 : prescribed tolerance threshold
Initialization : θ(0) ∈ Ω as an initial estimate for θ0
Iteration : repeat until |θ(k̄) − θ(k̄−1)| < ϵ or |ℓ(θ(k̄))− ℓ(θ(k̄−1))| < ϵ

1. E-step (Expectation)
(a) formulate the conditional probability density function p(x|y, θ(k)) for the complete data x
(b) form the conditional expected log-likelihood, which is called the Q-function

Q(θ|θ(k)) =
∫
X (y)

log(p(x|θ))p(x|y, θ(k))dx = EX|y,θ(k) [log(p(X|θ))] (3.84)

2. M-step (Maximization)
θ(k+1) = argsup

θ∈Ω
Q(θ|θ(k)) (3.85)

Output: θ(k̄)

be seen, the EM algorithm solves for θ that maximizes the expected
log-likelihood of X . And once we have an estimate for θ0, we can make
a better guess about the complete data x.

3.5.2 Score Statistics and Information Matrices
First, we make a list of some definitions of score statistics and

information matrices
1. The incomplete-data score statistic :

S(y; θ) := ∂ log p(y|θ)/∂θ (3.86)
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2. The complete-data score statistic :

S(x; θ) := ∂ log p(x|θ)/∂θ (3.87)

3. The incomplete-data observed information matrix :

I(y; θ) = −∂2 log p(y|θ)/∂θ∂θT (3.88)

4. The incomplete-data expected information matrix :

IY (θ) = EY |θ[I(Y ; θ)] (3.89)

5. The complete-data observed information matrix :

I(x; θ) = −∂2 log p(x|θ)/∂θ∂θT (3.90)

6. The complete-data expected information matrix :

IX(θ) = EX|θ[I(X ; θ)] (3.91)

7. The complete-data conditional expected information matrix given
y :

IX(θ|y) = EX|θ,y[I(X ; θ)] (3.92)

8. The missing information matrix :

Im(θ|y) = EX|θ,y[−∂2 log p(X|y, θ)/∂θ∂θT ] (3.93)
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We can make a connection between the incomplete-data score statis-
tic and the complete-data score statistic in the following derivation.

S(y; θ) = ∂ log p(y|θ)/∂θ
= p′(y|θ)/p(y|θ)

= (

∫
X (y)

p′(x|θ)dx)/p(y|θ)

=

∫
X (y)

(∂ log p(x|θ)/∂θ)(p(x|θ)/p(y|θ))dx

=

∫
X (y)

S(x; θ)p(x|y, θ)dx

= EX|y,θ[S(X ; θ)]

(3.94)

We can also make a connection among different information ma-
trices in the following derivation.

log p(y|θ) = log p(x|θ)− log p(x|y, θ)

⇒ ∂2 log p(y|θ)
∂θ∂θT

=
∂2 log p(x|θ)
∂θ∂θT

− ∂2 log p(x|y, θ)
∂θ∂θT

⇒ I(y; θ) = I(x; θ) +
∂2 log p(x|y, θ)

∂θ∂θT

⇒EX|y,θ[I(Y ; θ)] = EX|y,θ[I(X ; θ)] + EX|y,θ[
∂2 log p(x|y, θ)

∂θ∂θT
]

⇒ I(y; θ) = IX(θ|y)− Im(θ|y)

(3.95)

The final result of 3.95 corresponds to the missing information princi-
ple, which states that the observed information equals the conditional
expected complete-data information minus the missing information.

3.5.3 Convergence Analysis
The EM algorithm serves as an iterative approach to solve the max-

imum likelihood estimation problem 3.81 so it is important to verify
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that the likelihood do increases iteratively. We prove it as follows
∵ p(x|θ) = p(x|y, θ)p(y|θ)
∴ logL(θ) = log p(x|θ)− log p(x|y, θ)

⇒EX|y,θ(k)[logL(θ)] = EX|y,θ(k)[log p(x|θ)]− EX|y,θ(k)[log p(x|y, θ)]
⇒ logL(θ) = Q(θ; θ(k))−H(θ; θ(k))

whereH(θ; θ(k)) := EX|y,θ(k)[log p(x|y, θ)]
logL(θ(k+1))− logL(θ(k))

= (Q(θ(k+1); θ(k))−Q(θ(k); θ(k)))− (H(θ(k+1); θ(k))−H(θ(k); θ(k)))

≥H(θ(k); θ(k))−H(θ(k+1); θ(k))

=EX|y,θ(k)[log p(x|y, θ(k))
p(x|y, θ(k+1))

]

≥ 0

The first inequality is due to the operation of the M-step 3.85. The
second inequality is due to the non-negativity of the KL divergence.
Hence, the likelihood indeed monotonically increases. If the likeli-
hood sequence {L(θ(k))} is a bounded sequence, then L(θ(k)) con-
verges monotonically to some L∗. If L∗ = L(θ∗) for some point θ∗
at which ∂L(θ)

∂θ = 0, or equivalently, ∂ logL(θ)
∂θ = 0, i.e., S(y; θ∗) =

0, then L∗ is called a fixed value. Furthermore, we can prove that
[∂Q(θ; θ∗)/∂θ]|θ=θ∗ = S(y; θ∗). Therefore [∂Q(θ; θ∗)/∂θ]|θ=θ∗ = 0,
which implies that θ∗ is a fixed point of the EM algorithm. We can
prove it in two ways as follows. The first way of derivation is

logL(θ) = Q(θ; θ∗)−H(θ; θ∗)

⇒S(y; θ∗) = [∂Q(θ; θ∗)/∂θ]|θ=θ∗ − [∂H(θ; θ∗)/∂θ]|θ=θ∗ = 0

⇒S(y; θ∗) = [∂Q(θ; θ∗)/∂θ]|θ=θ∗ = 0

The last equality is due to the fact that H(θ; θ∗) ≤ H(θ∗; θ∗) ∀θ ∈ Ω

(a result of the non-negativity of the KL divergence). The second way
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of derivation is
S(y; θ) = EX|y,θ[S(X ; θ)]

=

∫
X (y)

(∂ log p(x|θ)/∂θ)p(x|y, θ)dx

= ∂[

∫
X (y)

log p(x|θ)p(x|y, θ)dx]/∂θ

= [∂Q(Θ; θ)/∂Θ]|Θ=θ

⇒ S(y; θ∗) = [∂Q(Θ; θ∗)/∂Θ]|Θ=θ∗ = [∂Q(θ; θ∗)/∂θ]|θ=θ∗ = 0

A natural question that when L(θ(k)) converges to a fixed value
thus arises. To answer this question, we need to introduce the concept
of EM mapping and the regularity conditions established in [20]. The
EM algorithm implicitly defines a mapping θ → M(θ) from the pa-
rameter space Ω to itself such that θ(k+1) =M(θ(k)). The function M
is called the EM mapping. As for the regularity conditions, they are
the following three conditions
1. Ω is a subset in d-dimensional Euclidean space Rd

2. Ωθ̂ := {θ ∈ Ω|L(θ) ≥ L(θ̂)} is compact for any L(θ̂) > −∞

3. L(θ) is continuous in Ω and differentiable in the interior of Ω
A consequence of the regularity conditions is that any sequence {L(θ(k))}
is bounded above for any θ(0) ∈ Ω. Besides, If Ωθ̂ is in the interior of Ω
for any θ̂ ∈ Ω, then in each M-step θ(k+1) is a solution of the equation
∂Q(θ; θ(k))/∂θ = 0. An important result, proved in [20], about the
convergence of L(θ(k)) to a fixed value is described as the following
theorem
Theorem 3.5.1. If regularity conditions hold and M(θ(k)) is closed
4 over the complement of S, the set of fixed points in the interior
of Ω, then all the limit points of {θ(k)} are fixed points and L(θ(k))
converges monotonically to L∗ = L(θ∗) for some fixed point θ∗ ∈ S

4A mapping is said to be closed at θ = θ0 if θ(k) → θ0, θ ∈ Ω and ϕ(k) → ϕ0, ϕ
(k) ∈ M(θ(k))

implies that ϕ0 ∈M(θ0)
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Note that a sufficient condition for the closedness of the EM mapping
is that Q(Θ; θ) is continuous in both Θ and θ, which is easier to verify.
Hence, we can have the following corollary
Corollary 3.5.1.1. If regularity conditions hold and Q(Θ; θ) is
continuous in both Θ and θ, then all the limit point of {θ(k)} are
fixed points and L(θ(k)) converges monotonically to L∗ = L(θ∗) for
some fixed point θ∗ ∈ S

We need to make a remark that the convergence of L(θ(k)) to
some value L∗ does not automatically imply the convergence of the
corresponding sequence of iterates {θ(k)} to the point θ∗, where L∗ =

L(θ∗). Then when does θ(k) also converge to a fixed point θ∗? First, we
define S(a) ≜ {θ ∈ S : L(θ) = a} to be the subset of S of fixed points
in the interior of Ω at which L(θ) = a and L(a) ≜ {θ ∈ Ω : L(θ) = a}
to be the subset of Ω at which L(θ) = a. [20] and [24] give some results
regarding the convergence of θ(k). We present them as follows.
Theorem 3.5.2. If regularity conditions hold, M(θ(k)) is closed
over the complement of S and S(L∗) consists of the single point θ∗
(that is, there cannot be two different fixed points with the same
value L∗), where L∗ is the limit of L(θ(k)), then θ(k) converges to
θ∗

Theorem 3.5.3. If regularity conditions hold, M(θ(k)) is closed
over the complement of S, S(L∗) is discrete and ∥θ(k+1)−θ(k)∥ → 0

as k → ∞, then θ(k) converges to some θ∗ in S(L∗)

Theorem 3.5.4. If regularity conditions hold, [∂Q(θ;θ
(k))

∂θ ]|θ=θ(k+1) =

0 and ∂Q(Θ; θ)/∂Θ is continuous in Θ and θ, then θ(k) converges
to a fixed point θ∗ with L(θ∗) = L∗, if either L(L∗) = {θ∗} or
∥θ(k+1) − θ(k)∥ → 0 as k → ∞ and L(L∗) is discrete
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From theorem 3.5.4, we can come up with the following useful corol-
lary
Corollary 3.5.4.1. If regularity conditions hold, [∂Q(θ;θ

(k))
∂θ ]|θ=θ(k+1) =

0, ∂Q(Θ; θ)/∂Θ is continuous in Θ and θ, and L(θ) is unimodal in
Ω with θ∗ being the only fixed point, then any EM sequence {θ(k)}
converges to the unique maximizer θ∗ of L(θ);that is, it converges
to the unique MLE of θ

Finally, we make a derivation of the rate of convergence r ≜ lim
k→∞

∥θ(k+1)−
θ∗∥/∥θ(k) − θ∗∥
1. S(y; θ) ≈ S(y; θ(k))− I(y; θ(k))(θ − θ(k)) when θ is near θ(k)

Assume k → ∞ and θ(k) converges to a fixed point θ∗
then S(y; θ∗) = 0 ≈ S(y; θ(k))− I(y; θ(k))(θ∗ − θ(k))

⇒ θ∗ ≈ θ(k) + I−1(y; θ(k))S(y; θ(k))

2. ∵ θ(k+1) is near θ(k) as k → ∞
∴ 0 = [∂Q(θ;θ

(k))
∂θ ]|θ=θ(k+1)

≈ [∂Q(θ;θ
(k))

∂θ ]|θ=θ(k) + [∂
2Q(θ;θ(k))

∂θ∂θT
]|θ=θ(k)(θ(k+1) − θ(k))

⇒ 0 ≈ S(y; θ(k))− IX(θ(k)|y)(θ(k+1) − θ(k))

⇒ S(y; θ(k)) ≈ IX(θ(k)|y)(θ(k+1) − θ(k))

Combining 1. and 2., we can get
θ∗ − θ(k) ≈ I−1(y; θ(k))IX(θ(k)|y)(θ(k+1) − θ(k))

⇒ θ(k+1) − θ∗ ≈ [Id − I−1
X (θ(k)|y)I(y; θ(k))](θ(k) − θ∗)

≈ [Id − I−1
X (θ∗|y)I(y; θ∗)](θ(k) − θ∗)

= [I−1
X (θ∗|y)Im(θ∗|y)](θ(k) − θ∗)

Hence, the rate of convergence is the largest eigenvalue of the infor-
mation ratio matrix I−1

X (θ∗|y)Im(θ∗|y). A larger value of r implies
slower convergence, which may be somehow counter-intuitive. We can
alternatively define the speed of convergence s ≜ 1− r. In this way, a
larger value of s corresponds to faster convergence.

96



3.5.4 Variants of The EM Algorithm
In this section, we will introduce three useful and important vari-

ants of the EM algorithm.

MAP EM

MAP EM takes into account or imposes some prior information on
θ. The E-step remains the same and the M-step is modified to maxi-
mize the posterior rather than the likelihood. Concretely speaking, the
M-step becomes

θ(m+1) = argmax
θ∈Ω

Q(θ|θ(m)) + log(p(θ)) (3.96)

where p(θ) is the prior probability density function of θ

Monte Carlo EM (MCEM)

In E-step, we need to calculate Q(θ; θ(k)) = EX|y,θ(k)[log p(X|θ)] =∫
X (y) log p(x|θ)p(x|y, θ(k))dx. If we cannot obtain a closed-form solu-

tion to the Q function, then we might consider using the technique of
Markov Chain Monte Carlo (MCMC). First we make m independent
draws x1k, x2k, · · · , xmk from p(x|y, θ(k)) using MCMC. Then we ap-
proximate Q(θ; θ(k)) by Qm(θ; θ

(k)) = 1
m

m∑
j=1

log p(xjk|θ). Therefore, in

M-step, we take maximization on the function Qm(θ; θ
(k)) rather than

onQ(θ; θ(k)). The readers can refer to [14] for materials of the MCMC.

Expectation-Conditional Maximization (ECM) algorithm

One of major reasons for the popularity of the EM algorithm is
that the M-step involves only complete-data ML estimation, which is
often computationally simple. But if the complete-data ML estimation
is rather complicated, then the EM algorithm is less attractive. If this
is the case, then we may consider taking the maximization process of
the M-step conditionally on parts of the parameters under estimation,
which is often relatively simple. The ECM algorithm takes advantage
of the simplicity of complete-data conditional maximization by replac-
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ing a complicated M-step of the EM algorithm with several compu-
tationally simpler conditional maximization (CM) steps. Concretely
speaking, we partition θ into S parts, namely, θ = (θ1, θ2, · · · , θS).
After the E-step, we perform the following S CM steps rather than the
original one M-step.

CM step 1 : θ
(k+1)
1 = argmax

θ1

Q(θ1, θ
(k)
2 , · · · , θ(k)S ; θ(k))

CM step 2 : θ
(k+1)
2 = argmax

θ2

Q(θ
(k+1)
1 , θ2, θ

(k)
3 , · · · , θ(k)S ; θ(k))

...
CM step s : θ(k+1)

s = argmax
θs

Q(θ
(k+1)
1 , · · · , θ(k+1)

s−1 , θs, θ
(k)
s+1 · · · , θ

(k)
S ; θ(k))

...
CM step S : θ

(k+1)
S = argmax

θS

Q(θ
(k+1)
1 , · · · , θ(k+1)

S−1 , θS; θ
(k))

Hence, in the ECM algorithm, the s-th CM step requires the maximiza-
tion of Q function with respect to θs with the other S − 1 subvectors
held fixed at their current values. If we update the Q function after
each CM step; that is, perform one E-step before each CM step, then
the corresponding algorithm is called the multicycle ECM. We define
a cycle as one E-step followed by one CM step. Concretely speaking,
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we perform the multicycle ECM as follows

E step : Q(θ; θ(k))

CM step : θ
(k+1)
1 = argmax

θ1

Q(θ1, θ
(k)
2 , · · · , θ(k)S ; θ(k))

E step : Q(θ; θ
(k+1)
1 , θ

(k)
2 , · · · , θ(k)S )

CM step : θ
(k+1)
2 = argmax

θ2

Q(θ
(k+1)
1 , θ2, θ

(k)
3 , · · · , θ(k)S ; θ

(k+1)
1 , θ

(k)
2 , · · · , θ(k)S )

E step : Q(θ; θ
(k+1)
1 , θ

(k+1)
2 , θ

(k)
3 , · · · , θ(k)S )

CM step : θ
(k+1)
3 = argmax

θ3

Q(θ
(k+1)
1 , θ

(k+1)
2 , θ3, θ

(k)
4 , · · · , θ(k)S

; θ
(k+1)
1 , θ

(k+1)
2 , θ

(k)
3 , · · · , θ(k)S )

...
An obvious disadvantage of using a multicycle ECM algorithm is the
extra computation at each iteration. However, as a tradeoff, one might
expect it to result in larger increases in the log likelihood function per
iteration since the Q-function is updated more often.

3.5.5 Examples
A Toy Example

This example was originally introduced in [8] and later elaborated
on with more details in [17]. Assume there are n kids asked to choose
a toy out of five choices. Let X = [X1, X2, X3, X4, X5]

T denote the
histogram of their n choices, i.e., Xi denotes the number of the kids that
chose toy i, i = 1, 2, 3, 4, 5. However, we cannot observe X directly;
instead, we observe Y = [Y1, Y2, Y3, Y4]

T , where Y1 = X1 +X2 denote
the sum of the number of kids that chose toy 1 or 2, Y2 = X3, Y3 = X4

and Y4 = X5. If the probability by which a kid chose toys is modeled
as p = [p1, p2, p3, p4, p5]

T , then we can model the distribution of X
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and Y as multinomial distributions; namely,

p(x|p) = n!
5∏
i=1

xi!

5∏
i=1

pxii ; p(y|p) = n!
4∏
i=1

yi!

(p1 + p2)
y1py23 p

y3
4 p

y4
5

If p is parameterized as [12,
1
4θ,

1
4(1 − θ), 14(1 − θ), 14θ]

T , θ ∈ (0, 1), θ ∈
(0, 1), then

p(x|θ) = n!
5∏
i=1

xi!

(
1

2
)x1(

θ

4
)x2+x5(

1− θ

4
)x3+x4

p(y|θ) = n!
4∏
i=1

yi!

(
1

2
+
θ

4
)y1(

1− θ

4
)y2+y3(

θ

4
)y4

To apply the EM algorithm, we need to calculate the Q function and
maximize it; that is,

θ(m+1) = argmax
θ∈(0,1)

Q(θ|θ(m))

= argmax
θ∈(0,1)

EX|y,θ(m)[log(p(X|θ))]

= argmax
θ∈(0,1)

EX|y,θ(m)[(X2 +X5) log θ + (X3 +X4) log(1− θ)]

We need to calculate the conditional probability p(x|y, θ(m)), which is

p(x|y, θ(m))

=
p(x|θ(m))

p(y|θ(m))

=
y1!

x1x2!

(
1
2

1
2 +

θ(m)

4

)x1
(

θ(m)

4

1
2 +

θ(m)

4

)x2

1{x1 + x2 = y1}
5∏
i=3

1{xi = yi−1}

=
y1!

x1x2!

(
2

2 + θ(m)

)x1 ( θ(m)

2 + θ(m)

)x2
1{x1 + x2 = y1}

5∏
i=3

1{xi = yi−1}
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Hence, EX|y,θ(m)[X ] = [ 2
2+θ(m)y1,

θ(m)

2+θ(m)y1, y2, y3, y4]
T . We can get

θ(m+1) = argmax
θ∈(0,1)

[(
θ(m)

2 + θ(m)
y1 + y4

)
log θ + (y2 + y3) log(1− θ)

]

=

θ(m)

2+θ(m)y1 + y4

θ(m)

2+θ(m)y1 + y2 + y3 + y4

In this simple illustrative example, we can simply perform maximum
likelihood estimation on p(y|θ). However, in the following two exam-
ples, directly applying maximum likelihood estimation on the likelihood
functions becomes intractable, which in turn forces us to resort to the
EM algorithm instead.

Gaussian Mixtures

Assume there are two groups, one with p-dimensional Gaussian dis-
tribution density N(y;µ1,Σ) and the other with p-dimensional Gaus-
sian distribution density N(y;µ2,Σ), where µ1, µ2 ∈ Rp is the mean
vectors and Σ ∈ Rp×p is the common covariance matrix. We randomly
sample data y ∈ Rp from one of the two groups. The probability that
a sample is from the former group is 1 − π and from the latter group
is π. Hence the probability density function of y follows the Gaussian
mixture density (1− π)N(y;µ1,Σ) + πN(y;µ2,Σ). Given n i.i.d. ob-
servations y1, y2, · · · , yn from the Gaussian mixture density, we want
to estimate the unknown true parameters θ0 = (π, µ1, µ2,Σ), which is
a two-group discrimination problem or a statistical pattern recognition
problem. The likelihood function is

L(θ|y1, y2, · · · , yn) =
n∏
i=1

[(1− π)N(yi;µ1,Σ) + πN(yi;µ2,Σ)]

We find it difficult to analytically compute either argmax
θ

L(θ|y1, y2, · · · , yn)

or argmax
θ

logL(θ|y1, y2, · · · , yn) because of the bundle of two Gaus-
sian densities. If we can know which group each yi comes from, then the
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conditional probability density of each yi given this information will be
simply a single Gaussian density, whose related maximum likelihood
estimation is tractable. With this observation, we think of applying the
EM algorithm. We can fictitiously construct the missing data zj, which
is an indicator variable identifying the j-th observation yj as coming
from the first (zj = 0) or the second (zj = 1) group. Then we can
obtain the complete data X = (Z, Y ), where Z = (z1, z2, · · · , zn) and
Y = (y1, y2, · · · , yn). To calculate the Q function, we need to derive
the probability density function p(xj|θ) and p(xj|yj, θ).
1. p(Xj = (0, yj)|θ) = p(Xj = (0, yj)|Zj = 0, θ)p(Zj = 0|θ)

= N(yj;µ1,Σ)(1− π)

2. p(Xj = (1, yj)|θ) = p(Xj = (1, yj)|Zj = 1, θ)p(Zj = 1|θ)
= N(yj;µ2,Σ)π

3. p(Xj = (0, yj)|Yj = yj, θ)

= p(Xj = (0, yj)|θ)/p(Yj = yj|θ)
= (1− π)N(yj;µ1,Σ)/[(1− π)N(yj;µ1,Σ) + πN(yj;µ2,Σ)]

4. p(Xj = (1, yj)|Yj = yj, θ)

= p(Xj = (1, yj)|θ)/p(Yj = yj|θ)
= πN(yj;µ2,Σ)/[(1− π)N(yj;µ1,Σ) + πN(yj;µ2,Σ)]

Hence, in E-step, we can calculate the Q function as follows

Q(θ; θ(k))

= EX|y,θ(k)[log p(X|θ)]

=

n∑
j=1

[
log[N(yj;µ1,Σ)(1− π)](1− τ

(k)
j ) + log[N(yj;µ2,Σ)π]τ

(k)
j

]
where τ

(k)
j :=

π(k)N(yj;µ
(k)
2 ,Σ(k))

(1− π(k))N(yj;µ
(k)
1 ,Σ(k)) + π(k)N(yj;µ

(k)
2 ,Σ(k))

In M-step, we apply four CM steps instead of one M-step. Each CM
step maximizes the Q function over one of π, µ1, µ2 and Σ.
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1. π(k+1) = argmax
π

Q(θ; θ(k)) =
n∑
j=1

τ
(k)
j /n

2. µ(k+1)
1 = argmax

µ1

Q(θ; θ(k)) =
n∑
j=1

(1− τ
(k)
j )yj/(n−

n∑
j=1

τ
(k)
j )

3. µ(k+1)
2 = argmax

µ2

Q(θ; θ(k)) =
n∑
j=1

τ
(k)
j yj/

n∑
j=1

τ
(k)
j

4. Σ(k+1) = argmax
Σ

Q(θ; θ(k))

=
n∑
j=1

[(1− τ
(k)
j )(yj − µ

(k+1)
1 )(yj − µ

(k+1)
1 )T

+τ
(k)
j (yj − µ

(k+1)
2 )(yj − µ

(k+1)
2 )T ]/n

Hence, we can view this example as an application of the ECM algo-
rithm.

Baum-Welch Algorithm

Baum-Welch algorithm is an application of EM algorithm to learn
model parameters of a hidden Markov model (HMM). LetX = {1, 2, · · · , N}
denote the space of observation. Let X (i) = (x

(i)
1 , x

(i)
2 , · · · , x

(i)
T ) de-

note an observation sequence with length T . Suppose there are total
D observation sequences X = (X (1), X (2), · · · , X (D)) and each ob-
servation is drawn independently and identically distributed (i.i.d.).
Let Z = {1, 2, · · · ,M} denote the space of hidden states. Let Z(i) =

(z
(i)
1 , z

(i)
2 , · · · , z

(i)
T ) denote a hidden state sequence with length T . Sup-

pose there are total D hidden state sequences Z = (Z(1), Z(2), · · · , Z(D)).
Assume an HMM is parameterized by θ = (π,A,B), which represents
the initial state vector, the state transition matrix and the emission
matrix respectively. Concretely speaking,
1. πi = P (z1 = i), i ∈ [M ]

2. Aij = P (zt+1 = j|zt = i), i, j ∈ [M ]

3. Bi(j) = P (xt = j|zt = i), i ∈ [M ], j ∈ [N ]
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The joint probability of X and Z conditioning on θ is

P (X ,Z|θ) =
D∏
d=1

(
π
z
(d)
1
B
z
(d)
1
(x

(d)
1 )

T∏
t=2

A
z
(d)
t−1z

(d)
t
B
z
(d)
t
(x

(d)
t )

)
The learning problem is nontrivial because the hidden state sequences
Z is not available; otherwise, we can directly compute the MLE θ∗ =

argsup
θ

P (X ,Z|θ). Without Z , if we still want to compute the MLE,
then we need to deal with θ∗ = argsup

θ
P (X|θ) = argsup

θ

∑
z∈Z

P (X , z|θ) =

argsup
θ

∑
z∈Z

D∏
d=1

(
π
z
(d)
1
B
z
(d)
1
(x

(d)
1 )

T∏
t=2

A
z
(d)
t−1z

(d)
t
B
z
(d)
t
(x

(d)
t )

)
, which is intractable

since there are DTM different values of z to try and different parame-
ters are bundled together by the operation of multiplications. However,
if we view (X ,Z) as the complete data, X the incomplete data and Z
the missing data, then we can apply the EM algorithm to estimate θ∗.
The resulting iterative procedure is called the Baum-Welch algorithm.
It is described as follows
1. E-step : compute Q(θ, θ(k)) =

∑
z∈Z

[log p(X ,Z|θ)]p(Z|X , θ(k))

2. M-step : θ(k+1) = argsup
θ

Q(θ, θ(k))

As we can see, the EM algorithm is powerful for the usage of the log
function can effectively disentangle the bundle of different parameters.
After some derivations (see [38] for details), we can come up with the
following iteration rules.

1. π(k+1)
i = 1

D

D∑
d=1

p(z
(d)
1 = i|X (d), θ(k))

2. A(k+1)
ij =

D∑
d=1

T∑
t=2

p(z
(d)
t−1=i,z

(d)
t =j|X(d),θ(k))

D∑
d=1

T∑
t=2

p(z
(d)
t−1=i|X(d),θ(k))

3. B(k+1)
i (j) =

D∑
d=1

T∑
t=1

p(z
(d)
t =i|X(d),θ(k))I(x

(d)
t =j)

D∑
d=1

T∑
t=1

p(z
(d)
t =i|X(d),θ(k))
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Note that p(zt|X, θ) and p(zt−1, zt|X, θ) are both quantities which can
be computed efficiently by the forward-backward algorithm.
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Chapter 4

ℓ0 Minimization Problem
In this chapter, we will discuss a specific problem formulation re-

lated to the ℓ0 norm. Precisely, we consider the following problem

inf
x∈Rn

∥x∥0 subject to Ax = y (4.1)

where y ∈ Rm and A ∈ Rm×n (m < n). In the context of sparse rep-
resentation, we call y the signal, A the dictionary and x the coefficient
vector. The dictionary has n m-dimensional column vectors (called
atoms, denoted as aj, j ∈ [n]), which leads to an underdetermined
linear system Ax = y since m < n (more often m ≪ n). Hence,
there may be infinite possible coefficient vectors x that are feasible for
the linear system. Among them, our interest is the sparsest ones (i.e.,
ones with smallest ℓ0 norm). That is, our aim is to use as few dictio-
nary atoms as possible to represent the signal y. Besides 4.1, we also
consider the following problem

inf
x∈Rn

∥x∥0 subject to ∥Ax− y∥2 ≤ ϵ (4.2)

where ϵ > 0. In this problem, we introduce a tolerance scalar ϵ to relax
the strict constraint Ax = y. We can tolerate some extent of mismatch
between Ax and y to gain some possible improvements of sparsity.

In the context of compressive sensing (compressive sampling), we
assume there is an s-sparse n-dimensional signal vector x. Since it
is sparse, we hope that we can compressively sample it with as few
samples (or called measurements) as possible using the sampling matrix
(or called the measurement matrix) A ∈ Rm×n (m < n). After the
sampling operation, we will get y = Ax. We call y the sample vector
(or called the measurement vector). We want y to contain sufficient
information of x so that we can recover x with y andA. Note that it has
been proved in [13] that the following three statements are equivalent.
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1. The vector x can be reconstructed as the unique solution of the
problem inf

z∈Rn
∥z∥0 subject to Az = Ax = y

2. The vector x is the unique s-sparse solution ofAz = y with y = Ax;
that is, {z ∈ Rn|Az = Ax, ∥z∥0 ≤ s} = {x}

3. Every set of 2s columns of A is linearly independent.
Hence, it is reasonable to consider the ℓ0 minimization problem 4.11 in
order to achieve reconstruction. Furthermore, because every set of 2s
columns of A should be linearly independent, the minimal number of
measurements to recover an s-sparse vector is 2s. To better understand
the properties of A in the context of compressive sensing, we will adopt
the notion of restricted isometry property. In a more general setting,
we will get y = Ax + e; that is, the sample vector y is contaminated
with a noise vector e ∈ Rm. Hence it is also reasonable to consider the
problem 4.22. Actually, the major algorithmic challenge in compressive
sampling is to recover a signal given a vector of noisy samples.

However, it has been proved that solving both 4.1 and 4.2 are NP-
hard (the readers can refer to section 2.3 of [13] for the NP-hardness
of ℓ0 minimization problem). Therefore, many algorithms are designed
to pursuit the objective of 4.1 and 4.2 as close as possible while can
be implemented efficiently. Also note that in the context of sparse
representation, our major concern would be the difference between the
true signal y and the linear combination Ax(k̄), where x(k̄) denotes the
output vector of some algorithm, while in the context of compressive
sensing, our major concern would be the difference between the true
sparse signal x and the reconstruction vector x(k̄). However, we will
call the difference the residual vector in either case. As for the notation,
we use the capital R(k̄) to denote ∥y−Ax(k̄)∥2 and the lower case r(k̄)
to denote ∥x−x(k̄)∥2. In the following sections, we will introduce some

1We may change the notation of 4.1 in order to make clear of the concept. Precisely, we
consider the same problem of different notation : inf

z∈Rn
∥z∥0 subject to Az = y = Ax

2We also change the notation of the problem 4.2 in order to make clear of the concept :
inf
z∈Rn

∥z∥0 subject to ∥Az − y∥2 = ∥Az − Ax− e∥2 ≤ ϵ
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algorithms designed based on different methodologies respectively.

4.1 Minimization of Alternative Diversity Mea-
sures

We can view the ℓ0 norm as a sparsity measure. The smaller the
ℓ0 norm of a vector, the greater the sparsity of the vector. Opposed
to sparsity, we can also view the ℓ0 norm as a diversity measure. The
larger the ℓ0 norm of a vector, the greater the diversity of the vec-
tor. However, the minimization of ℓ0 norm is an NP-hard problem.
Hence, a type of algorithms resort to alternative diversity measures.
Minimization of those diversity measures is computationally tractable
while it can be verified that the resulting coefficient vectors are sparse
enough.

4.1.1 Iteratively Reweighted Least Squares (IRLS)-Type
Algorithms

Let D(x), x ∈ Rn be some convex diversity measure other than
the ℓ0 norm. The minimization problem we consider now becomes the
following convex optimization problem.

inf
x∈Rn

D(x) subject to Ax = y (4.3)

Assume x∗ is a minimizer of the problem 4.3 and λ∗ is a dual optimal
point of the dual problem of 4.3. The following KKT conditions are
necessary to satisfy

∇xD(x∗) + ATλ∗ = 0

Ax∗ = y

Assume the gradient of the diversity measure has a factored represen-
tation, which is

∇xD(x) = α(x)Π(x)x (4.4)
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where α(x) is a scalar and Π(x) is a diagonal matrix. In this way, the
KKT conditions become

α(x∗)Π(x∗)x∗ + ATλ∗ = 0

Ax∗ = y

We can in turn come up with the following two fixed-point equations
x∗ = Π−1(x∗)AT (AΠ−1(x∗)AT )−1y

λ∗ = −α(x∗)(AΠ−1(x∗)AT )−1y

From the first equation, we can design a algorithm based on the fol-
lowing fixed-point iteration rule

x(k+1) = Π−1(x(k))AT (AΠ−1(x(k))AT )−1y (4.5)

With such iteration rule, the KKT conditions of the minimization prob-
lem of each iteration become

α(x(k))Π(x(k))x(k+1) + ATλ(k+1) = 0

Ax(k+1) = y

Hence, the algorithm equivalently solves the following minimization
problem at each iteration

x(k+1) = arginf
x∈Rn

α(x(k))

2
xTΠ(x(k))x subject to Ax = y

= arginf
x∈Rn

xTΠ(x(k))x subject to Ax = y

= arginf
x∈Rn

∥W−1
k x∥22 subject to Ax = y

where Wk := Π(x(k))−1/2

(4.6)

We call such algorithm a reweighted minimum norm algorithm or a
iteratively reweighted least squares (IRLS) algorithm. The term ”
reweighted” refers to the fact that x is reweighted by W−1

k . The term
”minimum norm” and ”least squares” refer to the minimization of ℓ2
norm. Let q := W−1

k x. The minimization problem 4.6 is equivalent to

q(k+1) = arginf
q∈Rn

∥q∥22 subject to AWkq = y (4.7)
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Since q is an affine scaling transformation (AST) of x using the matrix
Wk, we also call such algorithm an AST-based algorithm. Note that
we can analytically solve the problem 4.7; namely, q(k+1) = (AWk)

†y,
where the symbol † denotes the Moore-Penrose pseudoinverse of a vec-
tor. In the following, we will introduce three kinds of diversity measures
and the corresponding IRLS algorithms based on minimizing them.
The three diversity measures are the p-norm like diversity measure
Ep(x), the Gaussian entropy diversity measure HG(x) and the Shan-
non entropy diversity measure HS(x). The readers can refer to [32] for
details.

The p-norm Like Diversity Measure Ep(x)

The p-norm like diversity measure Ep(x) is defined as
Definition 4.1.1 (p-norm like diversity measure).

Ep(x) = sgn(p)

n∑
i=1

|x[i]|p, p ≤ 1

=


n∑
i=1

|x[i]|p 0 ≤ p ≤ 1

−
n∑

i=1,x[i] ̸=0

|x[i]|p p < 0

(4.8)

The gradient vector of Ep(x) can be expressed as a factored rep-
resentation; namely, ∇xE

p(x) = α(x)Π(x)x, where α(x) = |p| and
Π(x) = diag(|x[i]|p−2). Hence, based on minimizing the p-norm like
diversity measure, we can design an algorithm as follows
Algorithm 15 IRLS Based on Ep(x)

Input: y ∈ Rm；A ∈ Rm×n

Initialization : x(0) ∈ Rn

Iteration : repeat until a stopping criterion is met at k = k̄

1. Let Wk = diag(|x(k)[i]|1−p/2)

2. q(k+1) = (AWk)
†y

3. x(k+1) =Wkq
(k+1)

Output: x(k̄)
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The Gaussian Entropy Diversity Measure HG(x)

The Gaussian entropy diversity measure HG(x) is defined as
Definition 4.1.2 (Gaussian entropy diversity measure).

HG(x) =

n∑
i=1

ln|x[i]|2 = 2

n∑
i=1

ln|x[i]| (4.9)

The gradient vector of HG(x) can be expressed as a factored rep-
resentation; namely, ∇xHG(x) = α(x)Π(x)x, where α(x) = 2 and
Π(x) = diag( 1

x[i]2
). Hence, based on minimizing the Gaussian entropy

diversity measure, we design an algorithm as follows
Algorithm 16 IRLS Based on HG(x)

Input: y ∈ Rm；A ∈ Rm×n

Initialization : x(0) ∈ Rn

Iteration : repeat until a stopping criterion is met at k = k̄

1. Let Wk = diag(|x(k)[i]|)
2. q(k+1) = (AWk)

†y

3. x(k+1) =Wkq
(k+1)

Output: x(k̄)

Note that it is equivalent to the p-norm-like case when p is set to be
zero (although the gradient of Ep(x) is not defined for p = 0). Hence,
there must be some close relationships betweenHG(x) and Ep(x) when
p approaches zero. Indeed, we can present two relationships as follows.
The first one is based on the arithmetic-geometric inequality.(

n∏
i=1

|x[i]|p
)1/n

≤ 1

n

n∑
i=1

|x[i]|p

⇒
(
1

n
Ep−(x)

)1/p−

≤ (eHG(x))1/2n ≤ (
1

n
Ep+(x))1/p+

where p− ≤ 0 and p+ ≥ 0

We have equality as p approaches zero. Hence e 1
2nHG(x) = lim

p→0
( 1nE

p(x))1/p.
The second one is based on the first-order Taylor approximation of
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Ep(x) when p approaches zero.

Ep(x) ≈ E0(x) +
dEp(x)

dp
p

= E0(x) + (

n∑
i=1

|x[i]|pln|x[i]|)p

= E0(x) +
1

2
HG(x) ∵ p→ 0

Hence, as p gets smaller, Ep(x) begins to behave like HG(x) except
at sparsity points where the diversity measure E0(x) jumps discon-
tinuously. Finally, we make a remark that the IRLS algorithm based
on the Gaussian entropy diversity measure is equivalent to the basic
FOCUSS algorithm introduced in [16]. We will delve deeply into the
FOCUSS algorithm in the subsequent section.

The Shannon Entropy Diversity Measure HS(x)

The Shannon entropy diversity measure HS(x) is defined as
Definition 4.1.3 (Shannon entropy diversity measure).

HS(x) = −
n∑
i=1

x̃[i]ln(x̃[i]) , where x̃[i] =
x[i]2

∥x∥22
(4.10)

The gradient vector of HS(x) can be expressed as a factored rep-
resentation; namely, ∇xHS(x) = α(x)Π(x)x, where α(x) = 2

∥x∥22
and

Π(x) = −diag(HS(x) + ln(x̃[i])). Note that since Π(x) is indefinite,
simply mimicking the way we construct algorithms 15 and 16 cannot
ensure us a provably convergent algorithm. If we still mimic the way
we construct algorithms 15 and 16, we will get the following iteration
rules
1. Let Wk = −diag((HS(x

(k)) + ln(x̃(k)[i]))−1/2)

2. q(k+1) = (AWk)
†y

3. x(k+1) = Wkq
(k+1)
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In order to ensure HS(x
(k+1)) ≤ HS(x

(k)), we change the notation of
the output of step 3 to x

(k+1)
r = Wkq

(k+1) and let x(k+1) = x(k) +

µk(x
(k) − x

(k+1)
r ). It has been proved in [32] that it is sufficient to

choose µk such that

(x(k+1))TΠ(x(k))x(k+1) = −µk(µk + 2)(x(k+1)
r )TΠ(x(k))(x(k+1)

r ) ≤ 0

If (x(k+1)
r )TΠ(x(k))(x

(k+1)
r ) ≤ 0, then we need to choose µk such that

µk(µk + 2) ≤ 0. Since µk(µk + 2) attains its minimum at µk = −1,
we can construct x(k+1) = x(k) − (x(k) − x

(k+1)
r ) = x

(k+1)
r accord-

ingly. If (x(k+1)
r )TΠ(x(k))(x

(k+1)
r ) > 0, then any positive value of µk

is acceptable. If we choose µk = 1, then we can construct x(k+1) =

x(k) + (x(k) − x
(k+1)
r ) = 2x(k) − x

(k+1)
r accordingly. As a summary, we

establish an extra step 4 as follows

x(k+1) =

{
x
(k+1)
r (x

(k+1)
r )TΠ(x(k))(x

(k+1)
r ) ≤ 0

2x(k) − x
(k+1)
r (x

(k+1)
r )TΠ(x(k))(x

(k+1)
r ) > 0

We can describe the IRLS algorithm based on HS(x) as follows
Algorithm 17 IRLS Based on HS(x)

Input: y ∈ Rm；A ∈ Rm×n

Initialization : x(0) ∈ Rn

Iteration : repeat until a stopping criterion is met at k = k̄

1. Let Wk = −diag((HS(x
(k)) + ln(x̃(k)[i]))−1/2), where x̃(k)[i] = x(k)[i]2

∥x(k)∥2
2

2. q(k+1) = (AWk)
†y

3. x(k+1)
r =Wkq

(k+1)

4. x(k+1) =

{
x
(k+1)
r (x

(k+1)
r )TΠ(x(k))(x

(k+1)
r ) ≤ 0

2x(k) − x
(k+1)
r (x

(k+1)
r )TΠ(x(k))(x

(k+1)
r ) > 0

, where Π(x(k)) =W−2
k

Output: x(k̄)

Note that the fixed points of algorithm 17 cannot generally be com-
pletely sparse; however, they do tend to have a large number of entries
with very small (albeit nonzero) amplitudes.

Lastly, we relax the strict constraint Ax = y so that we can tol-
erate some differences between Ax and y just as problem 4.2 does.
However, here we consider adding a Tikhonov regularization term in-
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stead of imposing an inequality constraint and we limit our discussion
to the p-norm like diversity measure. Concretely speaking, we consider
the following optimization problem

inf
x
J(x) = γEp(x) + ∥Ax− b∥22 (4.11)

where γ is a positive regularization parameter and ∥Ax − b∥22 is the
Tikhonov regularization term. γ controls the tradeoff between quality
of fit ∥Ax − b∥ and the degree of sparsity. Larger values of γ lead to
sparser solutions while smaller values of γ lead to better fit, i.e., smaller
error ∥Ax−b∥. Besides the regularization viewpoint, we can also adopt
a maximum a posteriori (MAP) interpretation of 4.11. Assume the
signal model to be y = Ax + e, where y ∈ Rm, x ∈ Rn and e ∈ Rm

are all considered to be random. We model the noise vector v as a
Gaussian random vector with i.i.d. elements, i.e.,

P (e[i] = u) =
1√
2πσ

e
− u2

2σ2

where σ2 is the noise variance. We assume the coefficient vector x
to be independent of e and to be sparse. Hence, probability density
functions that are concentrated near zero but also have heavy tails are
appropriate to model x. Specifically, x is modeled as a random vec-
tor with i.i.d. elements that have a generalized Gaussian distribution,
which is defined as
Definition 4.1.4 (generalized Gaussian distribution).

P (x[i] = u) =
p

2 p
√
2βΓ(1p)

exp(−sgn(p)|u|
p

2βp
) (4.12)

where p ∈ R, β > 0, Γ(·) is the gamma function and sgn(·) is the sign
function.

β is the generalized variance and p controls the shape of the gen-
eralized Gaussian distribution. When p = 1, the generalized Gaus-
sian distribution reduces to the Laplacian distribution while when p =
2, β = 1, it reduces to the standard normal distribution. As we can see
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from figure 4.1, the generalized Gaussian distribution moves towards
a uniform distribution as p → ∞ and towards a very peaky distribu-
tion as p → 0. Given the vector y ∈ Rm, we want to perform MAP

Figure 4.1: generalized Gaussian distribution

estimation of the vector x ∈ Rn as follows
xMAP = argsup

x∈Rn
ln(p(x|y))

= argsup
x∈Rn

{ln(p(y|x)) + ln(p(x))}

= argsup
x∈Rn

{ln(pv(y − Ax)) + ln(p(x))}

= arginf
x∈Rn

J(x) = γEp(x) + ∥Ax− b∥22 with γ =
σ2

βp

which is equivalent to our objective 4.11. p = 2, which corresponds
to the Gaussian prior for x, gives rise to a regularized least squares
problem. With p ≤ 1, it can be shown that the local minima of J(x)
is sparse.

Then how can we solve the problem 4.11? The gradient vector of
J(x) evaluated at a fixed point x∗ can be computed as follows

∇xJ(x
∗) = 2ATAx∗ − 2ATy + 2λΠ(x∗)x∗ = 0
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where λ = |p|
2 γ and Π(x) = diag(|x[i]|p−2). From such equation for

a fixed point, we can come up with the following fixed-point iteration
rule.

2ATAx(k+1) − 2ATy + 2λΠ(x(k))x(k+1) = 0 (4.13)
Hence, an algorithm designed based on 4.13 is equivalent as solving the
following optimization problem for each iteration

x(k+1) = arginf
x∈Rn

Q(k+1)(x) = λ∥W−1
k x∥22 + ∥Ax− y∥22 (4.14)

where W (x) = Π(x)−1/2 = diag(|x[i]|1−p/2) and Wk = W (x(k)). Note
that 4.14 is just the same as replacing the strict equality constraint of
4.6 with the Tikhonov regularization term ∥Ax−y∥22. For this relation,
we call the resulting algorithm a regularized IRLS algorithm. Indeed,
as λ approaches zero, the algorithm reduces to the IRLS algorithm.
From equation 4.13, we can analytically compute 4.14 as

x(k+1) = Wk(A
T
kAk + λI)−1AT

k y (4.15)

where Ak = AWk. Since AT
k (AkA

T
k + λI)−1 = (AT

kAk + λI)−1AT
k ,

x(k+1) = WkA
T
k (AkA

T
k + λI)−1y (4.16)

We can describe the regularized IRLS algorithm based on the p-norm
like diversity measure as follows. The readers can refer to [33] for
details.
Algorithm 18 Regularized IRLS Based on Ep(x)

Input: y ∈ Rm；A ∈ Rm×n

Initialization : x(0) ∈ Rn

Iteration : repeat until a stopping criterion is met at k = k̄

1. Let Wk = diag(|x(k)[i]|1−p/2) and Ak = AWk

2. x(k+1) =Wk(A
T
kAk + λI)−1AT

k y =WkA
T
k (AkA

T
k + λI)−1y

Output: x(k̄)
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4.1.2 FOCal Underdetermined System Solver (FOCUSS)
Algorithm

It is easier to deal with minimization of ℓ2 norm compared with
minimization of ℓ1 and ℓ0 norm; however, simply minimizing ∥x∥2
subject to Ax = y cannot produce sparse solutions. To deal with
problem 4.1, the FOCUSS algorithm considers the following objective
function at each iteration instead.

x(k+1) = argmin
x∈Rn

n∑
i=1,x(k)[i] ̸=0

(
x[i]

x(k)[i]
)2 subject to Ax = y (4.17)

The intuition is that the relatively large entries in x(k) reduce the con-
tribution of the corresponding elements of x(k+1) to the objective func-
tion. In this way, larger entries in x(k) result in larger corresponding
entries in x(k+1) if the respective columns in A are significant in fitting
b as compared to the rest of the columns of A. Hence, minimizing
such objective function at each iteration gradually reinforces some of
the already prominent entries in x while suppressing the rest. As we
have mentioned in the last section, FOCUSS algorithm is just the same
as the IRLS algorithm based on the Gaussian entropy diversity mea-
sure. We can verify this fact by observing equation 4.6 and algorithm
16. In [16], it generalizes the basic FOCUSS algorithm to a generalized
FOCUSS algorithm. The generalized FOCUSS algorithm is described
as follows
Algorithm 19 Generalized FOCUSS Algorithm
Input: y ∈ Rm；A ∈ Rm×n；a positive integer ℓ；Wak ∈ Rn×n : the scaling matrix
Initialization : x(0) ∈ Rn

Iteration : repeat until a stopping criterion is met at k = k̄

1. Let Wpk = diag((x(k))ℓ)

2. Let Wk =WakWpk

3. q(k+1) = (AWk)
†y

4. x(k+1) =Wkq
(k+1)

Output: x(k̄)

We introduce an additional parameter ℓ so that the original affine scal-
ing transformation matrix can be more flexible (which becomes theWpk
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matrix). We also introduce an additional scaling matrix Wak, which
is independent of Wpk and can carry a priori information. We can

make the algorithm be more general by letting Wpk be diag(
k∏
i=1

(x(i))ℓi),
where ℓi, i = 1, · · · , k are all positive integers. In the following, we will
discuss some convergence issues regarding the FOCUSS algorithm.

Convergence Issues

We need to introduce some terms in advance.
1. Fixed points : We have introduce the concept of fixed points in foot-

note 1. We can further classify fixed points into three categories,
which are stable fixed points, saddle fixed points and unstable fixed
points respectively.
(a) Stable fixed points : fixed points to which the algorithm con-

verges from anywhere within some closed neighborhood around
such points

(b) Saddle fixed points : fixed points to which the algorithm con-
verges only along some special trajectories

(c) Unstable fixed points : fixed points from which an algorithm
moves away given any perturbation

2. Basin of attraction : the largest neighborhood of points from which
an algorithm converges to a given stable fixed point

3. Phase space : a collection of trajectories that trace the temporal
evolution of an algorithm from different initial points

4. Fixed point convergence / Absolute convergence / Absolute stabil-
ity : these terms mean that an algorithm converges to a fixed point
from any starting point
For a fixed-point convergent algorithm, its entire phase space is

divided up by the basins of attraction containing stable fixed points.
The borders separating individual basins do not belong to any of the
basins. These borders can consist of trajectories leading to saddle fixed
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Figure 4.2: Visualization of a phase space of FOCUSS

points or to infinity, or they can be a dense set of unstable fixed points,
or they can be a combination of those. As a result, an absolutely con-
vergent algorithm is not guaranteed to converge to a stable fixed point
from any initialization point; that is, it may converge to a saddle fixed
point or get stuck at an unstable fixed point. However, since the sad-
dle fixed points are reached only along special trajectories whose total
number has measure zero, an algorithm converges to these solutions
with probability 0 . The unstable fixed points also have measure zero;
therefore, an algorithm returns these points with probability 0. Hence,
an absolutely convergent algorithm converges to stable fixed points
with probability 1. We can refer to a figure in [16] (i.e., figure 4.2)
for a visualization of a phase space of FOCUSS. The phase space is
divided up by basins of attraction. The dots represent the stable fixed
points of the algorithm and the lines indicate the boundaries of the
basins. The FOCUSS algorithm is proved to be absolutely convergent.
Furthermore, sparse solutions in Rr, r ≤ m, are proved to be the sta-
ble fixed points of the FOCUSS algorithm. Non sparse solutions in
Rr, m < r < n, are saddle fixed points of the FOCUSS algorithm.
Non sparse solutions in Rn are unstable fixed points of the FOCUSS
algorithm. Therefore, the FOCUSS algorithm converges to a sparse so-
lution with probability 1. Besides, since the entries of x(k) converges to
zero or nonzero values and x(k+1) = Wkq

(k+1), where Wk = diag(x(k))

(assuming the basic FOCUSS algorithm), the entries of q(k) converge to
zeros or ones. Hence q(k) can serve as an indicator when k approaches
the infinity, which indicates the support of a sparse solution. As we

119



expect, the basins of attraction play an important role in the conver-
gence issues. In the following, we discuss some factors that affect the
basins of attraction.

Factors That Affect The Basins of Attraction

First, we discuss the effect of the dictionary A on the basins. Let
A = AnN , where An is normalized version of A (i.e., ℓ2 norm of each
column of An is normalized to 1) and N is a diagonal matrix whose
diagonal entries are the corresponding normalizing factors. Hence, An

affects the solution only through the degree of correlation of individual
columns with the vector y. Note that

inf
x
∥W−1

pk x∥
2
2 subject to Ax = y

≡ inf
q
∥q∥22 subject to AnNWpkq = b

(4.18)

where Wpk is the same as the matrix defined in algorithm 19. As a
result, we can view 4.18 as the generalized FOCUSS algorithm applied
to the system Anx = y with Wak being N . Originally, the size of each
basin is equal due to the characteristic of An. However, with such Wak,
stable fixed points whose support containing locations of large entries
of N are favored, which in turn makes the corresponding basins larger.
Therefore, to alleviate such intrinsic bias of the dictionary A, we had
better normalize the ℓ2 norm of each column of A in advance before
applying the FOCUSS algorithm.

Second, we discuss the effect of the number of sparse solutions on
the basins. If the number of sparse solutions to a given problem is
larger, the greater the fragmentation of the phase space of the FO-
CUSS algorithm is greater, which leads to smaller basins. Therefore,
in the context of compressive sensing, as the sizes of individual basins
diminish, the algorithm must start closer to the real sparse signal in
order to converge to it.

Lastly, we discuss the effect of the dimensions of stable fixed points
on the basins. If all stable fixed points are m-dimensional, each m-
dimensional subspace has an equal probability of being the solution
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(if the intrinsic bias has been removed); that is, all basins are equal.
However, if a stable fixed point x of r-dimension (r < m) exists, those
solutions of m-dimension, whose support contains the support of x,
will no longer be present and an initialization that would have led to
one of those solutions now leads to x. Hence, the basin of x is larger
than any basins of m-dimensional sparse solution. We can conclude
that the smaller the dimension of a stable fixed point, the larger the
size of the corresponding basin. Therefore, the maximally sparse solu-
tion has the largest basin, which implies that the FOCUSS algorithm
favors the maximally sparse solution and the smaller the dimension of
the maximally sparse solution, the greater the likelihood of convergence
to it. On the other hand, if the dimension of the sparse solutions are
larger, the sizes of the corresponding basins are smaller. As a result, as
the dimension of the sparse solution increases, the FOCUSS algorithm
gradually starts to favor the solution near its initialization and it must
start closer to the real sparse signal in order to lie in the right basin.

Finally, we list three useful tips when performing the FOCUSS al-
gorithm. The first tip is that we can initialize x(0) as the solution of the
minimum ℓ2 norm problem (i.e., inf

x∈Rn
∥x∥22 subject to Ax = y). In this

way, x(0) = A†y. The second tip is that we can eliminate diminishing
entries of x(k) that are indicated by q(k) at each iteration. The third
tip is to implement a hard thresholding operation to obtain the final
result once the convergence pattern becomes clear. The readers can
refer to [16] for details.

4.1.3 ℓ1 Convex Relaxation
In section 4.1.1, we have introduced IRLS-type algorithms with

D(x) being the p-norm like diversity measure Ep(x). In particular,
if we choose p = 1, we will obtain E1(x) = ∥x∥1 and problem 4.3

becomes
inf
x∈Rn

∥x∥1 subject to Ax = y (4.19)
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In the field of sparse representation and compressive sensing, this prob-
lem, known as the basis pursuit, gains much attention for it can be an
adequate surrogate of the ℓ0-minimization problem. Indeed, if the ba-
sis pursuit has an unique solution x♯, then theorem 3.1 of [13] proves
that the system {aj, j ∈ supp(x♯)} is linearly independent, which im-
plies x♯ must be m-sparse. Another reason to consider 4.19 is due to
the convexity of the ℓ1 norm. It can be verified that ℓp quasinorm for
0 < p < 1 is non-convex and ℓp norm for p ≥ 1 is convex. Solving a
non-convex ℓp-minimization problem for 0 < p < 1 is NP-hard in gen-
eral. Hence, it is natural to consider the ℓ1-minimization problem 4.19

for it is the ”closest” convex problem to the non-convex ℓ0-minimization
problem. For this reason, we call the ℓ1-minimization problem the con-
vex relaxation of the ℓ0-minimization problem.

Parallel to the extension of the problem 4.1 to the problem 4.2,
it is also natural to extend the problem 4.19 to the following problem
4.20.

inf
x∈Rn

∥x∥1 subject to ∥Ax− y∥2 ≤ ϵ (4.20)

We call it the quadratically-constrained basis pursuit. Note that the
quadratically-constrained basis pursuit has strong connections with an-
other two famous problems, which are the basis pursuit denoising 4.21

and the least absolute shrinkage and selection operator (LASSO) 4.22,
respectively.

inf
x∈Rn

λ∥x∥1 +
1

2
∥Ax− y∥22 , λ ≥ 0 (4.21)

inf
x∈Rn

∥Ax− y∥2 subject to ∥x∥1 ≤ τ , τ ≥ 0 (4.22)

Indeed, proposition 3.2 of [13] manifests some links among the three
problems.

Theorem 3.1 of [13] gives an intuition of why we want to consider
the basis pursuit. In the following, we will continue to delve into more
involved mathematical discussion about the behavior of the basis pur-
suit and the quadractically-constrained basis pursuit. First, we define
the ℓq-robust null space property of a matrix A as follows.
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Definition 4.1.5 (ℓq-robust null space property). Given q ≥ 1, the
matrix A ∈ Rm×n is said to satisfy the ℓq-robust null space property
of order s with respect to the norm ∥ · ∥ with constants 0 < ρ < 1 and
τ > 0 if, for any set S ⊂ [n] with card(S) ≤ s,

∥v|S∥q ≤
ρ

s1−1/q
∥v|S∥1 + τ∥Av∥ ∀v ∈ Rn (4.23)

In particular, if q = 1, then the ℓq-robust null space property
reduces to the robust null space property.
Definition 4.1.6 (robust null space property). The matrix A ∈
Rm×n is said to satisfy the robust null space property of order s with
respect to the norm ∥ · ∥ with constants 0 < ρ < 1 and τ > 0 if, for
any set S ⊂ [n] with card(S) ≤ s,

∥v|S∥1 ≤ ρ∥v|S∥1 + τ∥Av∥ ∀v ∈ Rn (4.24)

If 4.24 holds only for all v that belongs to the null space of A
(ker A), then the robust null space property reduces to the stable null
space property.
Definition 4.1.7 (stable null space property). The matrixA ∈ Rm×n

is said to satisfy the stable null space property of order s with constant
0 < ρ < 1 if, for any set S ⊂ [n] with card(S) ≤ s,

∥v|S∥1 ≤ ρ∥v|S∥1 ∀v ∈ ker A (4.25)

If we further choose ρ to be infinitely close to 1, then the stable
null space property reduces to the null space property.
Definition 4.1.8 (null space property). The matrix A ∈ Rm×n is
said to satisfy the null space property of order s if, for any set S ⊂ [n]

with card(S) ≤ s,

∥v|S∥1 < ∥v|S∥1 ∀v ∈ ker A\{0} (4.26)

If we add ∥v|S∥1 on the both sides of 4.26, we will get an equivalent
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condition
2∥v|S∥1 < ∥v∥1 ∀v ∈ ker A\{0} (4.27)

If we add ∥v|S∥1 on the both sides of 4.26 and choose S to be Ls(v)
as defined in 2.66, we will get another equivalent condition

∥v∥1 < 2σs(v)1 ∀v ∈ ker A\{0} (4.28)

Those properties have a lot to do with the effectiveness of the basis
pursuit and quadratically-constrained basis pursuit as being the sur-
rogate problems of 4.1 and 4.2. We excerpt some important results
introduced in chapter 4 of [13] in the following. Once again, as have
been remarked in footnotes 1 and 2, to make clear of the concept and
to avoid conflicts of use of notations, we modify the notations in 4.19

and 4.20 to

inf
z∈Rn

∥z∥1 subject to Az = y

inf
z∈Rn

∥z∥2 subject to ∥Az − y∥2 = ∥A(z − x)− e∥2 ≤ ϵ

First, we excerpt the theorem 4.25 of [13] as follows.
Theorem 4.1.1. Given 1 ≤ p ≤ q, suppose that the matrix A ∈
Rm×n satisfies the ℓq-robust null space property of order s with
respect to the norm ∥ · ∥ with constants 0 < ρ < 1 and τ > 0.
Then, for any x, z ∈ Rn,

∥z − x∥p ≤
C

s1−1/p
(∥z∥1 − ∥x∥1 + 2σs(x)1) +Ds1/p−1/q∥A(z − x)∥

(4.29)
where C := (1 + ρ)2/(1− ρ) and D := (3 + ρ)τ/(1− ρ)

If we let q to be 2 and z to be a solution x♯ of the quadractically-
constrained basis pursuit problem, we can have the following corollary.
Corollary 4.1.1.1. Suppose that the matrix A ∈ Rm×n satisfies
the ℓ2-robust null space property of order s with respect to the ℓ2
norm with constants 0 < ρ < 1 and τ > 0. Then, for any x ∈ Rn,
a solution x♯ of the quadractically-constrained basis pursuit, y =
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Ax + e, and ∥e∥2 ≤ ϵ approximates the vector x with ℓp-error

∥x− x♯∥p ≤
C

s1−1/p
σs(x)1 +Ds1/p−1/2ϵ , 1 ≤ p ≤ 2 (4.30)

where C := 2(1 + ρ)2/(1− ρ) and D := 2τ (3 + ρ)/(1− ρ)

We excerpt another theorem related to the robust null space prop-
erty as follows.
Theorem 4.1.2. The matrix A ∈ Rm×n satisfies the robust null
space property of order s with respect to the norm ∥·∥ with constants
0 < ρ < 1 and τ > 0 if and only if, for any set S ⊂ [n] with
card(S) ≤ s,

∥z−x∥1 ≤
1 + ρ

1− ρ
(∥z∥1 − ∥x∥1 + 2∥x|S∥2)+

2τ

1− ρ
∥A(z−x)∥ (4.31)

for all vectors x, z ∈ Rn.

If we choose S to be Ls(x) and z to be a solution x♯ of the
quadractically-constrained basis pursuit problem, we can have the fol-
lowing corollary.
Corollary 4.1.2.1. Suppose that a matrix A ∈ Rm×n satisfies the
robust null space property of order s with respect to the ℓ2 norm with
constants 0 < ρ < 1 and τ > 0. Then, for any x ∈ Rn, a solution
x♯ of the quadractically-constrained basis pursuit, y = Ax+ e, and
∥e∥2 ≤ ϵ approximates the vector x with ℓ1-error

∥x− x♯∥1 ≤
2(1 + ρ)

(1− ρ)
σs(x)1 +

4τ

1− ρ
ϵ (4.32)

If we restrict the x and z in theorem 4.1.2 to satisfy Az = Ax,
then we can come up with the following corollary.
Corollary 4.1.2.2. The matrix A ∈ Rm×n satisfies the stable null
space property of order s with constant 0 < ρ < 1 if and only if,
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for any set S ⊂ [n] with card(S) ≤ s,

∥z − x∥1 ≤
1 + ρ

1− ρ
(∥z∥1 − ∥x∥1 + 2∥x|S∥1) (4.33)

for all vectors x, z ∈ Rn with Az = Ax.

If we choose S to be Ls(x) and z to be a solution x♯ of the basis
pursuit problem, we can have the following corollary.
Corollary 4.1.2.3. Suppose that a matrix A ∈ Rm×n satisfies the
stable null space property of order s with constant 0 < ρ < 1.
Then, for any x ∈ Rn, a solution x♯ of the basis pursuit with
y = Ax approximates the vector x with ℓ1-error

∥x− x♯∥1 ≤
2(1 + ρ)

(2− ρ)
σs(x)1 (4.34)

Finally we excerpt theorem 4.5 of [13] as follows.
Theorem 4.1.3. Given a matrix A ∈ Rm×n, every s-sparse vector
x ∈ Rn is the unique solution of the basis pursuit with y = Ax,
i.e., x♯ = x, if and only if A satisfies the null space property of
order s.

This theorem shows that exact sparse recovery can be achieved if
the sampling matrix A satisfies the null space property.

Section 6.2 of [13] presents some theorems that use constraints on
the restricted isometry constant as sufficient conditions for satisfaction
of those null space properties so that some error bounds are guaranteed.
Precisely, theorem 6.9 of [13] states that if δ2s < 1/3, then the null
space property of order s is satisfied. Hence, combining the theorem
4.1.3, we can have the following result.
Theorem 4.1.4. Suppose that the 2s-th restricted isometry con-
stant of the matrix A ∈ Rm×n satisfies

δ2s <
1

3
(4.35)
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Then every s-sparse vector x ∈ Rn is the unique solution of the
basis pursuit.

Theorem 6.13 of [13] states that if δ2s < 4√
41

≈ 0.6246, then the
ℓ2-robust null space property of order s with constants 0 < ρ < 1 and
τ > 0 depending only on δ2s is satisfied. Combining with the corollary
4.1.1.1, we can have the following result.
Theorem 4.1.5. Suppose that the 2s-th restricted isometry con-
stant of the matrix A ∈ Rm×n satisfies

δ2s <
4√
41

≈ 0.6246 (4.36)

Then, for any x ∈ Rn and y ∈ Rm with ∥Ax− y∥2 ≤ ϵ, a solution
x♯ of the quadractically-constrained basis pursuit approximates the
vector x with ℓp-error

∥x− x♯∥p ≤
C

s1−1/p
σs(x)1 +Ds1/p−1/2ϵ , 1 ≤ p ≤ 2

where the constants C,D > 0 depend only on δ2s.

Up to now, we have provided solid mathematical foundation on ℓ1-
minimization problems. We can solve the basis pursuit, the quadractically-
constrained basis pursuit, the basis pursuit denoising and the LASSO
by resorting to various algorithms we have introduced, e.g. the Cham-
bolle and Pock’s primal-dual algorithm, the ADMM and the proximal
gradient method, in chapter 3 or the IRLS-type algorithms and FO-
CUSS algorithm in chapter 4. In particular, we want to introduce
the use of the proximal gradient method to solve the basis pursuit de-
noising problem because it results in a famous algorithm called the
iterative shrinkage-thresholding algorithm (ISTA) or the iterative soft-
thresholding.

We apply algorithm 5 to the basis pursuit denoising problem 4.21.
Let f (x) = 1

2∥Ax − y∥22 and g(x) = λ∥x∥1. The gradient of f (x)
is ∇f (x) = A∗(Ax − y). The proximal mapping for g(x) is the soft
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thresholding operator Sλ introduced in 1.22 and is applied entry-wise.
Therefore, the iteration rule 3.43 becomes

x(k+1) = Sηλ(x
(k) + ηA∗(y − Ax(k))) (4.37)

The resulting algorithm is called the ISTA or the iterative soft-thresholding.

4.2 Greedy Algorithms
For a sparse representation or compressive sensing problem, an im-

portant and challenging task is to identify the support of the sparse
representation coefficient vector (or the sparse signal). Greedy Algo-
rithms attempt to identify indices of some nonzero components at each
iteration based on some greedy rules (typically involving the calculation
of the correlations of the residual vector with columns of the dictionary
(or sampling matrices) or equivalently involving the formation of the
correlation vector) . During the progress of iterations, our aim is to
obtain residual vectors with gradually decreasing norms. Many effec-
tive greedy algorithms have been proved to achieve such goal. In this
section, we will introduce various such effective greedy algorithms.

4.2.1 Matching Pursuit (MP)
Let y ∈ Rm be the signal vector and A ∈ Rm×n (m < n) be

the dictionary. Let aj ∈ Rm represent the j-th column vector of A
and ∥aj∥22 = ⟨aj, aj⟩ = 1 ∀j ∈ [n]. As have been mentioned in
the introduction of this chapter, our objective is to achieve a sparse
representation of y so that we can use as few atoms as possible to ap-
proximate it. That is, we want to decompose the signal y into a linear
expansion of atoms that are selected from the redundant dictionary A
and these atoms are chosen in order to best match the signal structure.

In the following, we will first introduce the matching pursuit algo-
rithm and then we will provide a theoretical analysis of it.
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Algorithm 20 Matching Pursuit
Input: y ∈ Rm；A ∈ Rm×n；a prescribed threshold parameter 0 < ϵ < 1
Initialization :

1. Compute ⟨aj , ak⟩ for j, k ∈ [n]

2. Compute ⟨y, aj⟩ for j ∈ [n]

3. R(0) = y

Iterations : from k = 0 until
k̄∑

k=0

|⟨R(k), ajk+1⟩|2 ≥ (1− ϵ2)∥y∥22 at k = k̄

1. jk+1 = argmax
j∈[n]

|⟨R(k), aj⟩|

2. R(k) = ⟨R(k), ajk+1⟩ajk+1 +R(k+1) ⇒ R(k+1) = R(k) − ⟨R(k), ajk+1⟩ajk+1

3. Compute ⟨R(k+1), aj⟩ = ⟨R(k), aj⟩ − ⟨R(k), ajk+1⟩⟨ajk+1 , aj⟩ for j ∈ [n]

y =
k̄∑

k=0

(R(k) −R(k+1)) +R(k̄+1) =
k̄∑

k=0

⟨R(k), ajk+1⟩ajk+1 +R(k̄+1)

Perform back-projection
1. Let X = [x(k)], k = 1, · · · , k̄ + 1；Y = [⟨R(k̄+1), ajk+1⟩], k = 0, · · · , k̄；G ∈ R(k̄+1)×(k̄+1), where Grℓ =

⟨ajr , ajℓ⟩, r, ℓ = 1, · · · , k̄ + 1

2. Compute the linear system Y = GX to get X

Output: (jk+1, ⟨R(k), ajk+1⟩+ x(k+1)) for k = 0, 1, · · · , k̄

Hence, the matching pursuit chooses at each iteration an atom that
best matches the residue R(k) and subdecomposes R(k) by projecting
it on such best atom. We analyze the matching pursuit in details as
follows. First, from the algorithm 20, we know that

R(k) = ⟨R(k), ajk+1⟩ajk+1 +R(k+1) (4.38)

y =

k̄∑
k=0

⟨R(k), ajk+1⟩ajk+1 +R(k̄+1) (4.39)

We want to derive similar relations but in the form of energy. We make
some derivations as follows.

R(k) = ⟨R(k), ajk+1⟩ajk+1 +R(k+1)

⇒⟨R(k), ajk+1⟩ = ⟨R(k), ajk+1⟩⟨ajk+1, ajk+1⟩ + ⟨R(k+1), ajk+1⟩
= ⟨R(k), ajk+1⟩ + ⟨R(k+1), ajk+1⟩

Hence, ⟨R(k+1), ajk+1⟩ = 0, which means R(k+1) is orthogonal to ajk+1.
Therefore, we can come up with the following equation.

∥R(k)∥22 = |⟨R(k), ajk+1⟩|2 + ∥R(k+1)∥22 (4.40)
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Furthermore, since we can express ∥y∥22 as ∥y∥22 =
k̄∑
k=0

(∥R(k)∥22 −

∥R(k+1)∥22) + ∥R(k̄+1)∥22, we can derive another relation below from
4.40.

∥y∥22 =
k̄∑
k=0

|⟨R(k), ajk+1⟩|2 + ∥R(k̄+1)∥22 (4.41)

If we define λ(y) = sup
j∈[n]

|⟨y,aj⟩|
∥y∥2

as the correlation ratio of the signal y

with respect to the dictionary. Since |⟨R(k), ajk+1⟩| = sup
j∈[n]

|⟨R(k), aj⟩|

and 4.40, we can derive that

∥R(k+1)∥22 = (1− λ(R(k))2)∥R(k)∥22 (4.42)

We can further derive that

∥R(k̄+1)∥2 = ∥y∥2
k̄∏
k=0

(1− λ(R(k))2)1/2 (4.43)

Therefore, the norm of R(k̄+1) depends on the correlation between the
residues and the dictionary atoms. If the signal y is the sum of several
high energy components that belong to the dictionary, the correlation
ratios of y and its residues is large so that the norm of residues decay
quickly. These components can be viewed as ”coherent structures”
with respect to the dictionary. On the other hand, if the residues of y
have low correlation ratios, then their norms decay slowly. In such sit-
uation, y must be expanded over many atoms in order to approximate
y well, which means the information of y is spread over the dictionary.

Let Vk̄ denote the space spanned by the vectors ajk+1, k = 0, 1, · · · , k̄
and PVk̄ denote the orthogonal projector on Vk̄. Let Wk̄ denote the or-
thogonal complement of Vk̄ and PWk̄

denote the orthogonal projector
on Wk̄. After we choose k̄ + 1 vectors ajk+1, the closest vector to y is
PVk̄y. Hence, we perform an additional back projection step. Because

130



of 4.39, we can derive

PVk̄y =

k̄∑
k=0

⟨R(k), ajk+1⟩ajk+1 + PVk̄R
(k̄+1) (4.44)

Let PVk̄R
(k̄+1) =

k̄∑
k=0

x(k+1)ajk+1.

k̄∑
k=0

x(k+1)⟨ajk+1, ajℓ⟩ = ⟨PVk̄R
(k̄+1), ajℓ⟩

= ⟨PVk̄R
(k̄+1), PVk̄ajℓ⟩

= ⟨R(k̄+1), ajℓ⟩ , ℓ = 1, · · · , k̄ + 1

Hence, we can derive the back projection step as what is described in
the algorithm 20. The resulting approximation error is y − PVk̄y =

PWk̄
y = PWk̄

R(k̄+1) and its energy is ∥PWk̄
R(k̄+1)∥22 = ∥R(k̄+1)∥22 −

∥PVk̄R
(k̄+1)∥22. Note that before performing the back projection, the

approximation error is ∥R(k̄+1)∥22. Therefore, the reduction of the ap-
proximation error depends on ∥PVk̄R

(k̄+1)∥22.
Finally, we make a remark on the stopping criterion. The num-

ber of times we subdecompose the residues, i.e., k̄ + 1 depends on a
prescribed precision threshold ϵ. We require that

∥R(k̄+1)∥2 = ∥y −
k̄∑
k=0

⟨R(k), ajk+1⟩ajk+1∥2 ≤ ϵ∥y∥2 (4.45)

, equivalently, we require that ∥R(k̄+1)∥22 = ∥y∥22−
k̄∑
k=0

|⟨R(k), ajk+1⟩|2 ≤

ϵ2∥y∥22. Hence, the stopping criterion would be
k̄∑
k=0

|⟨R(k), ajk+1⟩|2 ≥ (1− ϵ2)∥y∥22 (4.46)

at k = k̄.
The readers can refer to [23] for materials introduced in this sec-
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tion.

4.2.2 Orthogonal Matching Pursuit (OMP)
In the context of sparse representation, let y ∈ Rm be the signal

vector and A ∈ Rm×n(m < n) be the dictionary. Let aj ∈ Rm

represent the j-th column vector of A and ∥aj∥22 = ⟨aj, aj⟩ = 1 ∀j ∈
[n]. The same as we have been mentioned in the last section, we hope
to achieve compact signal coding so that we can use as few dictionary
atoms as possible to approximate y. These atoms are chosen in order to
best match the signal structure. Assume at the k-th iteration, we have
chosen k atoms {aj1, aj2, · · · , ajk}. Let Vk denote the space spanned
by the set of vectors {aj1, aj2, · · · , ajk} and PVk denote the orthogonal
projector on Vk. Let Wk denote the orthogonal complement of Vk and
PWk

denote the orthogonal projector on Wk. The best approximation
of y using the set of vectors is PVky. That is,

y = PVky + PWk
y =

k∑
n=1

xknajn +R(k) (4.47)

with ⟨R(k), ajn⟩ = 0 for n = 1, · · · , k. xkn denotes the coefficient
for ajn at the k-th iteration and R(k) denotes the residue at the k-th
iteration. Assume at the k+1-th iteration, we choose the atom ajk+1.
Then the best approximation of y using {aj1, aj2, · · · , ajk+1} is PVk+1

y.
Similarly, we can get

y = PVk+1
y + PWk+1

y =

k+1∑
n=1

xk+1
n ajn +R(k+1) (4.48)

with ⟨R(k+1), ajn⟩ = 0 for n = 1, · · · , k + 1.
How can we update the coefficient for ajn from xkn to xk+1

n and
also obtain the coefficient for ajk+1, i.e., xk+1

k+1 ? We can expand ajk+1

as

ajk+1 = PVkajk+1 + PWk
ajk+1 =

k∑
n=1

bknajn + γk (4.49)
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with ⟨γk, ajn⟩ = 0 for n = 1, · · · , k. In this way,
k∑

n=1

xknajn +R(k) −
k+1∑
n=1

xk+1
n ajn −R(k+1) = 0

⇒
k∑

n=1

(xkn − xk+1
n )ajn − xk+1

k+1ajk+1 +R(k) −R(k+1) = 0

⇒
k∑

n=1

(xkn − xk+1
n − bknx

k+1
k+1)ajn − γkxk+1

k+1 +R(k) −R(k+1) = 0

⇒
k∑

n=1

(xkn − xk+1
n − bknx

k+1
k+1)⟨ajn, ajk+1⟩ − xk+1

k+1⟨γ
k, ajk+1⟩ + ⟨R(k), ajk+1⟩ = 0

⇒

{
xkn − xk+1

n − bknx
k+1
k+1 = 0

−xk+1
k+1⟨γk, ajk+1⟩ + ⟨R(k), ajk+1⟩ = 0

Hence, xk+1
k+1 =

⟨R(k),a
jk+1⟩

⟨γk,a
jk+1⟩

and xk+1
n = xkn − bknx

k+1
k+1 for n = 1, · · · , k.

How can we compute the coefficients bkn for n = 1, · · · , k ? From 4.49,
we can get

⟨ajk+1, aji⟩ =
k∑

n=1

bkn⟨ajn, aji⟩+⟨γk, aji⟩ =
k∑

n=1

bkn⟨ajn, aji⟩ , i = 1, · · · , k

Let Bk = [bkn], n = 1, · · · , k; Yk = [⟨ajk+1, aji⟩], i = 1, · · · , k;
Gk ∈ Rk×k, (Gk)rℓ = ⟨ajr, ajℓ⟩, r, ℓ = 1, · · · , k. Then we form a
linear system Yk = GkBk. Since the set {aj1, aj2, · · · , ajk} forms a
basis for Vk and the orthogonal projection of ajk+1 onto Vk is unique,
there is exactly one solution for Bk, i.e., Bk = G−1

k Yk. Note that

Gk =

[
Gk−1 Yk−1

Y ∗
k−1 1

]
. Using the block matrix inversion formula, we

can get G−1
k =

[
G−1
k−1 + βk−1Bk−1B

∗
k−1 −βk−1Bk−1

−βk−1B
∗
k−1 βk−1

]
, where βk−1 =

1
1−Y ∗

k−1Bk−1
. Hence, G−1

k can be obtained using G−1
k−1、Bk−1 and Yk−1.

After getting Bk, we can determine γk via 4.49.
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In the following, we summarize our discussion and present the
resulting OMP algorithm.
Algorithm 21 Orthogonal Matching Pursuit
Input: y ∈ Rm;A ∈ Rm×n;a prescribed threshold parameter 0 < δ < 1
Initialization :

1. compute ⟨aj , aℓ⟩ for j, ℓ ∈ [n]

2. R(0) = y

3. compute ⟨R(0), aj⟩ for j ∈ [n]

4. compute j1 = argsup
j∈[n]

⟨R(0), aj⟩

5. x11 = ⟨y, aj1⟩；y1 = x11aj1；R
(1) = y − y1；D1 = {j1}

6. compute ⟨R(1), aj⟩ for j = [n]\D1 ⇒ ⟨R(1), aj⟩ = ⟨y − y1, aj⟩ = ⟨y, aj⟩ − x11⟨aj1 , aj⟩
7. compute j2 = argsup

j∈[n]\D1

⟨R(1), aj⟩

If ⟨R(1), aj2⟩ < δ, then stops; otherwise
8. Y1 = [⟨aj2 , aj1⟩]；G1 = [⟨aj1 , aj1⟩] = [1]；B1 = [b11] = [⟨aj2 , aj1⟩]
9. aj2 = b11aj1 + γ1 ⇒ γ1 = aj2 − b11aj1

10. x22 =
⟨R(1),aj2 ⟩
⟨γ1,aj2 ⟩

；x21 = x11 − b11x
2
2；y

2 = x21aj1 + x22aj2；R
(2) = y − y2；D2 = {j1, j2}

11. compute ⟨R(2), aj⟩ for j = [n]\D2 ⇒ ⟨R(2), aj⟩ = ⟨y − y2, aj⟩ = ⟨y, aj⟩ −
2∑

n=1
x2n⟨ajn , aj⟩

Iteration : from k = 2 until ⟨R(k̄), ajk̄+1⟩ < δ at k = k̄

1. compute jk+1 = argsup
j∈[n]\Dk

⟨R(k), aj⟩

2. G−1
k =

[
G−1

k−1 + βk−1Bk−1B
∗
k−1 −βk−1Bk−1

−βk−1B
∗
k−1 βk−1

]
, where βk−1 = 1

1−Y ∗
k−1Bk−1

3. Yk = [⟨ajk+1 , aji⟩], i = 1, · · · , k

4. Bk = G−1
k Yk

5. ajk+1 =
k∑

n=1
bknajn + γk = Bk[aj1 , aj2 , · · · , ajk ]T + γk ⇒ γk = ajk+1 −Bk[aj1 , aj2 , · · · , ajk ]T

6. xk+1
k+1 =

⟨R(k),a
jk+1 ⟩

⟨γk,a
jk+1 ⟩ ；x

k+1
n = xkn − bknx

k+1
k+1 for n = 1, · · · , k；yk+1 =

k+1∑
n=1

xk+1
n ajn；R

(k+1) = y − yk+1；

Dk+1 = {j1, · · · , jk+1}

7. compute ⟨R(k+1), aj⟩ for j = [n]\Dk+1 ⇒ ⟨R(k+1), aj⟩ = ⟨y − yk+1, aj⟩ = ⟨y, aj⟩ −
k+1∑
n=1

xk+1
n ⟨ajn , aj⟩

Output: (jk,xk̄+1
k ) for k = 1, · · · , k̄ + 1

At the k-th iteration, we have the best approximation we can get using
the k vectors we have selected from the dictionary. Therefore if the
dictionary has finite number of atoms (e.g. M atoms), OMP converges
in no more than M iterations to the projection of y onto the span of
the dictionary atoms.

Note that before performing the back-projection step, at each
iteration, MP possesses the following energy conservation formula for
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the residues ∥R(k)∥22 = |⟨R(k), ajk+1⟩|2 + ∥R(k+1)∥22. We also want to
derive similar formula for the OMP. We make a derivation as follows.

k∑
n=1

xknajn +R(k) −
k+1∑
n=1

xk+1
n ajn −R(k+1) = 0

⇒R(k) −R(k+1) =

k∑
n=1

(xk+1
n − xkn)ajn + xk+1

k+1ajk+1

=

k∑
n=1

(xk+1
n − xkn)ajn + xk+1

k+1(

k∑
n=1

bknajn + γk)

=

k∑
n=1

(xk+1
n − xkn + xk+1

k+1b
k
n)ajn + xk+1

k+1γ
k = xk+1

k+1γ
k

∴ R(k) = R(k+1) + xk+1
k+1γ

k

⇒∥R(k)∥22 = ⟨R(k+1) + xk+1
k+1γ

k, R(k+1) + xk+1
k+1γ

k⟩
= ∥R(k+1)∥22 + ∥xk+1

k+1γ
k∥22 + 2Re(⟨R(k+1), xk+1

k+1γ
k⟩)

For the ∥xk+1
k+1γ

k∥22 term, we can get

xk+1
k+1 =

⟨R(k), ajk+1⟩
⟨γk, ajk+1⟩

=
⟨R(k), ajk+1⟩

⟨γk, ajk+1 −
k∑

n=1
bknajn⟩

=
⟨R(k), ajk+1⟩

∥γk∥22

∴∥xk+1
k+1γ

k∥22 =
|⟨R(k), ajk+1⟩|2

∥γk∥22
As for the ⟨R(k+1), xk+1

k+1γ
k⟩ term, we can get

⟨R(k+1), xk+1
k+1γ

k⟩ = ⟨R(k+1), xk+1
k+1(ajk+1 −

k∑
n=1

bknajn)⟩ = 0

Hence, we derive that

∥R(k)∥22 = ∥R(k+1)∥22 +
|⟨R(k), ajk+1⟩|2

∥γk∥22
(4.50)

The reduce of energy of the residues for MP is ∥R(k)∥22 − ∥R(k+1)∥22 =
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|⟨R(k), ajk+1⟩|2 while the reduce of energy of the residues for OMP

is ∥R(k)∥22 − ∥R(k+1)∥22 =
|⟨R(k),a

jk+1⟩|2

∥γk∥22
. Note that ∥ajk+1∥22 = ∥γk +

k∑
n=1

bknajn∥22 = ∥γk∥22+∥
k∑

n=1
bknajn∥22. As a result, ∥γk∥22 = 1−∥

k∑
n=1

bknajn∥22,
which is not larger than 1. Hence, OMP reduces more energy of the
residues, which in turn leads to convergence in fewer iterations. How-
ever, the computational effort required may not be smaller either. It
should depend on both the signals and the dictionary. The readers can
see [31] for references of materials we introduce so far.

In [7], the author introduces another way to compute OMP based
on the Gram-Schmidt process. We call it ”orthogonal matching pursuit
version 2” in the following algorithm.
Algorithm 22 Orthogonal Matching Pursuit Version 2
Input: y ∈ Rm; A ∈ Rm×n

Initialization :
1. R(0) = y

2. compute ⟨R(0), aj⟩ for j ∈ [n]

3. j1 = argsup
j∈[n]

⟨R(0), aj⟩

4. u1 = aj1

5. D1 = {j1}

6. y1 = ⟨y,u1⟩
∥u1∥2

2
u1 = ⟨y, u1⟩u1

7. R(1) = y − y1

Iteration : from k = 1 until a stopping criterion is met at k = k̄

1. compute ⟨R(k), aj⟩ for j ∈ [n]\Dk

2. jk+1 = argsup
j∈[n]\Dk

⟨R(k), aj⟩

3. Gram-Schmidt Process : uk+1 = ajk+1 −
k∑

n=1

⟨a
jk+1 ,un⟩
∥un∥2

2
un

4. Dk+1 = {j1, · · · , jk+1}

5. yk+1 =
k+1∑
n=1

⟨y,un⟩
∥un∥2

2
un ≜

k+1∑
n=1

cnun

6. R(k+1) = y − yk+1

Output: (ck, uk) for k = 1, · · · , k̄ + 1

In the following, we want to derive the energy conservation formula
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similar to 4.50.

R(k) = y − yk = y −
k∑

n=1

⟨y, un⟩
∥un∥22

un

R(k+1) = y − yk+1 = y −
k+1∑
n=1

⟨y, un⟩
∥un∥22

un

⇒R(k) −R(k+1) =
⟨y, uk+1⟩
∥uk+1∥22

uk+1

∵ ⟨yk, uk+1⟩ = 0

∴ R(k) −R(k+1) =
⟨y − yk, uk+1⟩

∥uk+1∥22
uk+1 =

⟨R(k), uk+1⟩
∥uk+1∥22

uk+1

∵ ⟨R(k), un⟩ = 0 for n = 1, · · · , k

∴ R(k) −R(k+1) =
⟨R(k), ajk+1⟩
∥uk+1∥22

uk+1

⇒∥R(k)∥22 = ∥R(k+1) +
⟨R(k), ajk+1⟩
∥uk+1∥22

uk+1∥22

∵ ⟨R(k+1), uk+1⟩ = 0

∴ ∥R(k)∥22 = ∥R(k+1)∥22 + ∥
⟨R(k), ajk+1⟩
∥uk+1∥22

uk+1∥22

= ∥R(k+1)∥22 +
|⟨R(k), ajk+1⟩|2

∥uk+1∥22
Note that the span of {u1, u2, · · · , uk} in [7] is the same as the span
of {aj1, aj2, · · · , ajk} in [31]. Hence, the orthogonal projection onto
{u1, u2, · · · , uk} is the same as that onto {aj1, aj2, · · · , ajk}, which
implies uk+1 = γk. Therefore, the energy conservation formulas of the
two different ways are identical as expected. We make a comparison
with the matching pursuit (MP) algorithm in the last section. In MP,

y =

k∑
n=0

⟨R(n), ajn+1⟩ajn+1 +R(k+1)
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while in OMP,

y =

k+1∑
n=1

⟨y, un⟩
∥un∥22

un +R(k+1)

=

k∑
n=0

⟨y, un+1⟩
∥un+1∥22

un+1 +R(k+1)

=

k∑
n=0

⟨R(n), ajn+1⟩
∥un+1∥22

un+1 +R(k+1)

In MP,

∥y∥22 =
k∑

n=0

|⟨R(n), ajn+1⟩|2 + ∥R(k+1)∥22

while in OMP,

∥y∥22 =
k∑

n=0

|⟨R(n), ajn+1⟩|2

∥un+1∥22
+ ∥R(k+1)∥22

Finally, we introduce some important sparse recovery results of OMP
applied in the context of compressive sensing. The proposition 3.5 of
[13] presents a result regarding the condition of exact sparse recovery.
We excerpt it as follows.
Theorem 4.2.1. Given a matrix A ∈ Rm×n, every nonzero vector
x ∈ Rn supported on a set S of size s is recovered from y = Ax

after at most s iterations of OMP if and only if the matrix AS is
injective and

max
j∈S

|(A∗r)j| > max
ℓ∈S̄

|(A∗r)ℓ| (4.51)

for all nonzero r ∈ {Az, supp(z) ⊂ S}

It is proved that the condition 4.51 can be equivalently expressed as
the following more concise condition.

∥A†
SAS̄∥1→1 < 1 (4.52)

Theorem 6.25 of [13] presents another result regarding the restricted
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isometry condition of robust sparse recovery (that is, with a sparsity
defect and measurement noise). We also excerpt it as follows.
Theorem 4.2.2. Suppose that A ∈ Rm×n has restricted isometry
constant

δ26s <
1

6
(4.53)

then there are constants C,D > 0 depending only on δ26s such
that, for all x ∈ Rn and e ∈ Rm, the iterates {x(k), k = 1, 2, · · · }
which can be derived from the output of the OMP algorithm 21

with y = Ax + e satisfies, for any 1 ≤ p ≤ 2,

∥x− x(24s)∥p ≤
C

s1−1/p
σs(x)1 +Ds1/p−1/2∥e∥2 (4.54)

4.2.3 Regularized Orthogonal Matching Pursuit (ROMP)
In [27] and [28], an algorithm called the regularized orthogonal

matching pursuit (ROMP) is presented and analyzed. In the follow-
ing, we will first describe the algorithm and then make a thorough
mathematical analysis of it. The ROMP algorithm is described as fol-
lows.
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Algorithm 23 ROMP
Input: y ∈ Rm；A ∈ Rm×n；sparsity level s
Initialization : Let the index set I(0) = ∅ and the residual vector R(0) = y
Repeat the following iteration steps until one of three possible stopping criteria is triggered :

1. R(k̄) = 0 at some iteration k̄

2. the algorithm has run for k̄ = s iterations
3. the cardinality of the index set |I(k̄)| ≥ 2s at some iteration k̄

Iterations :
1. Identification : choose a set J (k) of the s biggest coordinates in magnitude of the correlation vector

u(k) = A∗R(k) (4.55)

or all of its nonzero coordinates, whichever set is smaller.
2. Regularization : Among all subsets J ′ ⊂ J (k) with comparable coordinates :

|u(k)[i]| ≤ 2|u(k)[j]| ∀i, j ∈ J ′ (4.56)

choose J (k)
0 with the maximal energy; that is,

J
(k)
0 = argmax

J ′⊂J(k)

∥u|J ′∥2 (4.57)

3. Update : Add the set J (k)
0 to the index set

I(k+1) = I(k) ∪ J (k)
0 (4.58)

and update the residual :

x(k) = argmin
z∈RI(k+1)

∥y −Az∥2 (4.59)

R(k+1) = y −Ax(k) (4.60)

Output: index set I(k̄) ⊂ [n] and reconstructed signal x(k̄)

Assume the restricted isometry constant δ4s of the sampling ma-
trix A satisfies δ4s = ϵ and the measurement vector y = Ax+ e, where
x is an s-sparse signal vector and e is a noise vector. At the start of
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each iteration, we define

H(k) := range(Asupp(x)∪I(k)) (4.61)
F (k) := range(AI(k)) (4.62)
E(k) := (F (k))⊥ ∩H(k) (4.63)
E

(k)
0 := range(Asupp(x)\I(k)) (4.64)

x
(k)
0 := x|supp(x)\I(k) (4.65)
y
(k)
0 := Ax

(k)
0 ∈ E

(k)
0 (4.66)

u
(k)
0 := A∗y

(k)
0 (4.67)

Note that R(k) = P(F (k))⊥y, where P(F (k))⊥ denotes the orthogonal pro-
jector on (F (k))⊥. Since Ax ∈ H(k), R(k) = PE(k)(Ax) + P(F (k))⊥e.
However, what we actually want is a vector in the range of Asupp(x)\I(k)

(i.e., E(k)
0 ) so that we may successfully identify indices belonging to

supp(x)\I (k) from that vector. Luckily, due to the almost orthogonal-
ity property 2.107, the subspaces F (k) and E(k)

0 are almost orthogonal,
which implies the subspaces E(k) and E(k)

0 may be close to each other.
Indeed, we can derive that R(k) and y(k)0 are close to each other with
the inequality

∥R(k) − y
(k)
0 ∥2 ≤ 2.2ϵ∥y(k)0 ∥2 + ∥e∥2 (4.68)

What’s more, we can derive that the correlation vector u(k) is close to
u
(k)
0 with the inequality

∥(u(k) − u
(k)
0 )|T∥2 ≤ 2.4ϵ∥x(k)0 ∥2 + (1 + ϵ)∥e∥2 (4.69)

where T ∈ [n] is any set with |T | ≤ 3s.
At the identification step, we can show that the energy of u(k) when

restricted to J (k) is not too small. Indeed,

∥u(k)|J(k)∥2 ≥ (1− 4.43ϵ)∥x(k)0 ∥2 − (1 + ϵ)∥e∥2 (4.70)
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At the regularization step, we can derive that

∥u(k)|
J
(k)
0
∥2 ≥

2

5
√

log s
((1− 4.43ϵ)∥x(k)0 ∥2 − (1 + ϵ)∥e∥2) (4.71)

with the help of the lemma 3.7 of [27] that guarantees us to obtain a
subset with sufficient energy after the regularization operation. Pre-
cisely, the lemma is described as follows.
Lemma 4.2.3. Let y be any vector in Rm, m > 1. Then there
exists a subset A ∈ [m] with comparable coordinates :

|y[i]| ≤ 2|y[j]| ∀i, j ∈ A

and with sufficient energy :

∥y|A∥2 ≥
2

5
√

logm
∥y∥2

Besides, we give an intuition about why it is good to perform regu-
larization. Because of the comparability property and the maximal
energy property of J (k)

0 , the minimum components of J (k)
0 will not be

too small (at least only be half smaller than the maximum components
of J (k)

0 ), which in turn may filters out some indices of J (k) that do not
belong to the support of x. Therefore, after the identification step, J (k)

collects some indices that are possible to lie in the support of x while
after the regularization step, some possibly outliers (indices that do not
belong to the support of x) may be filtered out and J (k)

0 is obtained.
We make a remark on the implementation issue of the regularization
step. Note that although it seems like a combinatorial problem to get
J
(k)
0 ⊂ J (k), it can actually be done fast if one observes that J (k)

0 is an
interval in the non-increasing rearrangement of J (k). Indeed, it can be
done in O(s) time.

First, we assume e ̸= 0. Since R(k) ∈ (F (k))⊥, the correlation
vector u(k) = A∗R(k) restricted to I (k) will be zero (i.e., u(k)|I(k) = 0).
Because the set J (k) contains only nonzero coordinates of u(k), we have
J (k) ∩ I (k) = ∅. Since J (k)

0 ⊂ J (k), J (k)
0 ∩ I (k) = ∅. Furthermore, uti-

lizing the comparability property of the coordinates in J (k)
0 , assuming
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ϵ ≤ 0.01/
√

log s and incorporating 4.71, we can prove that if ∥x(k)0 ∥2 ≥
100∥e∥2

√
log s, then |J (k)

0 ∩ supp(x)| ≥ 1
2|J

(k)
0 | must be true; on the

other hand, if ∥x(k)0 ∥2 < 100∥e∥2
√

log s, |J (k)
0 ∩supp(x)| ≥ 1

2|J
(k)
0 | may

be true or not. Hence, at every iteration of ROMP, at least one of the
two conditions |J (k)

0 ∩supp(x)| ≥ 1
2|J

(k)
0 | and ∥x(k)0 ∥2 < 100∥e∥2

√
log s

will hold true. The condition |J (k)
0 ∩ supp(x)| ≥ 1

2|J
(k)
0 | means that at

least half of the newly selected coordinates are from the support of the
signal x.

Next, we consider the case when e = 0. Using the same argument
of the case when e ̸= 0, we can also have J (k)

0 ∩ I (k) = ∅. Fur-
thermore, since e = 0, ∥x(k)0 ∥2 ≥ 100∥e∥2

√
log s = 0 always holds,

|J (k)
0 ∩ supp(x)| ≥ 1

2|J
(k)
0 | must be true at every iteration. What’s

more, the condition that δ4s = ϵ ≤ 0.01/
√

log s can actually be
relaxed to the condition δ2s = ϵ ≤ 0.03/

√
log s in the case when

e = 0. Finally, at the regularization step, we have ∥u(k)|
J
(k)
0
∥2 ≥

2
5
√

log s((1 − 4.43ϵ)∥x(k)0 ∥2 − (1 + ϵ)∥e∥2). When e = 0, then we have
∥u(k)|

J
(k)
0
∥2 ≥ 2

5
√

log s(1− 4.43ϵ)∥x(k)0 ∥2. If R(k) ̸= 0 at the start of each

iteration, then supp(x)\I (k) ̸= ∅. Hence, x(k)0 ̸= 0, which implies that
∥u(k)|

J
(k)
0
∥2 ̸= 0. Then, J (k)

0 won’t be an empty set at the regularization

step. In contrast, if e ̸= 0, then (1− 4.43ϵ)∥x(k)0 ∥2 − (1 + ϵ)∥e∥2 may
be smaller than zero. Hence, we cannot deduce that ∥u(k)|

J
(k)
0
∥2 ̸= 0.

We summarize our discussion in the following theorems.
Theorem 4.2.4. Assume a sampling matrix A satisfies δ2s =

0.03/
√

log s. Let x be an s-sparse vector in Rn and y ∈ Rm a
sample vector satisfying y = Ax. Then at any iteration of ROMP,
after the regularization step, we have

J
(k)
0 ̸= ∅ (4.72)
J
(k)
0 ∩ I (k) = ∅ (4.73)

|J (k)
0 ∩ supp(x)| ≥ 1

2
|J (k)

0 | (4.74)
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Theorem 4.2.5. Assume a sampling matrix A satisfies δ4s =

0.01/
√

log s. Let x be an s-sparse vector in Rn and y ∈ Rm a
sample vector satisfying y = Ax+ e, where e ∈ Rm is a noise vec-
tor. Then at any iteration of ROMP, after the regularization step,
we have J (k)

0 ∩ I (k) = ∅ and at least one of the following conditions
hold :
1. |J (k)

0 ∩ supp(x)| ≥ 1
2|J

(k)
0 |

2. ∥x(k)0 ∥2 < 100∥e∥2
√

log s

Based on theorem 4.2.4, we know that at every iteration, ROMP
finds at least one coordinate in the support of the signal x since J (k)

0 ̸= ∅
and |J (k)

0 ∩ supp(x)| ≥ 1
2|J

(k)
0 |. Furthermore, since J (k)

0 ∩ I (k) = ∅,
ROMP can outputs a set I (k̄) such that supp(x) ⊂ I (k̄) in at most s
iterations when the stopping criterion that R(k̄) = 0 is triggered and
due to |J (k)

0 ∩ supp(x)| ≥ 1
2|J

(k)
0 | again, |I (k̄)| ≤ 2s. Hence, as a

consequence of theorem 4.2.4, we can have the following theorem.
Theorem 4.2.6. Assume a sampling matrix A satisfies δ2s =

0.03/
√

log s. Let x be an s-sparse vector in Rn and y ∈ Rm a
sample vector satisfying y = Ax. Then ROMP outputs a set I
such that supp(x) ⊂ I and |I| ≤ 2s in at most s iterations.

such result guarantees exact sparse recovery of a signal. Indeed, since
AI has full rank due to the restricted isometry property of A, we
can compute the signal x from its measurement y and the set I by
x = (AI)

†y and actually the output x(k̄) is exactly (AI)
†y. Moreover,

such recovery is uniform because it holds for any s-sparse vector. In
contrast, uniform recovery has been shown to be impossible for OMP.
Also note that it has been unknown whether OMP gives sparse recovery
for partial Fourier measurements (even with nonuniform guarantees).
However, since partial Fourier matrices satisfy restricted isometry prop-
erty, ROMP gives sparse recovery for these measurements, and even
with uniform guarantees.
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For the case when e ̸= 0, we can derive that

∥x− x(k)∥2 ≤
1 + ϵ

1− ϵ
∥x(k)0 ∥2 +

2

1− ϵ
∥e∥2 (4.75)

Due to theorem 4.2.5, there are three possible cases. The first case is
that ∥x(k)0 ∥2 < 100∥e∥2

√
log s occurs at some iteration. Since ∥x −

x(k)∥2 ≤ 1+ϵ
1−ϵ∥x

(k)
0 ∥2 + 2

1−ϵ∥e∥2, we can derive that ∥x − x(k)∥2 ≤
104

√
log s∥e∥2. Also note that since |I (k)| is non-decreasing, if ∥x(k)0 ∥2 <

100∥e∥2
√

log s occurs at some iteration, then it will hold for all sub-
sequent iterations. Hence, when one of the three stopping criteria is
triggered, ∥x(k)0 ∥2 < 100∥e∥2

√
log s still holds and thus ∥x− x(k)∥2 ≤

104
√

log s∥e∥2 also holds. The second case is that |J (k)
0 ∩ supp(x)| ≥

1
2|J

(k)
0 | occurs at every iteration and J (k)

0 = ∅ for some iteration. Since
J
(k)
0 = ∅, u(k) = A∗R(k) = 0. It can be derived that the inequality

∥x(k)0 ∥2 < 100∥e∥2
√

log s also holds. Hence, the second case will re-
duce to the first case. The third case is that |J (k)

0 ∩ supp(x)| ≥ 1
2|J

(k)
0 |

occurs at every iteration and J
(k)
0 is always nonempty. In this way,

ROMP identifies at least one coordinate in the support of the signal x
at each iteration. Thus, if ROMP runs s iterations or until |I (k̄)| ≥ 2s,
it must be that supp(x) ⊂ I (k̄), which means x(k̄)0 = x|

supp(x)\I(k̄) = 0.
Hence, the inequality ∥x(k̄)0 ∥2 < 100∥e∥2

√
log s holds, which reduces

the third case to the first case. Nonetheless, if the stopping criterion
that R(k̄) = 0 is triggered, then we have u(k̄) = A∗R(k̄) = 0. Hence,
the third case will reduce to the second case. As a result, both the sec-
ond and the third cases will reduce to the first case and the first case
results in the inequality ∥x − x(k̄)∥2 ≤ 104

√
log s∥e∥2. Summarizing

this discussion, we can come up with the following theorem.
Theorem 4.2.7. Assume a sampling matrix A satisfies δ4s =

0.01/
√

log s. Let x be an s-sparse vector in Rn and y ∈ Rm a
sample vector satisfying y = Ax+ e, where e ∈ Rm is a noise vec-
tor. Then when one of the stopping criteria is triggered, ROMP
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outputs x(k̄) that satisfies

∥x− x(k̄)∥2 ≤ 104
√

log s∥e∥2 (4.76)

Note that if e = 0, then x(k̄) = x, which implies exact recovery. This
result is consistent with that of the theorem 4.2.6.

Finally, we can extend theorem 4.2.7 to the most general case -
the signal x is not exactly s-sparse but a general vector in Rn. We
can partition y = Ax + e to y = Ax2s + (A(x − x2s) + e). Suppose
we tighten the restricted isometry property of A to δ8s = 0.01/

√
log s.

Since x2s is 2s-sparse and δ8s = 0.01/
√

log s, we can apply theorem
4.2.7, if we input the sparsity level as 2s to the ROMP algorithm, and
obtain

∥x(k̄) − x2s∥2 ≤ 104
√

log 2s∥A(x− x2s) + e∥2
≤ 104

√
log 2s(∥A(x− x2s)∥2 + ∥e∥2)

By property 4 of the restricted isometry constant introduced in section
2.8, we can derive that

∥A(x− x2s)∥2 ≤ (1 + ϵ)

(
∥x− x2s∥2 +

∥x− x2s∥1√
8s

)
≤ (1 + ϵ)

(
∥x− x2s∥2 +

∥x− xs∥1√
s

)
By the following lemma :
Lemma 4.2.8. Let w ∈ Rn. Then

∥w − ws∥2 ≤
∥w∥1
2
√
s

(4.77)

We can derive that ∥x − x2s∥2 ≤ ∥x−xs∥1
2
√
s

by letting w to be x − xs.
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Hence, ∥A(x− x2s)∥2 ≤ 1.5(1 + ϵ)∥x−xs∥1√
s

. Therefore,

∥x(k̄) − x2s∥2 ≤ 104
√

log 2s
(
1.5(1 + ϵ)

∥x− xs∥1√
s

+ ∥e∥2
)

≤ 159
√

log 2s
(
∥x− xs∥1√

s
+ ∥e∥2

)
Moreover, since

∥x(k̄) − x2s∥2 = ∥(x(k̄) − x) + (x− x2s)∥2
≥ ∥x(k̄) − x∥2 − ∥x− x2s∥2

≥ ∥x(k̄) − x∥2 −
∥x− xs∥1

2
√
s

we can derive that

∥x(k̄) − x∥2 ≤ 160
√

log 2s
(
∥x− xs∥1√

s
+ ∥e∥2

)
Corollary 3.2 of [28] presents the third error bound

∥(x(k̄))2s − x2s∥2 ≤ 477
√

log 2s
(
∥x− xs∥1√

s
+ ∥e∥2

)
Due to this inequality, we can further derive that

∥(x(k̄))2s − x∥2 ≤ ∥(x(k̄))2s − x2s∥2 + ∥x− x2s∥2

≤ 477
√

log 2s
(
∥x− xs∥1√

s
+ ∥e∥2

)
+

∥x− xs∥1
2
√
s

≤ 478
√

log 2s
(
∥x− xs∥1√

s
+ ∥e∥2

)
Ultimately, the most general theorem can be presented as follows.
Theorem 4.2.9. Assume a sampling matrix A satisfies δ8s =

0.01/
√

log s. Let x ∈ Rn be a signal vector and y ∈ Rm a sampling
vector satisfying y = Ax+e, where e ∈ Rm is a noise vector. Then
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ROMP outputs x(k̄) that satisfies

∥x(k̄) − x2s∥2 ≤ 159
√

log 2s
(
∥x− xs∥1√

s
+ ∥e∥2

)
(4.78)

∥x(k̄) − x∥2 ≤ 160
√

log 2s
(
∥x− xs∥1√

s
+ ∥e∥2

)
(4.79)

∥(x(k̄))2s − x2s∥2 ≤ 477
√

log 2s
(
∥x− xs∥1√

s
+ ∥e∥2

)
(4.80)

∥(x(k̄))2s − x∥2 ≤ 478
√

log 2s
(
∥x− xs∥1√

s
+ ∥e∥2

)
(4.81)

Hence, both x(k̄) and its best 2s-term approximation (x(k̄))2s are close
to the true signal x or its best 2s-term approximation x2s within an
distance proportional to

√
log 2s

(
∥x−xs∥1√

s
+ ∥e∥2

)
.

The ℓ1-minimization method has strong uniform guarantees of
sparse recovery. However, the running time is not only polynomial in
n but also in certain condition numbers of the objective, which may
consume much time. On the other hand, OMP runs fast both theoreti-
cally and empirically, and is easier to implement than ℓ1-minimization.
However, OMP has weaker guarantees of sparse recovery. ROMP is
good for possessing the advantages of both methods, i.e., strong uni-
form guarantees of sparse recovery, fast speed and transparency of the
methodology. Furthermore, in the aspect of implementation, although
ROMP requires the estimation about the sparsity level s, it does not
require the knowledge of the error e as the ℓ1-minimization methods
requires. In some applications, it seems more natural to impose a spar-
sity requirement than an error constraint.

4.2.4 Compressive Sampling Matching Pursuit (CoSaMP)
In [26], it introduces a novel greedy algorithm called the compres-

sive sampling matching pursuit (CoSaMP). In this section, we will first
describe the algorithm, then analyze it theoretically, present some im-
portant results, and finally discuss some practical issues. The algorithm
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is described as the following algorithm 24.
Algorithm 24 CoSaMP
Input: y ∈ Rm；A ∈ Rm×n；sparsity level s
Initialization :

1. x(0) = 0

2. R(0) = y

Iteration : repeat until a stopping criterion is met at k = k̄

1. compute ⟨R(k), aj⟩ for j ∈ [n] (equivalently, compute c = A∗(R(k)) )
2. Identification : Ω = supp(c2s)

3. Merge support : T = Ω ∪ supp(x(k))

4. Estimation : b|T = A†
T y , b|T c = 0

5. Pruning : x(k+1) = bs

6. R(k+1) = y −Ax(k+1)

Output: x(k̄+1)

First, we consider the case when the signal x ∈ Rn is actually s-
sparse. Assume the sampling matrix A ∈ Rm×n satisfies the restricted
isometry property δ4s ≤ 0.1 and let the sample vector y ∈ Rm equals
Ax+ e, where e ∈ Rm is a noise vector. For the identification step, let
r(k) = x− x(k). We can have the inequality

∥r(k)|Ωc∥2 ≤ 0.2223∥r(k)∥2 + 2.34∥e∥2 (4.82)

The physical meaning of this inequality is that the energy of the dif-
ference between the true signal x and the current estimate x(k) on the
set Ωc is small compared with the total energy of such difference. For
the support-merging step, we can have the inequality

∥x|T c∥2 ≤ ∥r(k)|Ωc∥2 (4.83)

Hence, by the identification and the support-merging, we can come up
with an index set outside which the components of the signal x have
little energy. The estimation step solves a least-squares problem to
obtain values for the coefficients in the set T. We can have a bound on
the error of this approximation by the inequality

∥x− b∥2 ≤ 1.112∥x|T c∥2 + 1.06∥e∥2 (4.84)

Finally, for the pruning step, we can bound the distance between x and
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bs by the inequality

∥x− bs∥2 ≤ 2∥x− b∥2 (4.85)

Therefore, combining those inequalities, we can make the following
derivation.

∥x− x(k+1)∥2 = ∥x− bs∥2
≤ 2∥x− b∥2
≤ 2(1.112∥x|T c∥2 + 1.06∥e∥2)
≤ 2.224∥r(k)|Ωc∥2 + 2.12∥e∥2
≤ 2.224(0.2223∥r(k)∥2 + 2.34∥e∥2) + 2.12∥e∥2
< 0.5∥r(k)∥2 + 7.5∥e∥2
= 0.5∥x− x(k)∥2 + 7.5∥e∥2

Note that in the estimation step, we ideally assume we can precisely
compute the least-squares approximation. However, in practice, we
will apply some iterative least-squares solver to solve the least-squares
problem. In this way, there must be some difference between the pre-
cise least-squares approximation and the computed solution. Hence,
the inequality we have presented needs to be modified. We consider
two iterative least-squares solvers, which are the Richardson’s iteration
method and the conjugate gradient method respectively. Richardson’s
iteration produces a sequence {z(ℓ)} of iterates that satisfy

∥z(ℓ)−A†
Ty∥2 ≤ (δ3s)

ℓ∥z(0)−A†
Ty∥2 ≤ 0.1ℓ∥z(0)−A†

Ty∥2 for ℓ = 0, 1, 2, · · ·
(4.86)

Conjugate gradient produces a sequence {z(ℓ)} of iterates that satisfy

∥z(ℓ) − A†
Ty∥2 ≤ 2ρℓ∥z(0) − A†

Ty∥2 for ℓ = 0, 1, 2, · · · (4.87)

where ρ ≤ 1 − 2√
1+δ3s
1−δ3s

+1

≤ 1 − 2√
1+0.1
1−0.1+1

≈ 0.05. It is natural to

assign the current signal approximation x(k) as the initial iterate for
the least-squares solver; that is, z(0) = x(k). We can bound the ℓ2
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norm of ∥z(0) − A†
Ty∥2 = ∥x(k) − A†

Ty∥2 by the inequality

∥x(k) − A†
Ty∥2 ≤ 2.112∥x− x(k)∥2 + 1.06∥e∥2 (4.88)

Hence, ∥z(0)−A†
Ty∥2 is controlled by the current signal approximation

error. Assume we run the iterative least-squares solver (Richardson’s
iteration or conjugate gradient) for three iterations, then

∥z(3) − A†
Ty∥2 ≤ 0.002112∥x− x(k)∥2 + 0.00106∥e∥2 (4.89)

Let b|T = z(3). We can derive that

∥x− b∥2 = ∥(x− A†
Ty) + (A†

Ty − b)∥2
≤ ∥x− A†

Ty∥2 + ∥b|T − A†
Ty∥2

≤ (1.112∥x|T c∥2 + 1.06∥e∥2) + (0.00212∥x− x(k)∥2 + 0.00106∥e∥2)
≤ 1.112∥x|T c∥2 + 0.0022∥x− x(k)∥2 + 1.062∥e∥2

(4.90)
After taking into account the practical iterative least-squares issue, we
can bound the signal approximation error ∥x− x(k+1)∥2 as follows.

∥x− x(k+1)∥2 = ∥x− bs∥2
≤ 2∥x− b∥2
≤ 2(1.112∥x|T c∥2 + 0.0022∥r(k)∥2 + 1.062∥e∥2)
≤ 2.224∥r(k)|Ωc∥2 + 0.0044∥r(k)∥2 + 2.124∥e∥2
≤ 2.224(0.2223∥r(k)∥2 + 2.34∥e∥2) + 0.0044∥r(k)∥2 + 2.124∥e∥2
< 0.5∥r(k)∥2 + 7.5∥e∥2
= 0.5∥x− x(k)∥2 + 7.5∥e∥2

Therefore, either in the ideal case or the practical case, the inequality
that

∥x− x(k+1)∥2 ≤ 0.5∥x− x(k)∥2 + 7.5∥e∥2 (4.91)
holds true.

Finally, we consider the case when the signal x is general. We
also assume the restricted isometry constant of the sampling matrix
A satisfies δ4s ≤ 0.1. The key point is that we can express the noisy
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sample vector y of a general signal x as the sample vector of a sparse
signal xs contaminated with a different noise vector. That is, y =

Ax + e = Axs + ẽ, where ẽ = A(x − xs) + e. Applying the triangle
inequality and 2.91, we can derive

∥ẽ∥2 ≤ 1.05

[
∥x− xs∥2 +

1√
s
∥x− xs∥1

]
+ ∥e∥2 (4.92)

Hence, using the result 4.91 we have proved for the sparse case, we
have ∥xs−x(k+1)∥2 ≤ 0.5∥xs−x(k)∥2+7.5∥ẽ∥2. We can further make
the following derivation

∥x− x(k+1)∥2 = ∥(x− xs) + (xs − x(k+1))∥2
≤ ∥x− xs∥2 + ∥xs − x(k+1)∥2
≤ ∥x− xs∥2 + 0.5∥xs − x(k)∥2 + 7.5∥ẽ∥2
≤ ∥x− xs∥2 + 0.5(∥xs − x∥2 + ∥x− x(k)∥2) + 7.5∥ẽ∥2
= 0.5∥x− x(k)∥2 + 7.5∥ẽ∥2 + 1.5∥x− xs∥2
< 0.5∥x− x(k)∥2 + 10ν

(4.93)
where we define the unrecoverable energy in the signal as

ν ≜ ∥x− xs∥2 +
1√
s
∥x− xs∥1 + ∥e∥2 (4.94)

In the following, we will present some results based on the main
iteration invariant inequality 4.93.
1.

∥x− x(k)]∥2 ≤ 2−k∥x∥2 + 20ν (4.95)

Proof.

∥x− x(k)∥2 ≤ 2−1∥x− x(k−1)∥2 + 10ν

≤ 2−1(2−1∥x− x(k−2)∥2 + 10ν) + 10ν

= 2−2∥x− x(k−2)∥2 + (1 + 2−1)10ν

≤ 2−k∥x− x(0)∥2 + (1 + 2−1 + · · · + 2−(k−1))10ν

≤ 2−k∥x∥2 + 20ν
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2. Define the signal-to-noise ratio (SNR) as SNR= 10 log10(
∥x∥2
ν ) and

the reconstruction SNR after k iterations as R-SNR(k)= 10 log10(
∥x∥2

∥x−x(k)∥2
).

We can prove that R-SNR(k)≥ min{3k, SNR−13} − 3

Proof. R-SNR(k)= 10 log10(
∥x∥2

∥x−x(k)∥2
)

≥ 10 log10 ∥x∥2 − 10 log10(2−k∥x∥2 + 20ν)

If 2−k∥x∥2 > 20ν, then R-SNR(k)≥ 10 log10 ∥x∥2 − 10 log10(2 ∗
2−k∥x∥2) = 3k − 3.
If 2−k∥x∥2 ≤ 20ν, then R-SNR(k)≥ 10 log10 ∥x∥2 − 10 log10(2 ∗
20ν) =(SNR−13)−3.
Hence, R-SNR(k)≥ min{3k, SNR−13} − 3

From this inequality, we know that CoSaMP increases the re-
construction SNR by about 3 decibels at each iteration before k
exceeds the ceiling of (SNR−13)/3, which means to reduce the
error to its minimal value, the number of iterations required is pro-
portional to the SNR.

3. Suppose that A is an m×n sampling matrix with restricted isom-
etry constant δ2s ≤ c. Let y = Ax + e be a sample vector of
an arbitrary signal, contaminated with an arbitrary noise vector.
For a given precision parameter η, CoSaMP produces an s-sparse
approximation x(k̄) that satisfies

∥x− x(k̄)∥2 ≤ C(η + ν)

= C(η + ∥x− xs∥2 +
1√
s
∥x− xs∥1 + ∥e∥2)

where k̄ = O(log(∥x∥2/η)). Hence, in the absence of noise, CoSaMP
can recover an s-sparse signal to arbitrarily high precision. How-
ever, if the signal is not s-sparse but only compressible or if there
is noise, the performance of it will degrade. Furthermore, let L
denote the cost of a multiplication with the sampling matrix A or
A∗. It has been calculated in [26] that each iteration of CoSaMP
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requires O(L) time and O(N) storage. Hence, totally it requires
O(L ∗ log(∥x∥2/η)) time and O(N) storage to run the algorithm.
As a result, the algorithm can run substantially fast if there is fast
multiplication of the sampling matrix.
Finally, we discuss some practical issues. The first one is about

how to determine the input sparsity level. It is suggested that one
can choose s to be m/(2 logn). One can also run CoSaMP for several
sparsity levels and select the one with smallest approximation error
∥y − Ax(k̄)∥2. Next, we talk about other stopping criteria. We have
proved that if we stop the algorithm after a fixed number of iterations
(i.e., k̄ = O(log(∥x∥2/η))), then ∥x − x(k̄)∥2 ≤ C(η + ν). In [26],
two possible alternative stopping criteria are suggested (The signal x
is assumed to be s-sparse. If it is not s-sparse, we can simply use the
same technique we have applied to analyze the general case.)
1. If we stop the algorithm when

∥R(k̄)∥2 ≤ ϵ (4.96)

then
∥x− x(k̄)∥2 ≤ 1.06(ϵ + ∥e∥2) (4.97)

2. If we stop the algorithm when

∥A∗(R(k̄))∥∞ ≤ η/
√
2s (4.98)

then
∥x− x(k̄)∥∞ ≤ 1.12η + 1.17∥e∥2 (4.99)

However, can the stopping criteria indeed be triggered ? It is also
proved in [26] that
1. If ∥x− x(k̄)∥2 ≤ 0.95(ϵ− ∥e∥2), then ∥R(k̄)∥2 ≤ ϵ.
2. If ∥x− x(k̄)∥∞ ≤ 0.45η

s − 0.68∥e∥2√
s

, then ∥A∗(R(k̄))∥∞ ≤ η/
√
2s

Since ∥x − x(k)∥2 ≤ 2−k∥x∥2 + 20ν, the inequality ∥x − x(k̄)∥2 ≤
0.95(ϵ−∥e∥2) is desired to be satisfied after some k̄ iterations. Hence,
∥R(k̄)∥2 ≤ ϵ can indeed be triggered at least when ∥x − x(k̄)∥2 ≤
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0.95(ϵ−∥e∥2), which means it is an effective stopping criterion. Simi-
larly, also because ∥x−x(k̄)∥2 ≤ 2−k∥x∥2+20ν (hence, ∥x−x(k̄)∥∞ ≤
∥x − x(k̄)∥2 ≤ 2−k∥x∥2 + 20ν), the inequality ∥x − x(k̄)∥∞ ≤ 0.45η

s −
0.68∥e∥2√

s
is desired to be satisfied after some k̄ iterations. Hence, ∥A∗(R(k̄))∥∞ ≤

η/
√
2s can also be triggered at least when ∥x−x(k̄)∥∞ ≤ 0.45η

s −0.68∥e∥2√
s

,
which means it is an effective stopping criterion.

Lastly, we describe a simple effective variant of CoSaMP intro-
duced in [26].
Algorithm 25 A Variant of CoSaMP
Input: y ∈ Rm；A ∈ Rm×n；the sparsity level s
Initialization :

1. x(0) = 0

2. R(0) = y

Iteration : repeat until a stopping criterion is met at k = k̄

1. compute ⟨R(k), aj⟩ for j ∈ [n] (equivalently, compute c = A∗(R(k)) )
2. Identification : Ω = supp(c2s)

3. Estimation : b|Ω = A†
Ω(R

(k)), b|Ωc = 0

4. Approximation Merging : c = x(k) + b

5. Pruning : x(k+1) = cs

6. R(k+1) = y −Ax(k+1)

Output: x(k̄+1)

When performing the estimation step, one can initialize the iterative
least-squares solver with the zero vector to take advantage of the fact
that R(k) is becoming smaller and smaller.

4.2.5 Subspace Pursuit (SP)
In this section, we will introduce an algorithm called the subspace

pursuit. The readers can refer to [6]. First, we will present this al-
gorithm, and then make a thorough mathematical analysis of it. The
subspace pursuit algorithm is described as follows.
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Algorithm 26 Subspace Pursuit
Input: y ∈ Rm；A ∈ Rm×n；the sparsity level s
Initialization :

1. T (0) = Ls(A
∗y)

2. R(0) = y −AT (0)A
†
T (0)y

Iteration : repeat until ∥R(k̄+1)∥2 ≥ ∥R(k̄)∥2 at k = k̄ + 1

1. compute ⟨R(k), aj⟩ for j ∈ [n] (equivalently, compute c = A∗(R(k)))
2. Identification 1 : Ω = Ls(c)

3. Merge Support : T̃ (k+1) = T (k) ∪ Ω

4. Projection 1 : (xp)|T̃ (k+1) = A†
T̃ (k+1)

y, (xp)|(T̃ (k+1))c = 0

5. Identification 2 : T (k+1) = Ls(xp)

6. Projection 2 : x(k+1)|T (k+1) = A†
T (k+1)y, x(k+1)|(T (k+1))c = 0

7. R(k+1) = y −Ax(k+1)

Output: xk̄

As we can see, the subspace pursuit algorithm iteratively refines the
candidate support set of s indices in order to pursue the correct sub-
space y lies in. First, given T (k), s additional candidate indices are
selected to form T̃ (k+1). Then given T̃ (k+1), s most promising indices
are chosen out from it so that we will get T (k+1). We make a com-
parison between the OMP, the stagewise OMP and the ROMP with
the subspace pursuit. An important difference between them lies in
the way they construct the candidate support set. At each iteration,
the former ones (OMP, stagewise OMP and ROMP) select one or sev-
eral indices that are deemed to be possible to lie in the support set.
Once an index is selected, it remains in the candidate set throughout
the remainder of the reconstruction process. However, on the side of
the subspace pursuit, an index is considered good at some iteration
but deemed bad at a later iteration, or vise versa, can be removed
from or added to the candidate support set. Such flexibility of the
subspace pursuit may provide it with better performance. We also
make a comparison between the subspace pursuit and the compressive
sampling matching pursuit (CoSaMP). One of the differences is that
at the first identification step, the subspace pursuit chooses s indices
with the largest correlation magnitudes while the CoSaMP chooses 2s
ones. The other difference is that after the estimation step of CoSaMP
(which corresponds to what we call the first projection step of the sub-
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space pursuit), the CoSaMP performs a pruning step which amounts
to an identification step followed by a hard thresholding step while the
subspace pursuit performs an identification step followed by another
projection step.

In the following, we analyze the subspace pursuit algorithm math-
ematically. Let x ∈ Rn be an s-sparse signal and the measurement
vector y ∈ Rm be y = Ax + e, where e ∈ Rm is the noise vector. It
can be verified that we can express R(k) as

R(k) = AT\T (k)x|T\T (k) + AT (k)v + er

, where v ≜ −A†
T (k)(AT\T (k)x|T\T (k)) and er ≜ e−AT (k)A

†
T (k)e. Define

v′ ≜ v − A†
T (k)e. We can prove that

∥v′∥2 −
1√

1− δs
∥e∥2 ≤

δ2s
1− δ2s

∥x|T\T (k)∥2 (4.100)

Hence, among all columns that jointly compose R(k), those indexed
by T\T (k) have energies that are not too small. As a consequence,
after step 1 and 2 (which, combined together, are called a correlation
maximization step), it is confident that Ω contains sufficient number of
indices that belong to T\T (k). Therefore, if we merge the two sets T (k)

and Ω, it is hopeful that T̃ (k+1) contains sufficient number of indices
that belong to T . Indeed, it is proved that

∥x|T\T̃ (k+1)∥2 ≤
2δ3s

(1− δ3s)2
∥x|T\T (k)∥2 +

2
√
1 + δs

1− δs
∥e∥2 (4.101)

After the first projection step, we get xp. Note that (xp)|T̃ (k+1) =

A†
T̃ (k+1)y, we can further express it as

(xp)|T̃ (k+1) = x|T̃ (k+1) + A†
T̃ (k+1)AT\T̃ (k+1)x|T\T̃ (k+1) + A†

T̃ (k+1)e

Let ϵ ≜ (xp)|T̃ (k+1) − x|T̃ (k+1). It is proved that

∥ϵ∥2 ≤
δ3s

1− δ3s
∥x|T\T̃ (k+1)∥2 +

1√
1− δ2s

∥e∥2 (4.102)
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Hence, we see that (xp)|T̃ (k+1) is close to x|T̃ (k+1). Thus it is hopeful
that T (k+1) = Ls(xp) also contains sufficient number of indices that
belong to T . Indeed, it is proved that

∥x|T\T (k+1)∥2 ≤
1 + δ3s
1− δ3s

∥x|T\T̃ (k+1)∥2 +
2√

1− δ2s
∥e∥2 (4.103)

Combining the two inequalities 4.101 and 4.103, we can come up with
the inequality

∥x|T\T (k+1)∥2 ≤
2δ3s(1 + δ3s)

(1− δ3s)3
∥x|T\T (k)∥2 +

4(1 + δ3s)

(1− δ3s)2
∥e∥2 (4.104)

Suppose that δ3s < 0.083. If ∥e∥2 ≤ δ3s∥x|T\T (k)∥2, one can prove
that ∥R(k+1)∥2 ≤ ∥R(k)∥2 using inequality 4.104. Lastly, lemma 3 of
[6] guarantees that the distance between the true signal x and the result
after the second projection step, i.e. x(k+1), is not too large. Precisely,

∥x− x(k+1)∥2 ≤
1

1− δ3s
∥x|T\T (k+1)∥2 +

1 + δ3s
1− δ3s

∥e∥2 (4.105)

When the stopping criterion is triggered (i.e., ∥R(k̄+1)∥2 ≥ ∥R(k̄)∥2),
∥e∥2 ≥ δ3s∥x|T\T (k̄)∥2. Therefore,

∥x− x(k̄)∥2 ≤
1

1− δ3s

1

δ3s
∥e∥2 +

1 + δ3s
1− δ3s

∥e∥2 =
1 + δ3s + δ23s
δ3s(1− δ3s)

∥e∥2
(4.106)

We can summarize our discussion as the following theorem.
Theorem 4.2.10. Let x ∈ Rn be an s-sparse signal and the mea-
surement vector y ∈ Rm be y = Ax+ e, where e ∈ Rm is the noise
vector. Suppose that the sampling matrix A satisfies δ3s < 0.083,
then ∥x− x(k̄)∥2 ≤

1+δ3s+δ
2
3s

δ3s(1−δ3s)
∥e∥2.

When e = 0, the theorem implies that x(k̄) = x, which means we can
achieve exact reconstruction when the algorithm terminates. Further-
more, theorem 6 of [6] states that the number of iterations need for the
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algorithm (denoted as nit) satisfies

nit ≤ min{1 + log ρmin
log cs

,− 1.5s

log cs
} (4.107)

where ρmin ≜
min
i∈[n]

|x[i]|

∥x∥2
and cs ≜ 2δ3s(1+δ3s)

(1−δ3s)3
. Specifically, for zero-one

sparse signals, nit ≤ log s
2 log(1/cs). For compressible sparse signals, nit ≤

log s
r log(1/cs)(1 + o(1)), where o(1) → 0 when s → ∞. For exponentially

decaying signals, nit ≤
{

ps
log(1/cs)(1 + o(1)) if 0 < p ≤ 1.5

1.5s
log(1/cs) if p > 1.5

. Hence,

nit = O(log s) for zero-one sparse signals and compressible sparse sig-
nals, and nit = O(s) for exponentially decaying signals. If x is not ex-
actly s-sparse and e ̸= 0, we can express y as y = Ax2s+A(x−x2s)+e.
Assume δ6s < 0.083. By the theorem 4.2.10, we can get

∥x2s − x(k̄)∥2 ≤
1 + δ6s + δ26s
δ6s(1− δ6s)

(∥A(x− x2s)∥2 + ∥e∥2)

if we set the input sparsity level as 2s. By 2.91, we can derive that

∥A(x− x2s)∥2 ≤
√

1 + δ6s(∥x− x2s∥2 +
∥x− x2s∥1√

6s
)

By lemma 4.2.8, we can get ∥x − x2s∥2 ≤ ∥x−xs∥1
2
√
s

. Therefore, we can
derive that

∥x2s − x(k̄)∥2 ≤
1 + δ6s + δ26s
δ6s(1− δ6s)

(∥e∥2 +
√

1 + δ6s
∥x− xs∥1√

s
) (4.108)

Furthermore,

∥x− x(k̄)∥2 ≤ ∥x2s − x(k̄)∥2 + ∥x− x2s∥2

≤ (1 +
1 + δ6s + δ26s
δ6s(1− δ6s)

)(∥e∥2 +
√

1 + δ6s
∥x− xs∥1√

s
)

=
1 + 2δ6s

δ6s(1− δ6s)
(∥e∥2 +

√
1 + δ6s

∥x− xs∥1√
s

)

(4.109)
We can summarize our discussion in the following corollary.
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Corollary 4.2.10.1. Let x ∈ Rn be the approximately s-sparse
signal and let the measurement vector y = Ax + e, where e ∈ Rm

is the noise vector. Suppose that the sampling matrix A satisfies
δ6s < 0.083. Then

1. ∥x2s − x(k̄)∥2 ≤
1+δ6s+δ

2
6s

δ6s(1−δ6s)
(∥e∥2 +

√
1 + δ6s

∥x−xs∥1√
s

)

2. ∥x− x(k̄)∥2 ≤ 1+2δ6s
δ6s(1−δ6s)

(∥e∥2 +
√
1 + δ6s

∥x−xs∥1√
s

)

4.3 Hard-Thresholding-Based Algorithms
Throughout this whole chapter, our main focus is the rectangular

system y = Ax. Solving y = Ax is equivalent to solving A∗Ax =

A∗y. With such normal equation, we can come up with the fixed-point
equation xfixed = xfixed + A∗(y − Axfixed) and derive the fixed-point
iteration

x(k+1) = x(k) + A∗(y − Ax(k))

Similar to greedy algorithms, it also involves the computation of corre-
lation vector A∗(y−Ax(k)). However, the underlying mechanisms are
different. For the greedy algorithms, they compute the correlation vec-
tor in order to capture additional atoms that would be highly possible
to compose the signal vector y. On the other hand, thresholding-based
algorithms add the correlation vector and the current estimate coeffi-
cient vector x(k) together to form a surrogate coefficient vector for x.
In section 4.1.3, we have introduced the ISTA algorithm 4.37. It ap-
plies the soft thresholding operator on the surrogate coefficient vector
to obtain the new estimate coefficient vector x(k+1). As for this sec-
tion, hard-thresholding-based algorithms apply the hard thresholding
operator on the surrogate coefficient vector. The difference of adding
ℓ1 norm or ℓ0 norm of x in the objective functions lead to the difference
of thresholding operators to be soft or hard.
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4.3.1 Iterative Hard Thresholding (IHT)
In [3] and [4], two main problems are discussed.

min{∥Ax− y∥22 + λ∥x∥0} (4.110)
min{∥Ax− y∥22} subject to ∥x∥0 ≤ s (4.111)

Clearly, these two problems are quite related to problem 4.2. The first
problem is called the ℓ0 regularized minimization problem, which can
be viewed as the ℓ0-norm counterpart of the basis pursuit denoising
problem 4.21. The second problem is called the s-sparse minimiza-
tion problem, which can be viewed as the ℓ0-norm counterpart of the
LASSO problem 4.22. The authors proposed two algorithms, which
we call the IHTλ algorithm and the IHTs algorithm respectively, to
deal with these two problems. In the following, we introduce these two
algorithms thoroughly.

For the first problem, if we directly deal with the objective function

Cr(x) ≜ ∥Ax− y∥22 + λ∥x∥0 (4.112)

we need to calculate the derivative of Cr(x) with respect to x. It is
easily derived that

∂Cr(x)

∂x[i]
=

{
0 if x[i] = 0

−2⟨ai, y⟩ + λ + 2⟨ai, Ax⟩ if x[i] ̸= 0

For x[i] ̸= 0, we need to let −2⟨ai, y⟩ + λ + 2⟨ai, Ax⟩ be 0. However,
all entries of x are coupled, which hinders us from deriving the value of
x[i]. It is the ∥Ax∥22 term that causes the problem. Thus, it motivates
us to consider a surrogate objective function

CS
r (x, z) ≜ ∥Ax− y∥22 + λ∥x∥0 − ∥Ax− Az∥22 + ∥x− z∥22 (4.113)

The reason why we add an additional argument z is that we can assign
x as the next iterate and z as the current iterate in an iterative algo-
rithm. Such trick will be made clear soon. If ∥A∥2→2 < 1, then this
surrogate objective function is a majorization of the objective function
and minimization of the surrogate function thus leads to a majorization
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minimization (MM) algorithm. Similarly, we also calculate the partial
derivative of the surrogate objective function with respect to xi. In this
case,

∂CS
r (x)

∂x[i]
=

{
0 if x[i] = 0

2x[i]− 2z[i]− ⟨ai, y⟩ − ⟨ai, Az⟩ if x[i] ̸= 0

Now all entries of x are decoupled and we can derive that x[i] = z[i] +

⟨ai, y⟩−⟨ai, Az⟩ when x[i] ̸= 0. The corresponding cost is 0 if x[i] = 0

and −(z[i] + ⟨ai, y⟩ − ⟨ai, Az⟩)2 + λ if x[i] = z[i] + ⟨ai, y⟩ − ⟨ai, Az⟩.
As a result, if z[i] + ⟨ai, y⟩ − ⟨ai, Az⟩ < λ0.5, then we set x[i] = 0,
the resulting cost being 0. If z[i] + ⟨ai, y⟩ − ⟨ai, Az⟩ > λ0.5, then we
set x[i] = z[i] + ⟨ai, y⟩ − ⟨ai, Az⟩, the resulting cost being −(z[i] +

⟨ai, y⟩ − ⟨ai, Az⟩)2 + λ. If z[i] + ⟨ai, y⟩ − ⟨ai, Az⟩ = λ0.5, x[i] can be
set as either 0 or z[i] + ⟨ai, y⟩ − ⟨ai, Az⟩, the resulting cost being 0.
To produce unique update, we let x = Hλ0.5(z + A∗(y − Az)), where
Hλ0.5 is the element wise hard thresholding operator defined as

Hλ0.5(x[i]) =

{
0 if |x[i]| ≤ λ0.5

x[i] if |x[i]| > λ0.5
(4.114)

Hence, we can derive the IHTλ algorithm as follows.
Algorithm 27 IHTλ

Input: y ∈ Rm; A ∈ Rm×n; the regularization parameter λ
Initialization : x(0) ∈ Rn

Iteration : repeat until a stopping criterion is met at k = k̄ :

x(k+1) = Hλ0.5(x(k) +A∗(y −Ax(k))) (4.115)

Output: x(k̄)

As for the second problem, similar to the first problem, instead of
directly dealing with the objective function

Cs(x) ≜ ∥Ax− y∥22 (4.116)

we consider the surrogate objective function

CS
s (x, z) ≜ ∥Ax− y∥22 − ∥Ax− Az∥22 + ∥x− z∥22 (4.117)
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Likewise, ∥A∥2→2 should be smaller than 1 so that we can derive an
MM algorithm. After some calculations, we can derive the IHTs algo-
rithm as follows.
Algorithm 28 IHTs

Input: y ∈ Rm; A ∈ Rm×n; the sparsity level s
Initialization : x(0) ∈ Rn

Iteration : repeat until a stopping criterion is met at k = k̄ :

x(k+1) = Hs(x
(k) +A∗(y −Ax(k))) (4.118)

Output: x(k̄)

Note that Hs, which has been defined in 2.68, is the hard thresholding
operator which only retains the s entries with the largest magnitude.

In the following, we list important results that have been proved
in [3] about the two algorithms.
1. Assume ∥A∥2→2 < 1 and let x(k+1) = Hλ0.5(x

(k) +A∗(y−Ax(k))),
then the sequences {Cr(x(k))} and {CS

r (x
(k+1), x(k))} are non-increasing.

Assume ∥A∥2→2 < 1 and let x(k+1) = Hs(x
(k) + A∗(y − Ax(k))),

then the sequences {Cs(x(k))} and {CS
s (x

(k+1), x(k))} are non-increasing.
• This bullet states that the cost does not increase from iteration

to iteration, which implies that using the algorithms will only
produce better results than not applying them.

2. Define two sets as follows

Γ0 = {i : xfixed[i] = 0} (4.119)
Γ1 = {i : xfixed[i] ̸= 0} (4.120)

A necessary and sufficient condition for a point xfixed to be a fixed
point of the IHTλ algorithm is that for each column ai of A,

|⟨ai, y − Axfixed⟩|

{
= 0 if i ∈ Γ1

≤ λ0.5 if i ∈ Γ0

(4.121)

A necessary and sufficient condition for a point xfixed to be a fixed
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point of the IHTs algorithm is that for each column ai of A,

|⟨ai, y − Axfixed⟩|

{
= 0 if i ∈ Γ1

≤ x∗fixed[s] if i ∈ Γ0

(4.122)

where x∗fixed denotes the non-increasing rearrangement of xfixed.
Note that a fixed point of the IHTλ satisfies |xfixed[i]| > λ0.5

for i ∈ Γ1 and that of the IHTs algorithm satisfies |xfixed[i]| ≥
x∗fixed[s] for i ∈ Γ1.
• This bullet states the necessary and sufficient condition of a

fixed point, which facilitates the following analysis about the
local minima, the optimal solution and the convergence issues
about the two problems and algorithms.

3. Assume ∥A∥2→2 < 1, then a fixed point xfixed of the IHTλ / IHTs
algorithm is a local minimum of the first / second problem.
• This bullet makes a connection between a fixed point of the

algorithms and a local minimum of the problems. Note that if
a point is referred to as a local minimum, then perturbing it by
an infinitesimal amount (in any direction) will not decrease the
cost function. Mathematically, we want to show that

Cr(xfixed + ∂h) > Cr(xfixed) (4.123)
Cs(xfixed + ∂h) > Cs(xfixed) (4.124)

for any small perturbation |∂h[i]| < ϵ, where ϵ is some positive
constant.

4. Let the optimal solution to the first problem (i.e., the global mini-
mum) be xopt.
(a) ∀i ∈ Γ1, |xopt[i]| ≥ λ0.5

(b) ∀i ∈ Γ0, ⟨ai, y − Axopt⟩ ≤ λ0.5

(c) ∀i ∈ Γ1, ⟨ai, y − Axopt⟩ = 0

• The third condition points out that the residualRopt ≜ y−Axopt
is orthogonal to all used atoms and forms small angles with all
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unused atoms. Thus, the optimal solution corresponds to the
situation when the signal is projected as orthogonally as possible
onto the space spanned by the atoms of A while restricting the
number of used atoms.

5. Assume ∥A∥2→2 < 1, then the optimal solution to the first problem
belongs to the fixed points of the IHTλ algorithm.
• Combining the second and fourth bullets, we can come up with

this result.
6. ∀ϵ > 0, ∃K such that ∀k > K, ∥x(k+1) − x(k)∥22 ≤ ϵ; that is,

lim
k→∞

∥x(k+1) − x(k)∥22 = 0 (4.125)

where {x(k)} is the iterate sequence of either the IHTλ or IHTs
algorithm.
• This bullet is an important result for the proof of convergence.

7. If Cr(x(0)) < ∞, and if ∥A∥2→2 < 1, then the sequence {x(k)}
produced by the IHTλ algorithm converges to a fixed point of it
(thus a local minimum of the first problem).
If Cs(x(0)) <∞, {ai} contains a basis for the signal space, ∥ai∥2 >
0 and ∥A∥2→2 < 1, then the sequence {x(k)} produced by the IHTs
algorithm converges to a fixed point of it (thus a local minimum of
the second problem).
• With the help of the sixth bullet, we can prove the convergence

of both algorithms and thus lead to this result.
8. Assume that {ai} contains a basis for the signal space and that
∥ai∥2 > c > 0, then there exists a constant β(A) > 0 such that
supi |⟨ai, y⟩| ≥ β(A)∥y∥2 holds for all y. If ∥A∥2→2 ≤ 1, then

∥y − Axfixed∥2 ≤
λ0.5

β(A)
(4.126)
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when xfixed is a fixed point of the IHTλ algorithm and

∥y − Axfixed∥2 ≤
x∗fixed[s]

β(A)
(4.127)

when xfixed is a fixed point of the IHTs algorithm.
• This bullet gives an upper bound on the approximation error,

i.e., the norm of the residual Rfixed ≜ y − Axfixed.
9.

∥x(n) − xfixed∥2 ≤ ∥I − A∗
Γ1
AΓ1∥

(n−m)
2→2 ∥x(m) − xfixed∥2 (4.128)

where xfixed is the fixed point of either the IHTλ or IHTs algo-
rithm.
• This bullet shows that the asymptotic convergence speed of both

algorithms is linear.
There are two common usages of both the IHTλ and IHTs al-

gorithms. One is to randomly initialize x(0) and start the algorithms
directly. The other one is to use them to refine the solutions found
with other methods. Concretely speaking, we first use methods like
the MP to find a solution, then initialize x(0) with this solution and ex-
ecute the algorithms. Since the cost is guaranteed not to increase from
iteration to iteration, we are confident to get a better solution. More-
over, for IHTλ, we can adaptively change the threshold depending on
the current residual norm. As for IHTs, we can adaptively change the
parameter s from iteration to iteration. A suggested way is that we
start from s = 1 and increase s by 1 every ℓ iterations. If ℓ = 1, the
corresponding algorithm functions like the MP. As ℓ gets larger, it be-
comes gradually more and more like the OMP. Note that an advantage
of the IHTs algorithm over the OMP is that the set of selected atoms
is allowed to change from iteration to iteration. Another advantage is
that its computational cost is so low that it is comparable to the MP.

In [4], the authors proposed to apply the IHTs algorithm in the
field of compressive sensing and analyzed its performance mathemati-
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cally. We list the main result as follows.
Theorem 4.3.1. Given a noisy observation y = Ax+e. Assume A
has the restricted isometry property with δ3s < 1/

√
32. Initializing

x(0) as the zero vector, then at iteration k, the iterate x(k) satisfies

∥x(k) − x∥2 ≤ 2−k∥x∥2 + cν (4.129)

where ν ≜ ∥x−xs∥2+ ∥x−xs∥1√
s

+∥e∥2 is the unrecoverable energy the
same as what has already been defined in [26]. c is equal to 6 for
any arbitrary signal and can be improved to be 5 if x is s-sparse.
Also note that ν reduces to ∥e∥2 if x is s-sparse.

From this result, we can derive that after at most k̄ = ⌈log2(
∥x∥2
ν )⌉

iterations, IHTs can produce the output x(k̄) satisfying ∥x(k̄)− x∥2 ≤
(c + 1)ν. Thus, the overall number of iterations required to achieve
a desirable accuracy depends on the logarithm of the signal-to-noise
ratio (note that the ”noise” here not only accounts for the measure-
ment error but also the sparsity defect). From this result, it can also
be proved that the output x(k̄) satisfies ∥x(k̄) − x∥2 ≤ 1.11ϵ+ 2.41ν if
the stopping criterion is set as ∥y − Ax(k̄)∥2 ≤ ϵ for some ϵ > 0.

Finally, the authors pointed out that such uniform performance
guarantees regarding the restricted isometry property are suitable for
analyzing the worst-case scenario but not for average performance. In-
deed, numerical experiments which can only analyze the average be-
havior demonstrates that algorithms with similar uniform guarantees
have discernible performance (i.e., some perform better while others
perform worse). Furthermore, in the regime when the restricted isom-
etry constant is too large, some algorithms still perform well on average,
while others do not.

4.3.2 Hard Thresholding Pursuit (HTP)
Inspired by the IHT algorithm, in [12], the author proposed the

hard thresholding pursuit (HTP) algorithm, described as follows.
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Algorithm 29 HTP
Input: y ∈ Rm; A ∈ Rm×n; the sparsity level s
Initialization : x(0) ∈ Rn

Iteration : repeat until a stopping criterion is met at k = k̄ :

(HTP1) S(k+1) = Ls(x
(k) +A∗(y −Ax(k))) (4.130)

(HTP2) x(k+1) = argmin{∥y −Az∥2, supp(z) ⊆ S(k+1)} (4.131)

Output: x(k̄)

Note that Ls is the operator defined in 2.67. The author also general-
ized the HTP algorithm and proposed some variants of it; namely, the
hard thresholding pursuit µ (HTP µ) algorithm, the normalized hard
thresholding pursuit (NHTP) algorithm, and the fast hard threshold-
ing pursuit µ (FHTP µ) algorithm. We describe them respectively as
follows.
Algorithm 30 HTPµ

Input: y ∈ Rm; A ∈ Rm×n; the sparsity level s
Initialization : x(0) ∈ Rn

Iteration : repeat until a stopping criterion is met at k = k̄ :

(HTPµ
1 ) S(k+1) = Ls(x

(k) + µA∗(y −Ax(k))) (4.132)
(HTPµ

2 ) x(k+1) = argmin{∥y −Az∥2, supp(z) ⊆ S(k+1)} (4.133)

Output: x(k̄)

Algorithm 31 NHTP
Input: y ∈ Rm; A ∈ Rm×n; the sparsity level s
Initialization : x(0) ∈ Rn

Iteration : repeat until a stopping criterion is met at k = k̄ :

(NHTP1) S(k+1) = Ls(x
(k) + µkA

∗(y −Ax(k))), where µk =
∥(A∗(y −Ax(k)))S(k)∥22

∥AS(k)((A∗(y −Ax(k)))S(k))∥22
(4.134)

(NHTP2) x(k+1) = argmin{∥y −Az∥2, supp(z) ⊆ S(k+1)} (4.135)

Output: x(k̄)

Algorithm 32 FHTPµ

Input: y ∈ Rm; A ∈ Rm×n; the sparsity level s
Initialization : x(0) ∈ Rn

Iteration : repeat until a stopping criterion is met at k = k̄ :

(FHTPµ
1 ) S(k+1) = supp(u(k+1,1)), u(k+1,1) := Hs(x

(k) + µA∗(y −Ax(k))) (4.136)

(FHTPµ
2 ) x(k+1) = u(k+1,ℓ+1), u(k+1,n+1) := (u(k+1,n) + tk+1,nA

∗(y −Au(k+1,n)))|S(k+1)

where tk+1,n :=
∥(A∗(y −Au(k+1,n)))S(k+1)∥22

∥AS(k+1)((A∗(y −Au(k+1,n)))S(k+1))∥22
and n = 1, 2, · · · , ℓ+ 1.

(4.137)

Output: x(k̄)

168



For the NHTP algorithm, we can prove that µk is chosen such that
µk = argmin

µ
∥y − AS(k)[(x

(k) + µA∗(y − Ax(k)))|S(k)]∥22.

Let R(k) ≜ y − Ax(k) = y − AS(k)x
(k)|S(k)

µk = argmin
µ

∥R(k) − µAS(k)(A
∗R(k))|S(k)∥

2
2

= argmin
µ

[−2µ⟨R(k), AS(k)(A
∗R(k))|S(k)⟩ + µ2∥AS(k)(A

∗R(k))|S(k)∥
2
2]

= argmin
µ

[−2µ∥(A∗R(k))|S(k)∥
2
2 + µ2∥AS(k)(A

∗R(k))|S(k)∥
2
2]

=
∥(A∗(y − Ax(k)))S(k)∥22

∥AS(k)((A
∗(y − Ax(k)))S(k))∥22

For the FHTP µ algorithm, we can prove that tk+1,n is chosen such that
tk+1,n = argmin

t
∥y−AS(k+1)[(u(k+1,n)+ tA∗(y−Au(k+1,n)))|S(k+1)]∥22.

The derivation is similar as above. Hence, as we can see, what we
do in FHTP µ

2 is actually applying the gradient descent with exact
line search to solve the orthogonal projection minimization problem.
Note that if µ = 1, the corresponding algorithm is called the FHTP
algorithm. Furthermore, if k = 0, it reduces to the IHT algorithm and
if k = ∞, it approaches the HTP algorithm.

In the following, we present some results about these algorithms.
1. The iterates {x(k)} produced by HTP, HTP µ or NHTP are even-

tually periodic since there is only a finite number of subsets of [n]
with size s and the result of orthogonal projection is fixed given the
same support set.
• Because of this fact, once we can prove the convergence of any of

these algorithms, we can certify that the limit is exactly achieved
within a finite number of iterations.

2. Applying the HTP µ algorithm, we can deduce that

∥y −Ax(k+1)∥22 − ∥y −Ax(k)∥22 ≤ (1 + δ2s − 1/µ)∥x(k) − u(k+1)∥22
(4.138)

3. If µ(1 + δ2s) < 1, then {x(k)} produced by the HTP µ algorithm
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converges in a finite number of iterations.

Proof. Since µ(1 + δ2s) < 1, ∥y − Ax(k+1)∥22 − ∥y − Ax(k)∥22 ≤
(1 + δ2s − 1/µ)∥x(k) − u(k+1)∥22 ≤ 0. Hence, {∥y − Ax(k)∥22} is
a non-increasing sequence with lower bound 0, which implies it is
convergent. Because {x(k)} is eventually periodic, ∥y − Ax(k)∥22
must be a constant eventually. For the inequality of the second
bullet to hold, ∥x(k)−u(k+1)∥22 must be zero eventually. When this
happens, u(k+1) = x(k), which implies x(k+1) = x(k).

4. For any k ≥ 0, if µ(1+δ2s) < 1 and µ ≥ 1/2, then {x(k)} produced
by the FHTP µ converges.
• Note that convergence ”in a finite number of iterations” is not

guaranteed because FHTP µ does not satisfy the first bullet.
5. Suppose the 3s-th restricted isometry constant of A satisfies δ3s <

1√
3
≈ 0.57735. Then for any s-sparse x ∈ Rn, the iterates {x(k)}

produced by HTP with y = Ax converges toward x at a linear rate
given by

∥x(k) − x∥2 ≤ ρk∥x(0) − x∥2, where ρ :=

√
2δ23s

1− δ22s
< 1 (4.139)

Furthermore, since HTP satisfies the first bullet, {x(k)} is guaran-
teed to converge in a finite number of iterations. Indeed, it can
converge in at most ⌈ ln(

√
2/3∥x(0)−x∥2/ξ)

ln(1/ρ) ⌉ iterations, where ξ is the
smallest nonzero entry of x in modulus.

6. Suppose the 3s-th restricted isometry constant of A satisfies δ3s <
1√
3
≈ 0.57735. Then for any s-sparse x ∈ Rn, the iterates {x(k)}

produced by FHTP (tk+1,n is set as 1 instead of the optimal one
in this analysis) with y = Ax converges toward x at a linear rate
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given by

∥x(k) − x∥2 ≤ ρk∥x(0) − x∥2

where ρ :=

√
δ2k+2
3s (1− 3δ23s) + 2δ23s

1− δ23s
< 1

(4.140)

• Note that the restricted isometry condition δ3s < 1√
3

is indepen-
dent of the number ℓ of descent iterations used in FHTP2.

• When k = 0, the FHTP algorithm reduces to the IHT algo-
rithm. Thus, this bullet also implies the IHT algorithm allows
s-sparse recovery once δ3s < 1√

3
.

• Although {x(k)} produced by the FHTP algorithm is not guar-
anteed to converge in a finite number of iterations, it can be
verified that the norm of the residual r(k̄) ≜ x(k̄) − x does not
exceed ϵ once k̄ ≥ ⌈ ln(∥x(0)−x∥2/ϵ)

ln(1/ρ) ⌉.
7. Suppose the 3s-th restricted isometry constant of A satisfies δ3s <

1√
3
≈ 0.57735. Then for any x ∈ Rn and any e ∈ Rm, if S denotes

an index set of s largest (in modulus) entries of x, the iterates
{x(k)} produced by HTP with y = Ax + e satisfies

∥x(k) − xs∥2 ≤ ρk∥x(0) − xs∥2 + τ
1− ρk

1− ρ
∥Ax|S + e∥2

where ρ :=

√
2δ23s

1− δ22s
< 1and

τ :=

√
2(1− δ2s) +

√
1 + δs

1− δ2s
≤ 5.15

(4.141)
8. Suppose the 6s-th restricted isometry constant of A satisfies δ6s <

1√
3
. Then for any x ∈ Rn and any e ∈ Rm, every cluster point

x⋆ of the iterates {x(k)} produced by HTP with s replaced with 2s
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and with y = Ax + e satisfies

∥x− x⋆∥p ≤
C

s1−1/p
σs(x)1 +Ds1/p−1/2∥e∥2, 1 ≤ p ≤ 2

where C and D depend only on δ6s.
(4.142)

• This bullet is derived based on the results of the seventh bullet,
the inequalities 2.8 and 2.66 and the following lemma excerpted
from the lemma 6.10 of [13].
Lemma 4.3.2. Given q > p > 0, if u ∈ Rs and v ∈ Rt

satisfy max
i∈[s]

|ui| ≤ min
j∈[t]

|vj|, then

∥u∥q ≤
s1/q

t1/p
∥v∥p (4.143)

9. Suppose the 3s-th restricted isometry constant of A and µ satisfy
1−1/

√
3

1−δ3s
< µ < 1

1+δ3s
. Then the iterates {x(k)} produced by HTP µ

with y = Ax + e converges eventually and satisfies the same in-
equality as 4.141 with δs, δ2s and δ3s in the expressions of ρ and τ
be replaced with δs(

√
µA), δ2s(

√
µA) and δ3s(

√
µA).

Proof. Due to the third bullet, we know that a sufficient condi-
tion for {x(k)} to converge is µ(1 + δ2s) < 1. As for the sparse
recovery result with sparsity defect and measurement error, we ob-
serve that applying HTP µ with input y ∈ Rm and A ∈ Rm×n

is the same as applying HTP with input y′ = √
µy ∈ Rm and

A′ =
√
µA ∈ Rm×n. Hence, a sufficient condition would be

δ3s(
√
µA) < 1/

√
3.

Note that µ(1 + δ3s) > µ(1 + δ2s). Thus the condition that
µ < 1

1+δ3s
would imply µ(1 + δ2s) < 1. On the other hand, ac-

cording to the definition of δ3s, we know that (1 − δ3s)∥x∥22 ≤
∥Ax∥22 ≤ (1 + δ3s)∥x∥22 for any s-sparse x ∈ Rn. As a result,
µ(1 − δ3s)∥x∥22 ≤ ∥√µAx∥22 ≤ µ(1 + δ3s)∥x∥22. Let δ3s(

√
µA)

denote the 3s-th restricted isometry constant of √µA. We know
that (1−δ3s(

√
µA))∥x∥22 ≤ ∥√µAx∥22 ≤ (1+δ3s(

√
µA))∥x∥22. Let
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1−c1 = µ(1−δ3s), i.e., c1 = 1−µ(1−δ3s) and 1+c2 = µ(1+δ3s),
i.e., c2 = µ(1 + δ3s)− 1. According to the definition of δ3s(

√
µA),

δ3s(
√
µA) would be smaller than max{c1, c2}. Thus if we enforce

the condition that 1/
√
3 > max{c1, c2}, i.e., 1−1/

√
3

1−δ3s
< µ < 1+1/

√
3

1+δ3s
,

then we can ensure that δ3s(
√
µA) < 1/

√
3. Hence, combining the

two conditions, we can get a sufficient condition that 1−1/
√
3

1−δ3s
< µ <

1
1+δ3s

.

In summary, for the HTP algorithm, the fifth bullet states a re-
sult about the exact sparse recovery (and thus convergence in a finite
number of iterations) while the seventh and eighth bullet state results
about the sparse recovery with sparsity defect and measurement error.
For the HTP µ algorithm, the third bullet states the condition for con-
vergence in a finite number of iterations while the ninth bullet states
the condition for both convergence in a finite number of iterations
and sparse recovery with sparsity defect and measurement error. For
the FHTP algorithm, the sixth bullet states a result about the exact
sparse recovery (and thus convergence). For the FHTP µ algorithm,
the fourth bullet states the condition for convergence.
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Chapter 5

Some Important Issues and Techniques

5.1 The L-Curve Method
In section 2.5, we introduce the Tikhonov regularization least-

squares problem and also mention the L-curve. In this section, we
will delve deeply into the properties and applications of the L-curve.
As far as we have discussed in section 2.5, we can have the following
theorem (which is the theorem 1 of [18]).
Theorem 5.1.1. Let xλ denote the regularized solution. ∥Lxλ∥ is a
monotonically decreasing function of ∥Axλ−b∥, and any point (δ, η)
on the L-curve (∥Axλ − b∥, ∥Lxλ∥) is a solution to the following
two inequality-constrained least-squares problems :

δ = min
x

∥Ax− b∥ subject to ∥Lx∥ ≤ η, 0 ≤ η ≤ ∥Lx0∥ (5.1)

η = min
x

∥Lx∥ subject to ∥Ax− b∥ ≤ δ, δ0 ≤ δ ≤ δ∞ (5.2)

According to this theorem, we know that the L-curve divides the first
quadrant into two regions, one above the curve and the other below
the curve. It is impossible to construct any other regularized solution
xreg (obtained by other regularization method, e.g., truncated GSVD
method) that lies below the L-curve. Hence, the Tikhonov regularized
solution xλ is optimal in the sense that given δ (or η), there does
not exist a solution with a smaller residual norm (or seminorm) than
∥Axλ − b∥ (or ∥Lxλ∥). Therefore, it is reasonable to measure the
distance between xreg and xλ. The smaller the distance (or the smaller
the difference of the residual norm and seminorm), the better the xreg
in the ”Tikhonov” sense. Theorem 3 of [18] states that given any two
vectors x1 and x2 satisfying ∥Lxi∥ ≤ η and ∥Axi − b∥ ≤ δ, i = 1, 2,
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the following three inequalities are satisfied

∥x1 − x2∥ ≤ 2∥X∥2→2

√
δ2 + η2 (5.3)

∥L(x1 − x2)∥ ≤ 2min{ δ
γ1
, η} (5.4)

∥A(x1 − x2)∥ ≤ 2min{δ, ηγp} (5.5)
1 If we set x1 and x2 as xλ and xreg, this theorem gives an upper
bound of ∥xλ − xreg∥, ∥L(xλ − xreg)∥ and ∥A(xλ − xreg)∥ suppose
the seminorm and residual norm of xλ and xreg are bounded. Besides
theorem 1, [18] further presents characterization 2 to delve more deeply
into the characteristics of a L-curve. We excerpt it as follows.
Theorem 5.1.2. Assume b can be written as b = b̄+ e, where e is
the perturbation error. Suppose
1. |y∗i b̄| on average decay to zero faster than γi

2. e has zero mean and covariance matrix σ20Im
3. ∥e∥ < ∥b̄∥

Then the L-curve (∥Axλ− b∥, ∥Lxλ∥) exhibits a ”corner” behavior
as a function of λ, and the corner appears approximately at
(
√
σ20(m− n + p) + δ20, ∥Lx̄0∥) . Here x̄0 denotes the unregularized

solution to the unperturbed problem (i.e., e = 0), and δ0 is the
incompatibility measure. The faster |y∗i b| decay to zero, the sharper
the L-shaped corner. For small λ the behavior of the L-curve is
entirely dominated by contributions from e, while for large λ it is
completely dominated by those from b̄. In between, there is a small
region where both b̄ and e contribute, and this region defines the
L-shaped ”corner” of the L-curve.

The first assumption is called the discrete Picard condition, which is
necessary to ensure that a reasonable regularized solution exists. The
second assumption is to ensure that xλ has a reasonable covariance
matrix. The third assumption is to ensure a reasonable signal-to-noise

1Note that A = Y ΣX−1 and L = WΣLX
−1 are described in section 2.5
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ratio. It is sensible to choose λ that corresponds to a regularized solu-
tion near the corner because it can achieve small residual norm while
keeping the seminorm reasonably small. That is, it strikes a good bal-
ance between the residual norm and the seminorm.

Finally, we introduce various methods for determining a good reg-
ularization parameter so that we can attain a good regularized solution
which corresponds to a point near the corner of the L-curve.
1. The discrepancy principle

Suppose the system is consistent, i.e., δ0 = 0, we select the
regularization parameter λ so that the residual norm is equal to an
a priori upper bound δe. That is, ∥Axλ− b∥ = δe, where ∥e∥ ≤ δe.
If e satisfies the second assumption, then the expected value of
∥e∥ is

√
mσ0. Since the corner of the L-curve is approximately

at (
√
σ20(m− n + p), ∥Lx̄0∥), the chosen regularization parameter

corresponds to a point a little to the right of the corner.
Now we consider the most general case. We will take into ac-

count the error E in the matrix A and the incompatibility measure
δ0. Assume ∥e∥ ≤ δe and ∥E∥2→2 ≤ δE. We select the regulariza-
tion parameter λ so that

∥Axλ − b∥ = δ0 + δe +∆E,L∥Lxλ∥ (5.6)

where ∆E,L ≜ max
Lx ̸=0

{∥Ex∥/∥Lx∥}, the largest generalized sin-
gular value of the matrix pair (E,L). Particularly, if L = In,
then ∆E,L = δE. Hence, the chosen parameter corresponds to
the point which is the intersection of the L-curve and the line
∥Axλ − b∥ = δ0 + δe +∆E,L∥Lxλ∥.

Overall, the discrepancy principle tends to select the regular-
ized solution appearing to the right of the corner, which means
slightly larger λ than the ”best” one is chosen. Hence, the discrep-
ancy principle over-regularizes the solution.

2. The quasi-optimality criterion
We select the regularization parameter λ so that it is a mini-
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mizer of the function

Q(λ) ≜ ∥λ2 dxλ
d(λ2)

∥ =
1

2
∥λdxλ

dλ
∥ (5.7)

We can derive that

Q(λ)2 =

p∑
i=1

ϕ2(1− ϕi)
2

(
βi
σi

)2

≈
∑
γi≥λ

(1− ϕi)
2

(
βi
σi

)2

+
∑
γi<λ

ϕ2i

(
βi
σi

)2

≈ ∥L(x̄0 − x̄λ)∥2 + ∥L(x̄λ − xλ)∥2

Hence, the quasi-optimality criterion attempts to strike a good bal-
ance between the minimization of the regularization error x̄0 − x̄λ
and the perturbation error x̄λ − xλ.

3. The generalized cross-validation (GCV) method
We select the regularization parameter λ so that it is a mini-

mizer of the function

G(λ) ≜ ∥Axλ − b∥2

(T (λ))2
(5.8)

where T (λ) ≜ trace(Im − A(A∗A + λ2L∗L)−1A∗) = m − n +
p∑
i=1

λ2

γ2i+λ
2 . It has been verified that G(λ) has a minimum corre-

sponding to a point near the corner. Hence, the GCV method is
effective to find a good regularization parameter.

4. The L-curve method
As stated in [19], the L-curve consists of a near vertical part

and an adjacent part with smaller slope. The intersection of these
two parts is the corner. The more horizontal part corresponds to
solutions where the regularization parameter is larger while the
more vertical part corresponds to solutions where the regularization
parameter is smaller. Based on these characteristics, we can select
the regularization parameter using two possible ways.
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(a) seek the point on the curve closest to the origin. That is, we
can compute ∥Axλ − b∥22 + λ2∥Lxλ∥22 and choose λ with the
smallest such value.

(b) choose the point on the curve where the curvature is maximum.
Let ρ(λ) ≜ ∥Axλ − b∥2 and η(λ) ≜ ∥Lxλ∥2. We can compute
the curvature κ(λ) by the formula :

κ(λ) =
ρ(λ)′η(λ)′′ − ρ(λ)′′η(λ)′

((ρ(λ)′)2 + (η(λ)′)2)3/2
(5.9)

where ′ denotes differentiation with respect to the regularization
parameter λ. Then we choose λ with the largest curvature.

Note that we can actually generalize the choices of ρ(λ) and η(λ).
ρ(λ) represents the main function wished to be minimized, e.g., the
residual. η(λ) represents the norm or function associated with the
regularized solution vector xλ, e.g. the seminorm. Different choices
of ρ(λ) and η(λ) correspond to different regularization methods.
The L-curve is just a parametric plot of (ρ(λ), η(λ)).

If we encounter the functions ρ(λ) or η(λ) that are not dif-
ferentiable, we cannot directly use the curvature formula. If this is
the case, we can only use discrete points corresponding to different
values of the regularization parameter at which we have evaluated
ρ and η. In [19], the authors proposed to fit a cubic spline curve to
these discrete points of the L-curve. The resulting approximating
curve is good for being twice differentiable and can be differentiated
in a numerically stable way. An algorithm called ”FITCURVE” is
proposed. It consists of two steps.
(a) Perform a local smoothing of the L-curve points, in which each

point is replaced by a new point obtained by fitting a low-degree
polynomial to a few neighboring points. This step controls the
extent of fine-grained details to be retained.

(b) Use the new smoothed points as control points for a cubic spline
curve with knots 1,..., N + 4, where N is the number of L-curve
points.
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Empirically, fitting a straight line in the least squares sense to five
points centered at the point to be smoothed is good. With this ”
FITCURVE” algorithm, an algorithm called ”FINDCORNER” was
proposed to compute a sequence of new regularized solutions whose
associated points on the L-curve hopefully approaches the corner.
The algorithm is described as follows.
(a) Start with a few points (ρi, ηi) on each side of the corner.
(b) Use the ”FITCURVE” algorithm to find an approximating three-

dimensional cubic spline curve S for the points (ρi, ηi, λi), where
λi is the regularization parameter that corresponds to (ρi, ηi).

(c) Let S2 denote the first two coordinates of S, such that S2 ap-
proximates the L-curve.

(d) Compute the point on S2 with maximum curvature, and find
the corresponding λ0 from the third coordinate of S.

(e) Solve the regularization problem for λ0 and add the new point
(ρ(λ0), η(λ0)) to the L-curve.

(f) Repeat from step 2 until convergence.
Note that it is suggested that in step 1, the initial points can be
generated by choosing very large and very small regularization pa-
rameters , for instance, λ equal to σ1, 1

10σ1, 10σp and σp. In this
way, we can have points that lie on each side of the corner. In step
2, it is necessary to introduce λi as a third coordinate of S so that
we can associate a regularization parameter with computed point
on S2 in step 4.
Although we have these numerically stable methods, it is good to

plot the L-curve so that we can have a basic understanding of the be-
havior of the problem and where the corner may locate. It is suggested
that plotting the L-curve in a log-log scale is advantageous because the
log-log scale can emphasize the corner. Furthermore, the L-curves for
pure signal and pure noise are both steep in lin-lin scale as λ→ 0 while
only the noise curve is steep in log-log scale. The following curve is an
example of L-curve for Tikhonov regularization in [19]. The numbers
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are the regularization parameters that correspond to the points on the
L-curve.

Figure 5.1: An example of L-curve

5.2 Model Order Selection
In a parametric (or model-based) approach, we assume the vec-

tor of available data Y = (y1, y2, · · · , yN) ∈ RN has entries drawn
identically and independently distributed (i.i.d.) from a model. The
probability density function (pdf) of the model depends on some pa-
rameter vector. Assume there are n̄ possible models with pdf pn(y|θn0 ),
n = 1, 2, · · · , n̄. θn0 ∈ Rn is the model parameter which is unknown
and has size n. n is called the model order. An order selection rule
is a method that determines which model most fits the data vector
Y (hence, also determines the model order n). This is as important as
the task of estimating the parameter vector θn0 from the data vector Y ,
which is often related to the maximum likelihood estimation (MLE)
or the EM algorithm introduced in section 3.5. We concentrate on
order selection rules that are associated with the maximum likelihood
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method of parameter estimation.
Let the maximum likelihood estimator of θn0 be θ̂n ≜ argsup

θn
ln pn(Y |θn),

where pn(Y |θn) :=
N∏
i=1

pn(yi|θn). As N → ∞, the pdf of θ̂n converges
to the Gaussian pdf with mean θn0 and covariance equal to the recip-
rocal of the total expected information matrix (or called the Fisher
information matrix or the Cramér-Rao bound matrix) defined as fol-
lows
Definition 5.2.1 (unit observed information matrix).

î(θn) := −∂
2 ln pn(y|θn)
∂θn∂(θn)T

(5.10)

Definition 5.2.2 (unit expected information matrix).

i(θn) :=

∫
î(θn)pn(y|θn0 )dy

:= Ey|θn0

[
−∂

2 ln pn(y|θn)
∂θn∂(θn)T

] (5.11)

Definition 5.2.3 (total observed information matrix).

Ĵn(θn) := Nî(θn) (5.12)

Definition 5.2.4 (total expected information matrix).

Jn(θn) := Ni(θn) (5.13)

We call such convergence phenomenon as the asymptotic normality of
MLE and we denote it as θ̂n D→N(θn0 , (J

n(θn0 ))
−1). By the weak law of
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large number, we can derive that

− 1

N

∂2 ln pn(Y |θn)
∂θn∂(θn)T

|θn=θn0 = − 1

N

N∑
i=1

∂2 ln pn(yi|θn)
∂θn∂(θn)T

|θn=θn0

p→Ey|θn0 [−
∂2 ln pn(y|θn)
∂θn∂(θn)T

|θn=θn0 ]

=
1

N
Jn(θn0 )

(5.14)

Furthermore, since MLE is consistent (i.e., θ̂n p→ θn0 ),
1

N
Ĵn(θ̂n) = − 1

N

∂2 ln pn(Y |θn)
∂θn∂(θn)T

|θn=θ̂n

p→− 1

N

∂2 ln pn(Y |θn)
∂θn∂(θn)T

|θn=θn0

→ 1

N
Jn(θn0 )

(5.15)

In the following discussion, we assume that 1
NJ

n(θn0 ) = O(1), where O
denotes the big-O notation.

Let p0(Y ) denote the true pdf of Y . We want to measure the dis-
crepancy between p0(Y ) and the pdf of each model pn(Y |θn0 ) using the
KL divergenceD(p0, pn) :=

∫
p0(Y ) ln[ p0(Y )

pn(Y |θn0 )
]dY := EY [ln[ p0(Y )

pn(Y |θn0 )
]] =

EY [ln p0(Y )]− EY [ln pn(Y |θn0 )]. The KL divergence can be viewed as
showing the loss of information induced by the use of the model pdf
pn(Y |θn0 ) in lieu of the true pdf p0(Y ). Hence, the KL divergence is
sometimes called the information function, and the order selection rules
derived from it are called information criteria. Our aim is to minimize
D(p0, pn) with respect to the model order n; that is, to maximize the
function I(p0, pn) := EY [ln pn(Y |θn0 )], which is sometimes called the
relative KL information. However, because the model parameter θn0
and the true pdf p0 are unknown, we cannot directly calculate the ex-
pectation. In the following, we will introduce four approaches to deal
with these two obstacles, which are the naive approach, the no-name
rule, the Akaike information criterion (AIC) and the general informa-
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tion criterion (GIC). The readers can refer to [35] for materials we are
going to introduce below.

5.2.1 The Naive Approach
The first obstacle is that we do not know the model parameter θn0 .

A naive approach is to replace ln pn(Y |θn0 ) with ln pn(Y |θ̂n); hence,
we replace I(p0, pn) with I(p0, pn(Y |θ̂n)). The second obstacle is that
we do not know the true pdf p0. A naive approach is thus to replace
I(p0, pn(Y |θ̂n)) with an unbiased estimate ln pn(Y |θ̂n) of it. Therefore,
we come up with a totally naive approach, which is just to maximize
ln pn(Y |θ̂n). However, this approach is not feasible. Since a model
with more parameters reasonably has stronger power to fit the data,
the likelihood of the data will monotonically increase with increasing
model order. Hence, the order selection rule always chooses the largest
model order n̄.

5.2.2 The No-Name Rule
For the first obstacle, we approximate ln pn(Y |θn0 ) by the Taylor

series expansion as follows.
ln pn(Y |θn0 )

≈ ln pn(Y |θ̂n) + (θn0 − θ̂n)T [
∂ ln pn(Y |θn)

∂θn
|θn=θ̂n]

+
1

2
(θn0 − θ̂n)T [

∂2 ln pn(Y |θn)
∂θn∂(θn)T

|θn=θ̂n](θ
n
0 − θ̂n)

= ln pn(Y |θ̂n) + 1

2
(θn0 − θ̂n)T [

∂2 ln pn(Y |θn)
∂θn∂(θn)T

|θn=θ̂n](θ
n
0 − θ̂n)

p→ ln pn(Y |θ̂n)− 1

2
(θn0 − θ̂n)TJn(θn0 )(θ

n
0 − θ̂n)
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Hence,

EY [ln pn(Y |θn0 )] ≈ EY [ln pn(Y |θ̂n)]− 1

2
EY [(θn0 − θ̂n)TJn(θn0 )(θ

n
0 − θ̂n)]

= EY [ln pn(Y |θ̂n)]− 1

2
tr(EY [(θn0 − θ̂n)TJn(θn0 )(θ

n
0 − θ̂n)])

= EY [ln pn(Y |θ̂n)]− 1

2
EY [tr((θn0 − θ̂n)TJn(θn0 )(θ

n
0 − θ̂n))]

= EY [ln pn(Y |θ̂n)]− 1

2
EY [tr(Jn(θn0 )(θn0 − θ̂n)(θn0 − θ̂n)T )]

= EY [ln pn(Y |θ̂n)]− 1

2
tr(Jn(θn0 )EY [(θn0 − θ̂n)(θn0 − θ̂n)T ])

If p0 is a special case of pn or p0 = pn, then EY [(θn0 − θ̂n)(θn0 − θ̂n)T ] =

Ey|θn0 [(θ
n
0 − θ̂n)(θn0 − θ̂n)T ] = (Jn(θn0 ))

−1. In this way,

EY [ln pn(Y |θn0 )] = EY [ln pn(Y |θ̂n)]− 1

2
tr(In)

= EY [ln pn(Y |θ̂n)]− 1

2
n

Even if pn is just a good approximating model of p0, it is widely ac-
cepted that the best estimator of tr(Jn(θn0 )EY [(θn0 − θ̂n)(θn0 − θ̂n)T ]) is
n. If pn is really a poor approximating model of p0, then ln pn(Y |θ̂n)
will also be poor. Hence, we also do not choose this model. For the
second obstacle, we will use an unbiased estimator of EY [ln pn(Y |θ̂n)−
1
2(θ

n
0 − θ̂n)TJn(θn0 )(θ

n
0 − θ̂n)], which is ln pn(Y |θ̂n) − 1

2n. As a result,
we come up with an order selection rule that chooses the model with
the minimum value of

NN(n) = −2 ln pn(Y |θ̂n) + n (5.16)

over n̄ possible models. Although, compared to the naive approach,
the no name rule has an additional penalty term n, it turns out that
it does not penalize enough so that it tends to overfit (that is, selects
a larger model than the true generating model).
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5.2.3 The Akaike Information Criterion (AIC)
Let X denote a fictitious data vector with the same size N and the

same pdf as Y but which is independent of Y . Let θ̂nx = argsup
θn

pn(X|θn)

and θ̂ny = argsup
θn

pn(Y |θn). For the first obstacle, we replace the model

pdf ln pn(Y |θn0 ) with EX [ln pn(Y |θ̂nx)]. That is to say, we want to max-
imize EY [EX [ln pn(Y |θ̂nx)]]. It has an interesting cross-validation inter-
pretation : we use the samples X for estimation and the independent
samples Y for validation of the resulting model’s pdf. We approximate
ln pn(Y |θ̂nx) using the Taylor series expansion as follows.

ln pn(Y |θ̂nx)

≈ ln pn(Y |θ̂ny ) + (θ̂nx − θ̂ny )
T [
∂ ln pn(Y |θn)

∂θn
|θn=θ̂ny ]

+
1

2
(θ̂nx − θ̂ny )

T [
∂2 ln pn(Y |θn)
∂θn(∂θn)T

|θn=θ̂ny ](θ̂
n
x − θ̂ny )

p→ ln pn(Y |θ̂ny )−
1

2
(θ̂nx − θ̂ny )

TJn(θn0 )(θ̂
n
x − θ̂ny )

Hence,

EY [EX [ln pn(Y |θ̂nx)]]

≈EY [EX [ln pn(Y |θ̂ny )−
1

2
(θ̂nx − θ̂ny )

TJn(θn0 )(θ̂
n
x − θ̂ny )]]

We also assume p0 is a special case of pn, p0 = pn or pn is at least a
good approximating model of p0. In this way,

EY [EX [
1

2
(θ̂nx − θ̂ny )

TJn(θn0 )(θ̂
n
x − θ̂ny )]]

=
1

2
EY [EX [tr(Jn(θn0 )[(θ̂nx − θn0 )− (θ̂ny − θn0 )][(θ̂

n
x − θn0 )− (θ̂ny − θn0 )]

T )]]

=
1

2
tr(Jn(θn0 )((J

n(θn0 ))
−1 + (Jn(θn0 ))

−1))

=
1

2
tr(2In)

=n

185



For the second obstacle, we will use an unbiased estimator of
EY [EX [ln pn(Y |θ̂ny )−1

2(θ̂
n
x−θ̂ny )TJn(θn0 )(θ̂nx−θ̂ny )]], which is ln pn(Y |θ̂n)−

n. As a result, we come up with an order selection rule that chooses
the model with the minimum value of

AIC(n) = −2 ln pn(Y |θ̂n) + 2n (5.17)

over n̄ possible models. We make a remark that in [21] a corrected
AIC rule, AICc is suggested

AICc = −2 ln pn(Y |θ̂n) + 2N

N − n− 1
n (5.18)

As N approaches ∞, AICc will approach AIC；for finite values of
N , the penalty term of AICc is larger than that of AIC so that AICc
performs better than AIC with smaller risk of overfitting.

Besides the AIC order selection rule, we also want to introduce a
useful quantity called the AIC difference which is defined below.
Definition 5.2.5 (AIC difference).

∆i = AICi − AICmin (5.19)

where AICi is the AIC of the ith model, and AICmin is the lowest
AIC value one obtains among all the candidate models.

From the definition, we know that the best candidate model has the
AIC difference ∆min = 0. Note that it is not the absolute value of
the AIC value that matters but the relative value, that is, the AIC
difference that matters. A useful rule of thumb is listed as follows
• 0 ≤ ∆i < 2 : there is substantial support for the ith model
• 2 ≤ ∆i < 4 : there is strong support for the ith model
• 4 ≤ ∆i < 7 : there is considerably less support for the ith model
• ∆i > 10 : there is essentially no support for the ith model

It is reasonable to think of exp(−1
2∆i) as the relative likelihood of the

ith model. We can normalize it and come up with the Akaike weight
of the ith model defined as follows
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Definition 5.2.6 (Akaike weight).

wi ≜
exp(−1

2∆i)
n̄∑
r=1

exp(−1
2∆r)

(5.20)

It is considered as the weight of evidence in favor of model i being the
best model or simply can be considered as the model probability. We
can also compute the evidence ratio between the ith model and the
jth model defined as wi/wj, which is the ratio of the Akaike weight
of the ith model and the jth model. In particular, we are interested
in w1/wj, where we label the best candidate model as the first model.
Since ∆1 = ∆min = 0, w1/wj = exp(12∆j). We list some values of δj
and the corresponding evidence ratio w1/wj below.
• ∆j = 2 : the evidence ratio is 2.7
• ∆j = 4 : the evidence ratio is 7.4
• ∆j = 8 : the evidence ratio is 54.6
• ∆j = 10 : the evidence ratio is 148.4

Thus, the concept of evidence ratio somehow justifies the rule of thumb.
The readers can refer to [1] for materials regarding the AIC difference,
the Akaike weight and the evidence ratio.

5.2.4 The General Information Criterion (GIC)
GIC is a generalization of AIC. Both order selection rules adopt the

notion of cross-validation. However, GIC uses a validation data vector
Y longer than an estimation data vector X since the risk of overfitting
will decrease in this way. We assume Y is ρ times the length of X ,
where ρ ≥ 1. We also approximate ln pn(Y |θ̂nx) using the Taylor series
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expansion as follows

ln pn(Y |θ̂nx)

≈ ln pn(Y |θ̂ny ) + (θ̂nx − θ̂ny )
T [
∂ ln pn(Y |θn)

∂θn
|θn=θ̂ny ]

+
1

2
(θ̂nx − θ̂ny )

T [
∂2 ln pn(Y |θn)
∂θn(∂θn)T

|θn=θ̂ny ](θ̂
n
x − θ̂ny )

p→ ln pn(Y |θ̂ny )−
1

2
(θ̂nx − θ̂ny )

TJny (θ
n
0 )(θ̂

n
x − θ̂ny )

We add a subscript y to the total expected information matrix to high-
light that we take expectation over the random vector Y . Hence,

EY [EX [ln pn(Y |θ̂nx)]]

≈EY [EX [ln pn(Y |θ̂ny )−
1

2
(θ̂nx − θ̂ny )

TJny (θ
n
0 )(θ̂

n
x − θ̂ny )]]

We also assume p0 is a special case of pn, p0 = pn or pn is at least a
good approximating model of p0. In this way,

EY [EX [
1

2
(θ̂nx − θ̂ny )

TJny (θ
n
0 )(θ̂

n
x − θ̂ny )]]

=
1

2
EY [EX [tr(Jny (θn0 )[(θ̂nx − θn0 )− (θ̂ny − θn0 )][(θ̂

n
x − θn0 )− (θ̂ny − θn0 )]

T )]]

=
1

2
tr(Jny (θ

n
0 )((J

n
x (θ

n
0 ))

−1 + (Jny (θ
n
0 ))

−1))

From the definition of the total expected information matrix, we know
that Jny (θn0 ) = ρJnx (θ

n
0 ). Therefore,

EY [EX [
1

2
(θ̂nx − θ̂ny )

TJny (θ
n
0 )(θ̂

n
x − θ̂ny )]]

=
1

2
tr(Jny (θ

n
0 )(ρ(J

n
y (θ

n
0 ))

−1 + (Jny (θ
n
0 ))

−1))

=
1 + ρ

2
n

For the second obstacle, we will use an unbiased estimator of
EY [EX [ln pn(Y |θ̂ny )− 1

2(θ̂
n
x−θ̂ny )TJny (θn0 )(θ̂nx−θ̂ny )]], which is ln pn(Y |θ̂n)

−1+ρ
2 n. As a result, we come up with an order selection rule that
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chooses the model with the minimum value of

GIC(n) = −2 ln pn(Y |θ̂n) + (1 + ρ)n (5.21)

over n̄ possible models. GIC has smaller risk of overfitting than that
of AIC. Values of ρ in the interval [1, 5] is suggested to perform well.

So far, the four approaches introduced are derived based on min-
imizing the KL divergence. In the following we will introduce an ap-
proach that is based on the Bayesian setting. The resulting model
order selection rule is called the Bayesian information criterion (BIC)
rule.

5.2.5 The Bayesian Information Criterion (BIC)
In the Bayesian setting, the model parameter is considered to be

random but depends on different models. Let the prior probability of
the model parameter be pn(θn0 |Mn), where Mn represents the model.
We make three assumptions of pn(θn0 |Mn) as follows
1. pn(θn0 |Mn) is approximately constant around θ̂n, where
θ̂n = argsup

θn
pn(Y |θn,Mn)

2. pn(θn0 |Mn) is independent of N
3. pn(θ̂n|Mn) ≫ pn(θ

n
0 |Mn) for θn0 outside the neighborhood of θ̂n

Our aim is to maximize the model evidence, which is pn(Y |Mn) =∫
pn(Y |θn0 ,Mn)pn(θ

n
0 |Mn)dθ

n
0 . We approximate ln pn(Y |θn0 ,Mn) using

the Taylor series expansion as follows and get an approximation of
pn(Y |θn0 ,Mn).

ln pn(Y |θn0 ,Mn) ≈ ln pn(Y |θ̂n,Mn)−
1

2
(θn0 − θ̂n)T Ĵn(θ̂n)(θn0 − θ̂n)

⇒ pn(Y |θn0 ,Mn) ≈ pn(Y |θ̂n,Mn)e
−1

2(θ
n
0−θ̂

n)T Ĵn(θ̂n)(θn0−θ̂
n)
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Hence,
pn(Y |Mn)

≈ pn(Y |θ̂n,Mn)

∫
e−

1
2(θ

n
0−θ̂

n)T Ĵn(θ̂n)(θn0−θ̂
n)pn(θ

n
0 |Mn)dθ

n
0

≈ pn(Y |θ̂n,Mn)pn(θ̂
n|Mn)

∫
θn0 near θ̂

n

e−
1
2(θ

n
0−θ̂

n)T Ĵn(θ̂n)(θn0−θ̂
n)dθn0

≈ pn(Y |θ̂n,Mn)pn(θ̂
n|Mn)(2π)

n/2

|Ĵn(θ̂n)|1/2

∫
θn0 near θ̂

n

e−
1
2(θ

n
0−θ̂

n)T Ĵn(θ̂n)(θn0−θ̂
n)

(2π)n/2|Ĵn(θ̂n)|−1/2
dθn0

≈ pn(Y |θ̂n,Mn)pn(θ̂
n|Mn)(2π)

n/2

|Ĵn(θ̂n)|1/2

The second approximation holds because of the second and the third as-
sumptions. The last approximation holds since the exponential decays
very fast away from θ̂n ( the integral is roughly equal to 1). Maximizing
the model evidence over n̄ possible models is equivalent to maximize
ln pn(Y |θ̂n,Mn) + ln pn(θ̂n|Mn) +

n
2 ln 2π − 1

2 ln |Ĵn(θ̂n)|. For the last
term,

ln |Ĵn(θ̂n)| = ln |N · 1

N
Ĵn(θ̂n)|

= lnNn| 1
N
Ĵn(θ̂n)|

= n lnN + ln | 1
N
Ĵn(θ̂n)|

= n lnN +O(1)

Since pn(θn0 |Mn) is independent ofN , ln pn(Y |θ̂n,Mn)+ln pn(θ̂n|Mn)+
n
2 ln 2π − 1

2 ln |Ĵn(θ̂n)| ≈ ln pn(Y |θ̂n,Mn) − n
2 lnN . As a result, we

come up with an order selection rule that chooses the model with the
minimum value of

BIC(n) = −2 ln pn(Y |θ̂n) + n lnN (5.22)

over n̄ possible models. Note that if pn(θn0 |Mn) is dependent of N ,
then we cannot eliminate the ln pn(θ̂n|Mn) term when performing the
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maximization, which results in a prior-dependent rule. Also note that
the assumption that 1

N Ĵ
n(θ̂n) = O(1) does not always hold true. For

some models, a different normalization of Ĵ(θn) is required to get a
constant matrix as N approaches the infinity.

As a summary, all the model order selection rules have a common
form, which is −2 ln pn(Y |θ̂n) + η(n,N )n.
1. The naive approach : η(n,N ) = 0

2. The no-name rule : η(n,N ) = 1

3. AIC : η(n,N ) = 2

4. AICc : η(n,N ) = 2 N
N−n−1

5. GIC : η(n,N ) = ρ + 1, ρ ≥ 1

6. BIC : η(n,N ) = lnN
Order selection rules with smaller penalty term tend to choose larger
model, which may results in overfitting. Hence, putting aside the first
two poor order selection rules (i.e., the naive approach and the no-name
rule), a crude ranking of the other four model selection rules may be :
BIC > GIC > AICc > AIC (note that AICc performs better than
AIC in small samples whereas in medium or large samples the two
selection rules perform almost the same). However, if the true model
is more complex than all the candidate models, then AIC performs
better instead for its tendency to select relatively larger models.

5.3 Experiments and Performance Evaluations
for The Compressive Sensing Problem

In chapter four, we introduce the compressive sensing problem and
various reconstruction algorithms to solve it. In this section, we will
introduce standard experiment procedures, established in [6], to test
the performance of a specific reconstruction algorithm. We described
as follows.
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1. Choose the dimension m and n of the sampling matrix A and a
signal sparsity level s such that m ≥ 2s

2. Randomly generate an m×n random matrix A (It may be a Gaus-
sian random matrix, a Bernoulli random matrix or a random sam-
pling matrix).

3. Select a support set T of size |T | = s uniformly at random, and
generate the sparse signal vector x by one of the following methods
(a) A Gaussian signal : draw the elements of x restricted to T from

the standard Gaussian distribution
(b) A zero-one signal : set all entries of x supported on T to ones2

(c) A sparse signal with power-law decaying entries (also known as
compressible sparse signal) : the non-increasing rearrangement
x∗ of x satisfies x∗[i] ≤ Gi−1/r for some G > 0, r ∈ [0, 1] and
i ∈ [s]

(d) A sparse signal with exponentially decaying entries : the non-
increasing rearrangement x∗ of x satisfies x∗[i] ≤ Ge−pi for some
G > 0, p > 0 and i ∈ [s]

4. For the case when the signal is sparse and there are no measurement
errors : compute y = Ax

For the case when the signal is approximately sparse or there are
measurement errors :
(a) An approximately sparse signal : the signal entries in T remain

unchanged but the signal entries outside of T are perturbed by
i.i.d. Gaussian N (0, σ2

s) samples. compute y = Ax

(b) A measurement vector corrupted with errors : the error vec-
tor e is generated using a Gaussian distribution N (0, σ2

eIm) .
compute y = Ax + e

5. Apply a reconstruction algorithm to obtain x(k̄), the output of the
algorithm, and compute x(k̄) to x

2It is claimed that zero-one sparse signals are a particularly challenging case for OMP-type
algorithms.
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(a) For the case when the signal is sparse and there is no mea-
surement errors, the algorithms are expected to provide exact
reconstruction. Hence, we calculate the empirical frequency of
exact reconstruction, i.e., the fraction of exactly recovered test
signals. Note that the sparsity level at which the recovery rate
drops below 100% is of particular interest. Such sparsity level is
called the critical sparsity. If the sparsity level of the signal ex-
ceeds the critical sparsity, the reconstruction algorithm cannot
exactly recover all sparse test signals.

(b) For the case when the signal is approximately sparse or there are
measurement errors, we compute the reconstruction distortion
∥x− x(k̄)∥2.

6. Repeat the process 500 times for each s , and then simulate the
same algorithm for different values of m, n, σs and σe. Note that
the performance of the algorithm is better when the empirical fre-
quency of exact reconstruction is larger, the critical sparsity is larger
and the reconstruction distortion is smaller.
In [9], a special performance evaluation method called the phase

transition analysis is described. We consider the phase diagram, which
is a two-dimensional graph with y-coordinates being the relative spar-
sity of x (number of non-zeros in x/number of rows in A, i.e., ρ ≜ s/m)
and x-coordinates being the indeterminacy of the system y = Ax + e

(number of rows in A/number of columns in A, i.e., δ ≜ m/n). ρ and
δ are within [0, 1]. Hence, the phase diagram occupies the unit square.
The value of each point at the phase diagram can be various perfor-
mance evaluation metrics, e.g., the fraction of exact reconstruction, the
averaged relative reconstruction errors or the fraction of reconstruction
with errors within 10−4. There are two phases in the phase diagram,
the success phase and the failure phase. For small ρ, it is more possible
to have high-accuracy reconstruction while for large ρ, reconstruction
may fail more easily. The phase transition from success to failure oc-
curs at different ρ for different values of δ. Asymptotically for large
m, the transition gets perfectly sharp since for each δ, if ρ is smaller
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than the threshold ρtr(δ), the probability of perfect reconstruction ap-
proaches 1 while it approaches 0 if ρ > ρtr(δ). The following figure is a
phase diagram depicted in [9]. The variable k corresponds to our s, n

Figure 5.2: phase diagram

corresponds to our m and N corresponds to our n. The value of each
point is the number of coordinates of reconstruction which differ from
optimally sparse solution by more than 10−4. The red curve is the the-
oretical phase transition boundary curve (i.e., the curve of threshold
ρtr(δ)). The phase diagram displays a sharp transition from perfect
recovery (the region below the red curve) to perfect failure (the region
above the red curve).

5.4 Dictionary Screening
In [41], two specific problem formulations are considered. They are

the basis pursuit denoising and the non-negative basis pursuit denois-
ing. The former has been introduced as 4.213 and the latter further

3In our tutorial, it is named as the basis pursuit denoising problem while in [41] it is called
the LASSO problem.
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constrains the variable x ∈ Rn to have non-negative entries; that is,

inf
x∈Rn

λ∥x∥1 +
1

2
∥y − Ax∥22 subject to x ⪰ 0 (5.23)

To derive various screening tests, it is useful to consider the Lagrangian
dual problems of these two primal problems. We make some derivations
as follows. Let z = y − Ax. The basis pursuit denoising problem
becomes

min
z∈Rm,x∈Rn

1

2
∥z∥22 + λ∥x∥1 subject to z = y − Ax

The Lagrangian function would be

L(z, x, µ) ≜ 1

2
∥z∥22 + λ∥x∥1 + µT (y − Ax)

Setting the partial derivative of L with respect to z to be zero, we can
get

ẑ = µ

where ẑ is a primal optimal point of z. As for a primal optimal point
of x, denoted as x̂, we make a discussion about three different cases.
If x̂[i] > 0, i ∈ [n], we would get µTai = λ by setting the partial
derivative of L with respect to x̂[i] to be zero. Similarly if x̂[i] < 0, we
would get µTai = −λ and if x̂[i] = 0 we would get |µTai| ≤ λ. Thus,
combining these three cases, we know that

|µTai| ≤ λ, i ∈ [n]

With these results, we can get the Lagrange dual function

g(µ) ≜ L(ẑ, x̂, µ) = 1

2
∥y∥22 −

1

2
∥µ− y∥22
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Hence, finally, we can come up with the Lagrange dual problem of the
basis pursuit denoising problem as

max
µ∈Rm

1

2
∥y∥22 −

1

2
∥µ− y∥22 subject to |µTai| ≤ λ, i ∈ [n]

= max
θ∈Rm

1

2
∥y∥22 −

λ2

2
∥θ − y/λ∥22 subject to |θTai| ≤ 1, i ∈ [n]

(5.24)
Furthermore, a primal optimal solution x̂ ∈ Rn and a dual optimal
solution θ̂ ∈ Rm satisfy

y = Ax̂ + λθ̂ (5.25)

where

θ̂Tai =

{
sgn(x̂[i]) if x̂[i] ̸= 0

γ ∈ [−1, 1] if x̂[i] = 0
(5.26)

Similar to the derivation of the dual problem of the basis pursuit de-
noising problem, we derive the dual problem of the non-negative basis
pursuit denoising problem in the following. Let z = y − Ax. The
non-negative basis pursuit denoising problem becomes

min
z∈Rm,x∈Rn

1

2
∥z∥22 + λ∥x∥1 subject to z = y − Ax and x ⪰ 0

The Lagrangian function would be

L(z, x, µ, ϕ) ≜ 1

2
∥z∥22 + λ∥x∥1 + µT (y − Ax− z)− ϕTx

Setting the partial derivative of L with respect to z to be zero, we can
get

ẑ = µ

where ẑ is a primal optimal point of z. As for a primal optimal point
of x, denoted as x̂, we make a discussion about three different cases.
If x̂[i] > 0, i ∈ [n], we would get µTai = λ − ϕ[i] by setting the
partial derivative of L with respect to x̂[i] to be zero. Similarly if
x̂[i] < 0, we would get µTai = −λ− ϕ[i] and if x̂[i] = 0 we would get
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|µTai + ϕ[i]| ≤ λ. Thus, combining these three cases, we know that

|µTai + ϕ[i]| ≤ λ, i ∈ [n]

With these results, we can get the Lagrange dual function

g(µ) ≜ L(ẑ, x̂, µ) = 1

2
∥y∥22 −

1

2
∥µ− y∥22

Hence, finally, we can come up with the Lagrange dual problem of the
non-negative basis pursuit denoising problem as

max
µ∈Rm

1

2
∥y∥22 −

1

2
∥µ− y∥22

subject to |µTai + ϕ[i]| ≤ λ and ϕ[i] ≥ 0, i ∈ [n]

= max
θ∈Rm

1

2
∥y∥22 −

1

2
∥µ− y∥22 subject to µTai ≤ λ, i ∈ [n]

= max
θ∈Rm

1

2
∥y∥22 −

λ2

2
∥θ − y/λ∥22 subject to θTai ≤ 1, i ∈ [n]

(5.27)

Furthermore, a primal optimal solution x̂ ∈ Rn and a dual optimal
solution θ̂ ∈ Rm satisfy

y = Ax̂ + λθ̂ (5.28)

where

θ̂Tai =

{
1 if x̂[i] > 0

γ ∈ (−∞, 1] if x̂[i] = 0
(5.29)

Define the set A, called the atom pool 4, as {±ai, i ∈ [n]} for the basis
pursuit denoising problem and {ai, i ∈ [n]} for the non-negative basis
pursuit denoising problem. In this way, the constraints of the two dual
problems can be neatly expressed as

θTa ≤ 1 ∀a ∈ A (5.30)

We further define H(a) ≜ {θ | θTa ≤ 1}. Hence, the set of feasible
points F of the dual problems is the non-empty, closed and convex set
formed by the intersection of the closed half spaces H(a) ∀a ∈ A. De-

4In the original paper, the notation is B and is called the feature pool. We adapt the same
concept to our used notation and name.
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fine the set A(θ̂), called the active constraints set at θ̂, as {i | |θ̂Tai| =
1} for the basis pursuit denoising problem and as {i | θ̂Tai = 1} for
the non-negative basis pursuit denoising problem. If we know the dual
optimal solution θ̂, then any point x̂ satisfying the following equations
is a primal optimal solution.
1. AA(θ̂)x̂|A(θ̂) = y − λθ̂

2. x̂[i](θ̂Tai) ≥ 0, i ∈ A(θ̂)

3. x̂[i] = 0, i ̸∈ A(θ̂)
To maximize the objective of the two dual problems, we need to

project y/λ onto F to get the dual optimal solution θ̂. We call the
set of points {θ̂(λ), λ > 0} the dual regularization path. We can soon
verify that the critical value of λ would be

λmax ≜ max
a∈A

yTa (5.31)

We also denote amax as a point belonging to argmax
a∈A

yTa. That is,

amax ∈ argmax
a∈A

yTa (5.32)

∀a ∈ A, (y/λmax)Ta ≤ yTamax/λmax = 1. Thus when λ = λmax,
y/λmax is itself in F , which implies θ̂ = y/λmax. If λ ≥ λmax, then
∀a ∈ A, (y/λ)Ta ≤ (y/λmax) ≤ yTamax/λmax = 1. Again, y/λ is it-
self in F , which implies θ̂ = y/λ. If λ < λmax, then (y/λ)Tamax would
be larger than (y/λmax)

Tamax = 1. Hence, y/λ is not in F . As a re-
sult, traversing along the dual regularization path from large λ ≥ λmax
to small λ < λmax, the dual optimal solution θ̂ would first be equal to
y/λ, moving in a straight line (θ̂ = yc, where c = 1/λ) within F until
λ = λmax, where θ̂ = y/λmax first lies on the boundary of F . Then,
as λ decreases below λmax, y/λ moves away from F and θ̂ would be
the unique projection of y/λ onto the boundary of F . Furthermore,
we can make a connection with the primal optimal solution x̂. For
λ/λmax > 1, θ̂ = y/λ. Since −1 < (y/λ)Ta < 1 ∀a ∈ A, x̂ = 0. For
0 < λ/λmax < 1, θ̂ ̸= y/λ. Since y = Ax̂ + λθ̂, Ax̂ = y − λθ̂ ̸= 0,
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which implies x̂ ̸= 0. For λ = λmax, θ̂ = y/λmax and x̂ may be zero or
non-zero. Conversely, if x̂ = 0, then θ̂ = (y−Ax̂)/λ = y/λ. However,
if x̂ ̸= 0, we cannot deduce that θ̂ ̸= y/λ since θ̂ = y/λmax when
λ = λmax and x̂ may jointly satisfy y = Ax̂ + λθ̂ for some x̂ ̸= 0.

With these discussions, we have already had some geometric in-
sights about the primal problems and dual problems, and the primal
optimal solutions and the dual optimal solutions. Now we proceed
to introduce the concepts of screening and screening tests. Screening
refers to seeking an effective partition of the dictionary A to AS and
AS, where AS is the sub-dictionary to be retained and AS is the sub-
dictionary to be rejected. That is, for all indices i belonging to S, the
columns ai will be retained while for all indices j not belonging to S
(i.e., belonging to S), the columns aj will be rejected (removed). Then,
what is an effective partition? Assume we solve the primal problems
with the dictionary A and get a primal optimal solution x̂. Let N de-
note the set {i |x̂[i] ̸= 0}. Clearly, if N ⊆ S, then we can still recover
the same primal optimal solution x̂ by solving the primal problems
with the sub-dictionary AS. Thus, such S is an effective partition. If
we know a dual optimal solution θ̂, then clearly N ⊆ A(θ̂) from the
previous discussions. Hence, if we can ensure that A(θ̂) ⊆ S, or equiv-
alently S ⊆ A(θ̂), then N ⊆ S as we desire.

To ensure that A(θ̂) ⊆ S, we need to ensure that for all indices
in A(θ̂), they also belong to S. Note that i ∈ A(θ̂) if and only if
|θ̂Tai| = 1 for the basis pursuit denoising problem (or θ̂Tai = 1 for
the non-negative basis pursuit denoising problem). Thus, if we as-
sign to S all indices i ∈ [n] that satisfy |θ̂Tai| = 1 (or θ̂Tai = 1),
A(θ̂) ⊆ S is guaranteed. However, if we can know a dual optimal
solution θ̂, there is no need to screen the dictionary. In practice, we
can only try to bound θ̂ within a compact region R. If θ̂ indeed be-
longs to R, A(θ̂) is clearly a subset of the set {i | max

θ∈R
|θTai| ≥ 1} (or

{i |max
θ∈R

θTai ≥ 1}). Hence, if we assign to S all indices i ∈ [n] belong-

ing to the set {i | max
θ∈R

|θTai| ≥ 1} (or {i | max
θ∈R

θTai ≥ 1}), A(θ̂) ⊆ S
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is guaranteed. As a result, we can construct an effective partition

S = {i | max
θ∈R

|θTai| ≥ 1} (or {i |max
θ∈R

θTai ≥ 1}) (5.33)

Moreover, we can equivalently construct a rejection test

TR(ai) =

{
1 if i ∈ S

0 otherwise
(5.34)

That is, ai is rejected if TR(ai) = 1 and is retained if TR(ai) = 0. If
both R1 and R2 contain θ̂ and R1 ⊆ R2, it can be easily verified that
the rejection test TR1 can potentially reject more atoms than the test
TR2. We say that TR2 is weaker than TR1 and denote such relation as
TR2 ⪯ TR1. As a special case, TR2 ⪯ TR1 ⪯ T{θ̂}.

Therefore, naturally arise two questions that how to find a bound-
ing region R so that θ̂ can indeed lie in it and how to make R even
tighter so as to boost the screening power of TR. The answers to
these two questions lead to constructions of various screening tests.
We will demonstrate in the following that R of our considered screen-
ing tests all have a sphere-hyperplane structure, which means it is the
intersection of a spherical bound with a finite number of half spaces.
Mathematically,

R = {θ | ∥θ − q∥2 ≤ r} ∩ ∩mi=1{θ |nTi θ ≤ ci} (5.35)

where q and r are the center and radius of a closed ball

S(q, r) = {z | ∥z − q∥2 ≤ r} (5.36)

and there are m half spaces

nTi θ ≤ ci i ∈ [m] (5.37)

With this region, we can construct the corresponding rejection test.
Define µR(a) as

µR(a) ≜ max
θ∈R

θTa (5.38)
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That is, µR(a) = −min
θ
(−θTa) subject to ∥θ−q∥22 ≤ r2 and nTi −ci ≤

0, i ∈ [m]. Thus,

TR(ai) =

{
1 if max{µR(ai), µR(−ai)} < 1

0 otherwise
(5.39)

for the basis pursuit denoising problem and

TR(ai) =

{
1 if µR(ai) < 1

0 otherwise
(5.40)

for the non-negative basis pursuit denoising problem. Increasing m,
i.e., using more half spaces, will make R tighter and thus increase the
screening power. However, the cost is more computation time. In this
paper, m = 0 (sphere tests), m = 1 (dome tests) and m = 2 (two
hyperplanes tests) are introduced.

If a dual feasible point θf ∈ F is known, we can use it to construct
a spherical bound. Indeed, because of the optimality characteristic of
θ̂, we know that

∥θ̂ − y/λ∥2 ≤ ∥θf − y/λ∥2 (5.41)
As a result, this gives rise to the sphere

S(y/λ, ∥θf − y/λ∥2) (5.42)

In particular, we know that y/λmax is dual feasible and thus

∥θ̂ − y/λ∥2 ≤ ∥y/λmax − y/λ∥2 = |1/λ− 1/λmax|∥y∥2 (5.43)

We call such bound the default spherical bound. If a dual optimal
solution θ̂0 is known for a primal problem with λ = λ0, then by the
non-expansive property of the projection onto the convex set,

∥θ̂ − θ̂0∥2 ≤ ∥y/λ− y/λ0∥2 = |1/λ− 1/λ0|∥y∥2 (5.44)

In this case, the sphere is

S(θ̂0, ∥y/λ− y/λ0∥2) (5.45)
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In general, for S(q, r) = {θ | ∥θ−q∥2 ≤ r} and a ∈ Rm, µS(q,r)(a) can
be calculated as

µS(q,r)(a) = qTa + r∥a∥2 (5.46)
Hence, the following theorem states the important result of a sphere
test.
Theorem 5.4.1. The sphere test ST (q, r) for the sphere S(q, r)

is TS(q,r)(a) =

{
1 if Vℓ(∥a∥2) < qTa < Vu(∥a∥2)
0 otherwise

, where Vu(t) =

1 − rt and for the basis pursuit denoising Vℓ(t) = −Vu(t) and for
the non-negative basis pursuit denoising Vℓ(t) = −∞.

In the literature, the Strong Rule introduced in [37] discards atom ai
if

|yTai| < 2λ− λmax (5.47)
Indeed, it is a sphere test with center q = y/λ and radius rsr =

λmax/λ− 1. As we have pointed out, θ̂ is bounded within the default
sphere whose center q = y/λ and radius r = (1/λ − 1/λmax)∥y∥2.
rsr = rλmax/∥y∥2 ≤ r∥amax∥2 ≤ r if we normalize the norm of atoms
to 1. Although the smaller sphere would lead to greater rejection power,
it is not guaranteed to contain θ̂, which may result in false rejections.
The Strong Sequential Rule introduced in [37] assumes a primal optimal
solution x̂0 of the basis pursuit denoising problem with parameter λ0
is available, where λ0 > λ. It then forms the residual R0 = y − Ax̂0
and discards atom ai if

|RT
0 ai| < 2λ− λ0 (5.48)

Using the relation that y = Ax̂0 + λ0θ̂0, screening test is equivalent as
|θ̂T0 ai| < 2λ/λ0 − 1. Indeed, it is a sphere test with center q = θ̂0 and
radius rssr = 2 − 2λ/λ0 = 2λ(1/λ − 1/λ0). As we have pointed out,
θ̂ is bounded with the sphere S(q, r), where q = θ̂0 and r = (1/λ −
1/λ0)∥y∥2. Thus, rssr = 2λ

∥y∥2
r ≤ r if λ ≤ ∥y∥2

2 , which again inflicts
risk of false rejections on the screening test. The SIS test introduced
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in [11] can be interpreted as a default sphere test for a basis pursuit
denoising problem with a specific parameter λ. Assume the atoms are
normalized to have norm 1. We compute the correlation vector ρ =

ATy. Given 0 < γ < 1, the SIS rejection test discard atom ai if |ρ[i]| <
ρ∗[(γm)], where ρ∗ denotes the non-increasing rearrangement of ρ and
(γm) denotes the integer part of γm. The test can be expressed as

|yTai| < tγ ≜ ρ∗[(γm)] (5.49)

equivalently, |(y/λ)Tai| < tγ/λ. Equating tγ/λ with 1 − (1/λ −
1/λmax)∥y∥2, then we can verify that the SIS test is indeed a default
sphere test for a basis pursuit denoising problem with λ =

λmax(tγ+∥y∥2)
λmax+∥y∥2

≤
λmax.

We have introduced the m = 0 case and we can even further con-
fine the bounding region R by incorporating additional hyperplanes.
Indeed, each constraint θTai ≤ 1 bounds θ̂. We can pick one of them
and express it as {θ |nTθ ≤ c}, where n has norm 1. Combining
it with some spherical region S(q, r), we can come up with a dome
bounding region D(q, r;n, c). We can visualize D(q, r;n, c) in the fol-
lowing graph. We call qd the dome center and rd the dome radius.

Figure 5.3: A general dome region D(q, r;n, c) with 0 < ψd < 1
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The signed distance from q to qd in the direction −n is a fraction
of the radius r of the sphere. We use ψd to denote such fraction.
nT (qd − q) = ∥n∥2∥qd − q∥2 cos(0◦) = ∥qd − q∥2 = −ψdr. Hence,

ψd = (nTq − nTqd)/r = (nTq − c)/r (5.50)

qd − q = ψdr(−n). Hence,

qd = q − ψdrn (5.51)

Finally,
rd = r

√
1− ψ2

d (5.52)
To effectively confine the spherical region S(q, r) to a smaller dome
region D(q, r;n, c), we require −1 ≤ ψd ≤ 1. Actually, we desire ψd
to be as close to 1 as possible. Thus, when choosing the incorporated
constraint, it is natural to select what can maximize ψd, say θTag ≤ 1.
The corresponding hyperplane would be nTθ ≤ c, where n = ag/∥ag∥2
and c = 1/∥ag∥2. Hence,

ag = argmax
a∈A

aTq − 1

∥a∥2
(5.53)

The corresponding dome will be

D(q, r; ag/∥ag∥2, 1/∥ag∥2) (5.54)

If we use the default sphere, i.e., q = y/λ and r = |1/λ−1/λmax|∥y∥2,
then ag = amax. The corresponding dome is called the default dome.
If we are given a dual optimal solution θ̂0 for a primal problem with
λ = λ0, then we have another way to construct an effective hyperplane.
By the projection theorem, for any θ ∈ F ,

(y/λ0 − θ̂0)
T (θ − θ̂0) ≤ 0 (5.55)

That is, (y/λ0 − θ̂0)
Tθ ≤ (y/λ0 − θ̂0)

T θ̂0. Since 0 ∈ F , the right
hand side is non-negative. Thus, this inequality defines an effective
hyperplane nT0 θ ≤ c0, where n0 = y/λ0−θ̂0

∥y/λ0−θ̂0∥2
and c0 = nT0 θ̂0. In this

way, ψd = nT0 q−n
T
0 θ̂0

r = ∥n0∥2∥q−θ̂0∥2 cos(β)
r = ∥q−θ̂0∥2 cos(β)

r , where β is the
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angle between n0 and q − θ̂0. Since θ̂0 ∈ F , we can select the sphere
to be S(q, r), where q = y/λ and r = ∥θ̂0 − y/λ∥2. Then we can
verify that ψd is indeed within -1 and 1. The corresponding dome can
be expressed as

D(y/λ, ∥θ̂0 − y/λ∥2;n0, c0) (5.56)
In general, for D(q, r;n, c) = {θ | ∥θ − q∥2 ≤ r, nTθ ≤ c}, and

a ∈ Rm, µD(q,r;n,c)(a) can be calculated as

µD(q,r;n,c)(a) = qTa +M1(n
Ta, ∥a∥2) (5.57)

where

M1(t1, t2) =

{
rt2 if t1 < −ψdt2
−ψdrt1 + r

√
t22 − t21

√
1− ψ2

d if t1 ≥ −ψdt2
(5.58)

Hence, the following theorem states an important result of a dome test.
Theorem 5.4.2. The dome test DT (q, r;n, c) for the dome D(q, r;n, c)

is TD(q,r;n,c)(ai) =

{
1 if Vℓ(n

Tai, ∥ai∥2) < qTai < Vu(n
Tai, ∥ai∥2)

0 otherwise
,where

Vu(t1, t2) = 1−M1(t1, t2) and for the basis pursuit denoising Vℓ(t1, t2) =
−Vu(−t1, t2) and for the non-negative basis pursuit denoising Vℓ(t1, t2) =
−∞.

In the literature, the SAFE-LASSO test introduced in [15] is a dome
test D(y/λ, ∥θ̂0 − y/λ∥2;n0, c0), where θ̂0 is a dual optimal solution
for a primal problem with λ = λ0, n0 = y/λ0−θ̂0

∥y/λ0−θ̂0∥2
, c0 = nT0 θ̂0

and λ < λ0 ≤ λmax. Due to the optimality characteristic of θ̂,
for any θf ∈ F , ∥θ̂ − y/λ∥2 ≤ ∥θf − y/λ∥2. Specifically, since
θ̂0 ∈ F , sθ̂0 also belongs to F for any −1 ≤ s ≤ 1. As a result,
∥θ̂ − y/λ∥2 ≤ r̂ ≜ min

−1≤s≤1
∥sθ̂0 − y/λ∥2. The author proved that

for λ < λ0, ŝ(λ) ≜ argmin
−1≤s≤1

∥sθ̂0 − y/λ∥2 = 1. Indeed, by simple

calculus, we know that ŝ(λ) = max{−1,min{1, (yT θ̂0)/(λ∥θ̂0∥22)}}.
By the optimality characteristic of θ̂0, ŝ(λ0) = 1. Moreover, since
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∥θ̂0 − y/λ∥22 − ∥ − θ̂0 − y/λ∥22 = −4yT θ̂0/λ, yT θ̂0 ≥ 0 again by the
optimality characteristic of θ̂0. Hence, (yT θ̂0/(λ∥θ̂0∥22)) ≥ 0, which
means ŝ(λ) = min{1, (yT θ̂0)/(λ∥θ̂0∥22)}. Finally, since ŝ(λ0) = 1 and
λ < λ0, ŝ(λ) = 1.

Up to now, we have discussed the m = 0 and m = 1 cases. In
the following, we will discuss the m = 2 case; that is, to incorporate
an additional hyperplane compared with the dome tests. For the first
hyperplane, we can do the same thing as we do to construct dome tests.
We can select

a(1) = argmax
a∈A

aTq − 1

∥a∥2
(5.59)

and form a hyperplane nT1 θ ≤ c1, where

n1 = a(1)/∥a(1)∥2 (5.60)

and
c1 = 1/∥a(1)∥2 (5.61)

If we are given a dual optimal solution θ̂0 for a primal problem with
λ = λ0, then as we have pointed out, we can form a hyperplane nT1 θ ≤
c1, where

n1 =
y/λ0 − θ̂0

∥y/λ0 − θ̂0∥2
(5.62)

and
c1 = nT1 θ̂0 (5.63)

With a sphere S(q, r) and the first hyperplane, we can construct a
dome region D(q, r;n1, c1). Ideally, we assume ψd ≥ 0. In this way, it
is clear that the sphere S(qd, rd) is the circumsphere of the dome region.
To be mathematically rigorous, we need to show that for every point p
on the boundary of D(q, r;n1, c1) is contained within S(qd, rd). p can
be expressed as qd+αv+βn, where v is a unit norm vector orthogonal
to n and α, β are scalars with β ≤ 0. Hence, we have to show that
∥p− qd∥2 = α2+ β2 ≤ r2d. Note that r2 = ∥p− q∥22 = ∥qd− q+αv+

βn∥22 = ∥(−ψdr+β)n+αv∥22 = ψ2
dr

2−2ψdrβ+α
2+β2. Since β ≤ 0
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and ψd ≥ 0, α2+β2 = r2(1−ψ2
d)+ 2ψdrβ ≤ r2(1−ψ2

d) = r2d. Hence,
S(qd, rd) is a tighter bounding region than S(q, r). We can form the
second hyperplane nT2 θ ≤ c2 based on S(qd, rd) by selecting

a(2) = argmax
a∈A\a(1)

aTqd − 1

∥a∥2
(5.64)

thus
n2 = a(2)/∥a(2)∥2 (5.65)

and
c2 = 1/∥a(2)∥2 (5.66)

Combining the spherical region and the two hyperplanes, we can come
up with a bounding region R(q, r;n1, c1;n2, c2). Note that if the first
hyperplane is formed by maximizing aT q−1

∥a∥2
, the corresponding two hy-

perplanes test (THT) is called dictionary-based THT (D-THT). Also
note that generally, to ensure the two half spaces intersect within the
sphere so that the bounding region is effectively confined,

−1 ≤ ψi = (nTi q − ci)/r ≤ 1, i = 1, 2 (5.67)

and
cos−1(ψ1) + cos−1(ψ2) ≥ cos−1(nT1 n2) (5.68)

In general, for R(q, r;n1, c1;n2, c2) = {θ |∥θ − q∥2 ≤ r, nT1 θ ≤
c1, n

T
2 θ ≤ c2} and a ∈ Rm, µR(q,r;n1,c1;n2,c2)(a) can be calculated as

µR(q,r;n1,c1;n2,c2)(a) = qTa +M2(n
T
1 a, n

T
2 a, ∥a∥2) (5.69)

where

M2(t1, t2, t3) =



rt3 if (a)

−rt2ψ2 + r
√
t23 − t22

√
1− ψ2

2 if (b)

−rt1ψ1 + r
√
t23 − t21

√
1− ψ2

1 if (c)

− r
1−τ2 [(ψ1 − τψ2)t1 + (ψ2 − τψ1)t2]+
r

1−τ2h(ψ1, ψ2, 1)h(t1, t2, t3) otherwise

(5.70)
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τ = nT1 n2, h(x, y, z) =
√

(1− τ 2)z2 + 2τxy − x2 − y2 and conditions
(a), (b) and (c) are given by
(a) t1 < −ψ1t3 & t2 < −ψ2t3

(b) t2 ≥ −ψ2t3 & (t1 − τt2)/
√
t23 − t22 < (−ψ1 + τψ2)/

√
1− ψ2

2

(c) t1 ≥ −ψ1t3 & (t2 − τt1)/
√
t23 − t21 < (−ψ2 + τψ1)/

√
1− ψ2

1

Hence, the following theorem states the important result of a two hy-
perplanes test.
Theorem 5.4.3. The two hyperplanes test THT (q, r;n1, c1;n2, c2)
for the region R(q, r;n1, c1;n2, c2) (abbreviated as R) is

TR(ai) =

{
1 if Vℓ(n

T
1 ai, n

T
2 ai, ∥ai∥2) < qTai < Vu(n

T
1 ai, n

T
2 ai, ∥ai∥2)

0 otherwise

where Vu(t1, t2, t3) = 1−M2(t1, t2, t3) and for the basis pursuit de-
noising Vℓ(t1, t2, t3) = −Vu(−t1,−t2, t3) and for the non-negative
basis pursuit denoising Vℓ(t1, t2, t3) = −∞.

When deriving the two hyperplanes tests, we introduced the con-
cept of finding the circumsphere of a dome region. We can expand
this idea more generally. Assume at step k, we have a bounding
sphere Sk = S(qk, rk). Then we want to find an effective hyper-
plane nTk θ ≤ ck so that we can confine the region to the dome Dk =

D(qk, rk;nk, ck). Lastly, if ideally ψk ≥ 0, we can get the circumsphere
Sk+1 = S(qk+1, rk+1) of Dk. The way we find an effective hyperplane
is by maximizing ψk; that is,

a(k) = argmax
a∈A\{a(1),··· ,a(k−1)}

aTqk − 1

∥a∥2
(5.71)

nk = a(k)/∥a(k)∥2 (5.72)
ck = 1/∥a(k)∥2 (5.73)
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The new center
qk+1 = qk − ψkrknk (5.74)

and the new radius
rk+1 = rk

√
1− ψ2

k (5.75)
During the process of successive construction, we can get a sequence
of spheres and domes : S1 ⊃ D1 ⊂ S2 ⊃ · · · ⊃ Sk−1 ⊃ Dk−1 ⊂
Sk. Since dome Dj is contained in Sj and Sj+1, each dome test is
stronger than the sphere tests for the spheres that precede and succeed
it. However, since Sj+1 is not contained in Sj, Dj+1 is not contained in
Dj. Thus, we cannot deduce that the last dome test is the strongest. A
test based on the region ∩k−1

j=1Dj is certainly the strongest. Nonetheless,
such test would be too complex to compute. Alternatively, we can form
a composite test

Tc ≜ TD1 ∨ TD2 ∨ · · · ∨ TDk−1
(5.76)

Equivalently, an atom ai is rejected by any of the tests {TDj | j ∈
[k− 1]}. Such composite test is called the iteratively refined dome test
(IRDT). IRDT is practically easy to implement. First, we apply TD1

on all atoms. Next, we apply TD2 on the remaining atoms. Then we
apply TD3, TD4, · · · . That is to say, we can sequentially apply the dome
tests on gradually shrinking atom pools. However, we have to point out
that Tc is weaker than T∩k−1

j=1Dj
. Indeed, if an atom ai is rejected by Tc

(assume it is rejected by TDs for some s), then max
θ∈Ds

|θTai| < 1 for the
basis pursuit denoising problem or max

θ∈Ds
θTai < 1 for the non-negative

basis pursuit denoising problem. Since ∩k−1
j=1 ⊆ Ds, max

θ∈∩k−1
j=1

|θTai| ≤

max
θ∈Ds

|θTai| < 1 (or max
θ∈∩k−1

j=1

θTai ≤ max
θ∈Ds

θTai < 1). Hence, ai is also re-

jected by T∩k−1
j=1Dj

. In particular, the IRDT test using only two domes
D1 andD2 is weaker than the D-THT test. In the literature, the sphere
test ST3 introduced in [40] utilizes the concept of finding the circum-
sphere of a dome region and is based on a refined spherical bound,
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which is S(q, r) = S2.
So far, our introduced tests all fall in the category of ”one-shot”

screening tests, which means we screen the dictionary, then solve the
reduced primal problem with parameter λt once and finish. Such
paradigm is claimed to perform well for moderate to large values of
λ/λmax but often fail to support smaller values of λ/λmax (empiri-
cally, for λ/λmax < 0.2). A concept called sequential screening is
proposed to deal with such issue. Choose a parameter λ1 < λmax, say
0.95λmax, and then select N points along the dual regularization path
from λ1 to λN = λt. To solve the primal problem with parameter λt,
we first screen and solve the primal problem with parameter λ1 and
get a primal-dual optimal solution pair (x̂1, θ̂1). Then sequentially for
k = 2, · · · , N , we screen the dictionary with the help of previously
obtained solution (λk−1, x̂k−1, θ̂k−1) and solve the primal problem with
parameter λk. Finally, when k = N , we can get the desired primal-
dual optimal solution pair (x̂N , θ̂N). Sometimes, all solutions along
the dual regularization path are of interest; for instance, for parameter
selection. Note that at each step, we can use all the tests we have
introduced, e.g. the sphere tests, the dome tests, the IRDT tests and
the D-THT test, to screen the dictionary and use any possible con-
vex optimization solvers to solve the primal problem. As for N and
{λk | k = 2, · · · , N − 1}, we introduce two ways to determine them.
One is to directly assign a value for N and select λk via geometric
spacing :

λk = αλk−1 where α = (λt/λ1)
1/(N−1) (5.77)

The other one determine them in an adaptive way with the following
proposition from [39].
Proposition 5.4.4. Let Dk(qk, rk;nk, ck) be a dome bounded by
the sphere S(qk, rk) with qk = y/λk and rk = ∥θ̂k−1 − y/λk∥2 and
the hyperplane nTk θ ≤ ck with nk = y/λk−1−θ̂k−1

∥y/λk−1−θ̂k−1∥2
and ck = nTk θ̂k−1.
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Also let δk denote the diameter of Dk. Then

δk = 2(
1

λk
− 1

λk−1
)
√
yT (I − nknTk )y (5.78)

Hence,
1

λk
=

1

λk−1
+

1/2δk√
yT (I − nknTk )y

(5.79)

Let δk = R > 0 be a selectable parameter. In this way, we can
adaptively determine λk and also directly control how tightly the dome
boundDk bounds θ̂k based on the choice ofR. We continue this process
until at step N , λN ≤ λt (if λN < λt, let λN = λt). Such screening
method is called the data-adaptive sequential screening (DASS).

To evaluate the performance of each test, we adopt two metrics,
which are the rejection fraction

|S|
n

(5.80)

and the speedup factor
tsolve

tscreen + trsolve
(5.81)

respectively. Here tsolve is the time to solve the primal problem with
non-screened dictionary, tscreen is the time to screen the dictionary,
and trsolve is the time to solve the primal problem with screened dictio-
nary. For one-shot screening tests, the THT tests perform significantly
well beyond simpler tests in both rejection fraction and speedup fac-
tor, which means it is indeed worthwhile to seek more complex region
tests. However, as we have pointed out, one-shot screening falls short
of desirable performance when λ/λmax is small. Sequential screening
can effectively remedy such problem and operates successfully in a wide
range of λ/λmax. Specifically, DASS boasts adaptive and automatic se-
lection of both the N and {λk | k = 1, 2, · · · , N}. In brief, dictionary
screening can effectively identify a subset of dictionary atoms which
will not appear in a solution of the primal problem and thus can be
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removed before we start to solve the primal problem. In this way, not
only can the size of dictionary be reduced in order to save storage space
but also can the primal problem be solved faster.
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