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The Fourier Transform

" Fourier Transform
e

F(w)= (i f e’ f(t)dt
' Inverses Fourier Transform
1

f(t)=\/%

}'ej‘”tF(m)d(D
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The Example of FT
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The Fractional Fourier Transform

' The definition of the fractional Fourier transform is:
O; (f(1) = X, (u) = f K (a.,t,u)x(t)dt

- where the kernel s glven by

J

X, (u)=x(u) where o=2N7 N 1s an integer

X, ,(u)=x(-u) where oo = (2N + 1)m N 1s an integer




The Fractional Fourier domain

' In order to represent o
signal in a new coordinate
system, we use the rotation
in the time-frequency plane
by performing the
fractional FT of the signal.




The Linear Canonical Transform

'~ The definition of the linear canonical transform is:

when b #0

1 ﬂ 2 [

Lyt t2

AN =R ) = jme% J e e f(t)dt

when b=0
lcduz
WRIUIC)E R, 0 () = Vde? T f(du)

ad — bc =1




The Freedom of The LCT with The FRFT

- The FRFT:

Op (f(0) = X, () = [ K(o,t,u)x(t)dr

' The LCT:

when b #0

1 140 S L VA
0D (f(t)=F u)= et et e?* f(t)dt
F SO = B @)= j ()

FRFT LCT

number of the variant |

freedom of transform | 3




The additivity property of the LT

' The additivity property of the LCT

01(;12 by ¢y ,dy) (01(;11 by ,¢p,dy) (f(t))) i Oée’f’g’h) (f(t))

wherethe (e £ g h)is

a, b,

1 LG d%__ 1 il




The Inverse LT

' According fo the additivity property, the inverse LCT is
defined as:

OI(:d,—b,—c,a)(Ol(:a,b,c,d) (f(f))) 1l f(t)

11 A P




The Special Case of LCT (|

Case 1the(a, b, ¢, d)=(0,1,-1,0)

when b #0

1Lt J
—eZb je b eZb f(l-)dt-

(a,b,c,d) 1| 1l
O 7 (fUN=Fp o) () = b

THh
—> F(o)= i [ f(@0)at

OO (F (1) = - JFT(f(1))




The Special Case of LCT (Il

(ase2the(a B, ¢, d)=(0,-1,1,0)

OL O (F(w)) = | JIFT (F(w))




The Special Case of LCT (Il

{ Cuse3’rhe(a, b, c, d)=
( cosa, sina, -sino, Cosa. )

01(:cosa,sinoc,—sin0c,cosoc)(f(t)) 11 (e—joc )1/20;); (f(t))




The Special Case of LCT (IV

{ Cuse4’rhe(a, b, c, d)=(1,0,r, 1f);
0E <D (f(r) =™ f(r)




The Special Case of LCT (V

Case5the(a b, ¢, d)=(0,0,0,1/c)
00 () = o e fon
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® Why we need to discuss the fractional FT
moment !?
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Ambiguity Function

' The definition of the ambiguity function is:

A (t,w) = j xX(T+1/12)x (T—1/2)exp(—j2mwt)dt




Fractional Fourier Transform Moments

' The fractional FT corresponds to a rofation of the AF

t = Rcoso w= Rsino R €[—o00,00] o e[0,7)

' The relationship between the AF in this coordinate
system

A, (R0~ /2) = [|X, @) exp(j2nRr)dr




Fractional Fourier Transform Moments

'~ The zero order moment

E= [|X,@)f dt=Ar(Ro-m1/2),_, =A,(0,0)




Fractional Fourier Transform Moments

 The first order moments
T ) 1 1 9A.(R,o—m/2)
m, = [ |X,() tdt:EZch : i

—00

R=0

JA,(R,0.—T/2) A, (1,w)
OR THIH G

R=0,0=m/2 t=0,w=0

=21 J |Xn,2 (w)|2 wdw

0A (R, 00— /2) A, (1,w)
OR  ow

R=0,0=T 1=0,w=0

' rewrite it in a generalization of two special case

m, = m, coso.+ m_,, Sino.

=21 [ |x(-1)| tat




Fractional Fourier Transform Moments

' The second order moments is defined as:
1 )2 O*A,(R,0.—T/2)

1 HII
__ (Ix 1
o, E_:[,| a(t)| t2dt (

E\ j2r oR’

' The second order central moments is defined as:

1 7 2
i { X, ()| (¢ —m,)*dt =(o, — m,?)




Fractional Fourier Transform Moments

 The second order moments can be rewritten as:

®, = 0,08’ 0+, ,sin*a+|w,, —(©, +0,,)/2]sin2o

' The second order central moments can be rewritten as:

pll|p) cos” oL+ s sin” oL + [(aon/4 - mym_,, — (0, +(Dn/2)/2]sin20(




Fractional Fourier Transform Moments

' first derivative of the second-order central FRFT

%:(

Iy Prip — PO)Sin2oc I [2(0),“4 T momm)— ((DO + (Dn/z):ICOSZOC =0

'~ Opfimal rotation angle

2(“%/4 — Mmymg , ) I ((DO I (Dn/Z)
(po I pn/Z)

tan20l, =




Time-Frequency Analysis

Short Time Fourier Transform

Garbor Transform
Wigner distribution function
P

seudo Wigner distribution function

[
L
[
L
[
L
[
L
(
L

S-method Transfomr
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® another drawback of the
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WHAT ! WHAT!!

® |s there any relationship between the FRFT and
LCT with time-frequency analysis!?
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Short Time Fourier Transform

' Fourier transform

1 |
F(w) = I f e’ f(t)dt

'~ Short fime fourier transform
ST,(t.f)= [ x(t +1,)g" (t,) exp(—j2mt, f)dt,
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Short Time Fourier Transform

' Fourier transform

1 |
F(w) = I f e’ f(t)dt

'~ Short fime fourier transform
ST,(t.f)= [ x(t +1,)g" (t,) exp(—j2mt, f)dt,

o Vel




Short Time Fourier Transform

' The STFT of the signal in the fractional FT domain is
defined as:

ST (u,v) = J X (u+uy)g (u,)exp(—j2mu,v)du,

 The rotation relationship is

t cosOot —sino \( u
f ~\sinot  coso )\ v




Wianer Distribution Function

" The WDF of a signal x( is defined as

W, (, w)-—jx(t+’t/2)x (t—1/2)e " dr

_%jX(wm/z)X (w—n/2)e"dn

' There is a big problem of the WDF — cross-ferm
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Wianer Distribution Function

" The WDF of a signal x( is defined as

W(tw)_—jx(tm/z)x(t T/ 2)e "dr

_%jX(wm/z)X (w—n/2)e"dn
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Wianer Distribution Function

' The relations between WDF and FRFT

W (u,v) =W, (ucoso — VSN oL, u SINOL + vCos L)

' The relations between WDF and L(T

WFabcd> (u,v) =W (du—bv,—cu+av)

(

WF(abcd) (au+bv,cu+dv)=W,(u,v)




Time-Frequency Analysis




Time-Frequency Analysis

 The advantage of the STFT
no cross-term problem




Time-Frequency Analysis

' The advantage of the STFT
no cross-term problem

' the disadvantage of the STFT
the resolution is low
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Time-Frequency Analysis

' The advantage of the WDF
the resolution is high

" The disadvantage of the WDF
cross-ferm problem




Pseudo WDF

~ Pseudo Wigner Distribution Function

PWD (t,f) = J x(t+7T/2)x (t—71/2)g (T1/2)g(—7/2)exp(—j2ntf)dT

~ Short Time Fourier Transform

ST,(t.f)= [ x(t +1,)g" (t,) exp(—j2mt, f)dt,

- Wigner Distribution Function

iy * |
W,t.w)=— [ x(t+1/2)x"(t =1/ 2)e ™dt
)|




Pseudo WDF

' The pseudo WDF can also be expressed in terms of the
STFT as:

PWD (¢, f) = T ST .(t,f+0/2)ST,(t,f —0/2)dO




Pseudo WDF

'~ Expand the pseudo WDF

x()= 2 x%,(®)

PWD (¢, f) = T ST .(t,f+0/2)ST,(t,f —0/2)dO

PWD (t,f)= iPWDxi (t,f) (auto — terms)

(cross — terms)




S-method

Based on the definition of the pseudo WDF the S-
method for time frequency analysis can be written as:

on frequency-direction combined STFT

Pt f)= T ST.(1,f +0/2)2(0)ST (1, f —6/2)d®

on time-direction combined STFT

Pt f)= ]o ST.(t+0/2, )z(O)ST (t—0/2, f)exp(—j21f0)dO




S-method

'~ The S-method in this fractional domain is
P(t.f)= | ST*(u.v+0/2)z(®)ST, (u,v—6/2)d®
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'~ The S-method in this fractional domain is
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S-method

'~ The S-method in this fractional domain is
P(t.f)= | ST*(u.v+0/2)z(®)ST, (u,v—6/2)d®
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S-method

'~ The S-method in this fractional domain is
P(t.f)= | ST*(u.v+0/2)z(®)ST, (u,v—6/2)d®

i
£
i
i
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Comparison

~ comparison with the performance of STFT, WDF, §-
method
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Filter Design part |

'~ Optimal canonical filter:

R . (t,0) 1s the cross-correlation between the original signal s(t) and the received signal x.(t).
R. (t,0) 1s the auto-correlation of the received signal.

R . (t,0) 1s the auto-correlation of the signal.

Hopt (u)=Rg ,(u,u)/ R, ,(u,u)

R, wuw)= [ [ K, ,..@DK,,,, . @.0)R,(.0)dtdo

—00 —OO
oo oo

Rg (w,u)= | K(a”b,c,d)(u,t)K(Z,b’C,d)(u,G)Rsi(t,G)dth

—00 —OO




Filter Design part |
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MSE = T [RS’S(u,u) —2Re(H, Ry, () +|H,, )| R,,,(u,u)}du




Filter Design part |

'~ mean square error (MSE)

MSE = T[R (u,u)—ZRe(H& (u)R, (u,u))+‘H (u)‘zR (u,u)}du

) = j j pea DK, (u,0)R, (t,0)dtdo
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Filter Design part 2

' the two important issues to design a pass-stop band
fractional filter in the FRFT domain is

1. how to choose the parameter o properly.

2. how to determine the cutoff criteria.
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- STEP1 : Performing the S-method for the received signal.
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STEP2 : Separating the signal and noise component by
determining the cutoff lines on the t-w plane of the S-
method.
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Filter Design part 2
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STEP1 : Performing the S-method for the received signal.

STEP2 : Separating the signal and noise component by
determining the cutoff lines on the t-w plane of the S-
method.

STEP3 : Determining the order of the FRFT.

STEP4 : Filtering the noises by passing it through the filter
with the parameter in step3.
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£ =0 {0 [ f(O]H, ()},
f,()=0;" {02 [ f,(O]H,(w)}.

YOm0 | £, ) 5, (2)
r(t)= 0" {05 [ f,.,()|H,w)]




Filter Design part 2
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Filter Design part 2

SIGNAL: the output of filter compare the output of the

ANALYSIS: w domain filter with the signal
ANALYSIS: t-w domain




Conclusion

'~ We have illustrated the effects of the FRFT / LCT and
the effects of the FRFT / LCT operations.
" One of the application is S-method, finding the

optimal angle and in this particular domain is the
most particular one.

' Using the STFT and LCT to design a filter, the
performance is better than FT one.




Future Work

. Improve the design filter in more efficiency way.

[
L
[
L

2. Find out more powerful tool without the cross-term
problem to do the fime-frequency analysis.

3. Look for more application of FRFT and L(T.
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