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ICME is a high-class conference on Multimedia. 
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Multimedia ? 
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Top conference on multimedia and related  
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CVPR / ICCV, ECCV, ACM MM 

Generally, ICME is suitable for MS(30%), PhD(65%) students to 

challenge. Recruitments from industrial are also a lot. 



Topics this year : ( Video and Vision are the most popular in the trend) 
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Roadmap 

1             Impressive Talks 
 
(1) Fei-Fei Li, Associate Professor, “A Quest for Visual Intelligence.”Computer 

Science Dept. Director, Stanford Artificial Intelligence Lab. 

 

(2) Mathias Wien, “High Efficiency Video Coding – Coding Tools and 
Specification: HEVC V3 and Coming Developments” 

 

Interesting Works 

 
(1) Gene Cheung, Xian Ming Liu “Graph Signal Processing for Image Compression 

and Restoration,” Nii. 

(2) Xian Ming Liu, “Random Walk Graph Laplacian based Smoothness Prior for 

Soft Decoding of JPEG Images,” HIT. 
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Fei-Fei Li  
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Semantic Segmentation 
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Gene Cheung 
 
(1) Gene Cheung, Xian Ming Liu “Graph Signal Processing for Image Compression 

and Restoration,” Nii. 

 

 

1 

Cho-Ying Wu Disp Lab 51 / 70 Cho-Ying Wu Disp Lab 

Traditional signal property: 

1. Discrete 

2. Smooth 

3. Band-limited frequency 

 Ex. DCT ( Approx. of KLT ) 
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Gene Cheung 
 

 

Graph Signal : Signal live on graph 

 

Ex. Images: 2D – grid 

 

 

 

 

 

 

Research interest: 

1. Sampling : how to efficiently acquire signal from graph 

2. Representation : Given the graph signal, how to compactly 

represent it. 

3. Signal Restoration : given the partial or noisy signal, how to 

recover the structure.  
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Graph Laplacian :  

 

1. Adjancency Matrix 
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Remark: Sometimes the original problem is hard to solve, we can 

change the original problem (primal problem) into dual problem 
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Remark: Sometimes the original problem is hard to solve, we can 

change the original problem (primal problem) into dual problem 
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Remark: Sometimes the original problem is hard to solve, we can 
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Remark: Sometimes the original problem is hard to solve, we can 

change the original problem (primal problem) into dual problem 

  

 

D: distortion         R: bit-rate 



Gene Cheung 
 

Graph Laplacian :  

 

1. Adjancency Matrix 

 

1 

Cho-Ying Wu Disp Lab 63 / 70 Cho-Ying Wu Disp Lab 

Remark: Sometimes the original problem is hard to solve, we can 

change the original problem (primal problem) into dual problem 
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Remark: Sometimes the original problem is hard to solve, we can 

change the original problem (primal problem) into dual problem 
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Remark: Sometimes the original problem is hard to solve, we can 

change the original problem (primal problem) into dual problem 
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Wei Hu, Gene Cheung, Antonio Ortega, Oscar Au, "Multiresolution Graph Fourier 
Transform for Compression of Piecewise Smooth Images," IEEE Transactions on 
Image Processing, vol.24, no.1, pp.419-433, January 2015. 



Gene Cheung 
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Skipped part 
 
1.  PWS image coding : Generalized GFT with intra-coding of 
H.264 
2.  Lifting implementation : lowering complexity from O(N2) to 
O(Nlog(N)) 
3.  Image denoising with sparsity and smoothness prior 
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Ln:Normalized Laplacian See p.56 
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