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Chapter 1  Introduction 

 

The integer transform (such as the Walsh transform, the Haar transform) is a discrete trans-

form that all the entries in the transform matrix are integers. For software and hardware, the 

integer transform is much easier to be implemented because there is no real number multipli-

cation, but performance is not guaranteed. By contrast, the non-integer transform (such as the 

DCT, the DFT) has higher performance, but the real number multiplication is needed. As we 

know, more computation time and implementing cost are required when there are more real 

number multiplications, and, therefore, this is the purpose why the integer transform has been 

researched. In this tutorial, I survey the development of integer transform since old days. The 

first time integer transform was mentioned is about the color space transform, and then the 

DCT approximation by prototype matrices was proposed. For example, (1.1) is the SIM 

transform whose entries are summation of 2
k
, and so is its inverse transform shown in (1.2). 

 

S   0.25 0.50   0.25 R

I 0.50 0.00   0.50 G .

M 0.25 0.50 0.25 B

     
      
     

           

 (1.1) 

 

R 1 1 1 S

G 1   0   1 I .

B 1   1 1 M

      
     
     

          

 (1.2) 



 2 

The SIM transform convert RGB color space into the SIM color space. Although the perfor-

mance of the SIM color space is worse than RGB space, no floating-point processor is needed 

in the transform. Then the perfect reconstruction is reachable, and the cost and time spending 

is much less in operation. Moreover, in the end of Chapter 4, we propose a method generating 

a proximate integer transform whose NRMSE is smaller than 0.3% even better than the orig-

inal one. Nowadays, many lifting-schemes based integer transforms have been researched 

rapidly. The Jacket transform, which is one of the most powerful integer transform, is a ge-

neralization of the Hadamard (Walsh) transform and useful in signal and image processing. 

All these integer transforms will be discussed in the following chapters. 

 

Chapter 2  Integer Cosine and Sinusoidal 

Transform by Prototype Matrices 

 

An integer cosine/sinusoidal transform (ICT/IST) can be implemented by using simple integ-

er arithmetic with performance close to that of the discrete cosine transform (DCT). A simple 

method to eliminate floating point arithmetic is to approximate the real magnitudes of the 

DCT components by M-bit integers, so that the DCT can be computed by using integer addi-

tions and multiplications. In this section, we review how to convert the order-8 cosine trans-

forms into a family of ICT by using the theory of dyadic symmetric [1]. This technique can 

be applied to any transform, but solutions are not guaranteed.  

 

2.1 Dyadic Symmetry 

Definition of dyadic symmetry [13]： 
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A vector of 2
m
 elements 0 1 2 1

[ , , , ]ma a a


 is said to have the ith dyadic symmetry if and only 

if j j ia s a  , where   is the „exclusive‟ operation, j lies in the range [0, 2
m
-1] and I in the 

range [1, 2
m
-1], s = 1 when the symmetry is even, s = -1 when the symmetry is odd.  

 

Table 2.1：The seven vectors sH  
having S

th
 even dyadic symmetry. 

 1 2 3 4 5 6 7 8   a a a a a a a a

 

 

 

 

 

 

 

1 1 2 2 3 3 4 4

1 2 1 2 3 4 3 4

1 2 2 1 3 4 4 3

1 2 3 4 1 2 4 3

1 2 3 4 2 1 4 3

1 2 3 4 3 4 1 2

1 2 3 4 4 3 2 1

   

   

   

   

   

   

   

h h h h h h h h

h h h h h h h h

h h h h h h h h

h h h h h h h h

h h h h h h h h

h h h h h h h h

h h h h h h h h

1

2

3

4

5

6

7

S

Vector sH

 

For a vector of eight elements, there are seven possible dyadic symmetries. As an example, 

Table 2.1 shows vectors 0 1 2 3 4 5 6 7[ ]sH a a a a a a a a  which have the seven 

dyadic symmetries.  

Theorem of orthogonality：Two vectors U and V are orthogonal if U and V have the same type 

of dyadic symmetry and one is even and another is odd. 

 

2.2 Generation of the Integer Cosine Transforms 

2.2.1 Generation of the Order-8 ICTs 

Let [T] be the kernel of order-n DCT and  ,n i jT  is the j
th

 component of the i
th

 DCT basis 

vector as below. 
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  
 

1
,  for 0

, ,  0 1
0.52

cos ,  for 1 1

n

i
n

i j j nT
i j

i n
n n







   

       

  (2.1) 

There are three steps to convert the order-8 DCT kernel into ICT kernels. 

Step 1：Express the order-8 DCT kernel [T] in the form of a matrix of variable. Then we have 

   0 0 1 1 2 2 3 3 4 4 5 6 6 7 75, , , , , , ,,  
t

T kk J k J k J k J k J J k J k J     (2.2) 

where Ji means i
th

 basis vector and ki denotes a scaling constant then makes 1ii
k J  . Let 

 ,J i j  be the j
th

 element of Ji. From (1), we find that 8 8 8(1,0) (1,7) (3,2)T T T    

8 8 8 8 8(3,5) (5,1) (5,6) (7,3) (7,4)T T T T T      , and then represent the magnitudes of 

(1,0), (1,7), (3,2), (3,5), (5,1), (5,6), (7,3),  and (7,4)J J J J J J J J  by a single variable „a‟. As 

shown in Table 2.2, all eight vectors can be expressed similarly as variables „a‟, „b‟, „c‟, „d‟, 

„e‟, and „f‟. 

 

Table 2.2：The 8 scaled basis vectors in J . 

0 1 1 1 1 1 1 1 1

1

2

3

4 1 1 1 1 1 1 1 1

5

6

7

a b c d d c b a

e f f e e f f e

b d a c c a d b

c a d b b d a c

f e e f f e e f

d c b a a b c d

   

   

   

   

   

   

   

i iJ

 

 

Step 2：Find the conditions which Ji and Jj are orthogonal. From Table 2.3, we can know that 

J0 has even 7
th

 dyadic symmetry and J1 has odd 7
th

 dyadic symmetry. According to the theo-
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rem of orthogonality, J0 and J1 are always orthogonal. For another example, J0 and J2 are al-

ways orthogonal because J0 has even 3rd dyadic symmetry and J2 has odd 3rd dyadic sym-

metry. Table 2.4 reveals that the only condition that the variables a, b, c, and d must satisfy to 

ensure that the transform [T] be orthogonal is  

 .a b a c b d c d        (2.3) 

 

Table 2.3：S
th

 dyadic symmetry type in each basis vector Ji. 

0

1

2

3

4

5

6

7

E E E E E E E

O

O E

O

O O E E O O E

O

O E

O

     

    

     

     

    

     

i Dyadic symmetry S in iJ

 

Table 2.4：Conditions under which the i
th

 basis vector and the j
th

 basis vector are orthogonal. 

*3 *2 *3 *2 *3 *2 *3 0

*3 *1 *3 *1 *3 *4 1

*3 *2 *3 *4 *3 2

*3 *4 *3 *1 3

*3 *2 *3 4

*3 *1 5

*3 6

1 2 3 4 5 6 7 j
i

*1: if .a b a c b d c d      
*2: must the orthogonal due to 3rd dyadic symmetry

*3: must the orthogonal due to 7th dyadic symmetry
*4: must the orthogonal due to dot product equals zero

 

From (3), we know that the equation with four variables has infinite number of solutions. 

This implies that an infinite number of new orthogonal transforms are generated from the 
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DCT. 

Step 3：Set up boundary conditions and generate new transforms. (1) implies the following 

condition for the DCT. 

  and .a b c d e f     (2.4) 

To make the new orthogonal transforms resemble the DCT, (4) must be satisfied. For elimi-

nating truncation error due to floating point, (1.6) must be satisfied. 

 a, b, c, d, e, and f must be integers. (2.5) 

When the kernel of order-8 DCT [T] is satisfied (1.4), (1.5), and (1.6), it can convert into the 

order-8 ICT. For example, ICT(5, 3, 2, 1, 3, 1) represents the order-8 ICT with a=5, b=3, c=2, 

d=1, e=3, and f=1. 

 

2.2.2 Generation of the order-2n ICTs by Iteration 

Any order-2n orthogonal transform  2 ,n i jT  can be generated form an order-n orthogonal 

transform  ,n i jT  as follows: 

1. The first n basis vectors of  2 ,n i jT ： 

    2 ,2 ,n ni j i jT T  and    2 ,2 1 , ,  for 0 1.n ni j i j j nT T      (2.6)

 

 

2. The last n basis vectors of  2 ,n i jT  

i：          2 2,2 ,   ,2 1 , ,  for 0,2,4, , 2 .n n n ni n j i j and i n j i j j nT T T T        (2.7) 

ii：          2 2,2 ,   ,2 1 , ,  for 1,3,5, , 1 .n n n ni n j i j and i n j i j j nT T T T        (2.8) 

Any order-2
m
 ICT for m>3 can be generated from the order-8 ICT. 
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2.2.3 Generation of the order-16 ICTs by Dyadic Symmetry 

In Section 2.2.2, we introduce that any order-2
m
 ICT for m>3 can be generated from the or-

der-8 ICT. However, the performance of order-16 ICT generated by iteration is inferior to by 

dyadic symmetry due to the number of variable used in deriving. In iteration, there are only 

six variables as in the order-8 ICT, but there are more variables used in dyadic symmetry. 

Therefore, we briefly introduce how to generate an order-16 ICT by dyadic symmetry [2] in 

this section.  

Similarly, as shown in Section 2.1, the definition of dyadic symmetry is used to generate the 

order-16 even dyadic symmetry matrix shown in Table 2.5. 

 

Table2.1 The fifteen vectors Hs 
having S

th
 even dyadic symmetry. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15a a a a a a a a a a a a a a a a  

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 5 6 7 8 1 2 3 4

1 2 3 4 5 6 7 8 6 5 8 7 2 1 4 3

1 2 3 4 5 6 7 8 7 8 5 6 3 4 1 2

1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1

h h h h h h h h h h h h h h h h

h h h h h h h h h h h h h h h h

h h h h h h h h h h h h h h h h

h h h h h h h h h h h h h h h h

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

1 2 1 2 3 4 3 4 5 6 5 6 7 8 7 8

1 2 2 1 3 4 4 3 5 6 6 5 7 8 8 7

1 2 3 4 1 2 3 4 5 6 7 8 5 6 7 8

1 2 3 4 2 1 4 3 5 6 7 8 6 5 8 7

1 2 3 4 3 4 1 2 5 6 7 8 7 8 5 6

1 2 3 4

h h h h h h h h h h h h h h h h

h h h h h h h h h h h h h h h h

h h h h h h h h h h h h h h h h

h h h h h h h h h h h h h h h h

h h h h h h h h h h h h h h h h

h h h h h h h h h h h h h h h h

h h h h 4 3 2 1 5 6 7 8 8 7 6 5h h h h h h h h h h h h

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 2 1 4 3 6 5 8 7

1 2 3 4 5 6 7 8 3 4 1 2 7 8 5 6

1 2 3 4 5 6 7 8 4 3 2 1 8 7 6 5

h h h h h h h h h h h h h h h h

h h h h h h h h h h h h h h h h

h h h h h h h h h h h h h h h h

h h h h h h h h h h h h h h h h

8

9

10

11

12

13

14

15

Vector sHS

 

 

To obtain the order-16 odd dyadic symmetry matrix, one only needs to change the signs of 
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appropriate elements of Hs according to the definition of dyadic symmetry given in section 

2.1. In the same way, two vectors U and V are orthogonal if U and V have the same type of 

dyadic symmetry and one is even and the other is odd.  

Let [T] be the kernel of order-16 DCT and T16(i, j) is the jth component of the ith DCT ba-

sis vector as below： 

  
 16

1
,  for 0

16
, ,  0 15.

0.52
cos ,  for 1 15

16 16

i

i j jT
i j

i






  

      

 (2.9) 

 

The steps are described in the following that transforms the order-16 DCT kernels into ICT 

kernels. 

Step 1：Express the order-16 DCT kernel  T  in the form of a matrix of variable. Then we 

have 

  0 0 1 1 2 2 3 3 4 4 5 6 6 7 75[ ,  ,  , ,  ,  ,  ,,  T kk J k J k J k J k J J k J k J  

     8 8 9 9 1 0 1 0 1 1 1 1 1 2 1 2 1 3 1 4 1 4 1 5 1 513,  ,  , ,  ,  ,  ,],  
t

kk J k J k J k J k J J k J k J  (2.10) 

where Ji means ith basis vector and ki denotes a scaling constant then makes 1ii
k J  . Let 

J(i, j) be the jth element of Ji. In Table 2.2, all sixteen vectors can be expressed as variables 

„a‟, „b‟, „c‟, …, „m‟ and „n‟ in the same manner. 

Table 2.2 The 16 scaled basis vectors in |J|. 
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l l l l l l l l l l l l l l l l

a b c d e f g h h g f e d c b a

i j k l l k j i i j k l l k j i

b e h f c a d g g d a c f h e b

m n n m m n n m m n n m m n n m

c h d b g e a f f a e g b d h c

j l i k k i l j j l i k k i l j

d f b h a g c e e c g a h b f d

l l l l l l l l l l

       

       

       

       

       

       

       

     l l l l l l

e c g a h b f d d f b h a g c e

k i l j j l i k k i l j j l i k

f a e g b d h c c h d b g e a f

n m m n n m m n n m m n n m m n

g d a c f h e b b e h f c a d g

l k j i i j k l l k j i i j k l

h g f e d c b a a b c d e f g h

 

       

       

       

       

       

       

       

iJi

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
 

 

Step 2：Find the conditions which Ji and Jj are orthogonal. 

Table 2.3 Dyadic symmetry types in each basis vector Ji. 
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,

,

E E E E E E E E E E E E E E E

O

O O E O

O

O O E E O O E

O

O O E

O

O O E E O O E E O O E E O O E

O

O O E O

O

O O E E O O E

O

O O E

O

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

i
Dyadic Symmetry S in

iJ

 

 

To make the ith basis vector Ji and the jth basis vector Jj are orthogonal for all i, j, 

(2.11)-(2.14) must be satisfied. 

     ,a b b e c h d f c e d g g h a f       (2.11) 

     ,a c b h e f a g f h c d b d e g        (2.12) 

     ,a d d h a e f g b f b c c g e h       (2.13) 

     ,i j j l k l i k    (2.14) 

Step 3：Set up boundary conditions and generate new transforms. From (2.9) and Table 2.2, 

the relationship of the magnitude of the variables a, b, c, d, e, and f is in the following： 

     ,a i b m c j d e k f n g l h             (2.15) 

To relax the condition in (2.14), we can get 
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     ,a b c d e f g h       (2.16) 

     ,i j h k l     (2.17) 

     .m n  (2.18) 

For eliminating truncation error, the (2.19) also must be satisfied.  

     ,  ,  ,  ,  ,  ,   a n d   a r e  i n t e g e r s .a b c d e m n  (2.19) 

When the kernel of order-16 DCT [T] satisfies (2.11)-(2.14) and (2.16)-(2.18), it can convert 

into the order-16 ICT. 

 

2.3 Generation of the Integer Sinusoidal Transforms 

The sine and cosine transform are members of sinusoidal transforms family. Each member of 

the sinusoidal transform family is the optimal Karhunen-Loeve transform of a Markov 

process. In [3], the authors derive order-8 sinusoidal transforms that can be implemented by 

using the integer arithmetic. The even sine-1 and even sine-2 transforms of order 8 and 16 are 

the most popular sinusoidal transforms for image coding. 

    Jain (1976) suggested that the KLT, DCT, even sine-1 and even sine-2 transforms can all 

be considered as members of a sinusoidal family by means of a parametric matrix 

1 2 3 4[ ( , , , )]J k k k k  where 1 2 1[ ] [    ]tn      is a member of the family if m s are ei-

genvectsor of a J matrix of order n. In other words, transform members of the sinusoidal fam-

ily can be constructed from eigenvectors of J matrix. Table 2.4 shows some members of the 

sinusoidal family generated by 1 2( , ,0,0)J k k .  
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 0  0 Even sine-1

 0 -1 Odd sine- 2

 0  1 Odd sine-1

-1  0 Odd sine- 3

-1 -1 Even sine- 2

-1  1 Even sine- 3

 1  0 Odd cosine- 3

 1 -1 Even cosine- 2

 1  1 Even cosine-1

1 2k    k            [ ]

 

Table 2.4 Some members of the sinusoidal family generated by 1 2( , ,0,0)J k k . 

1 3

1 2 3 4

4 2

1 0

1 0

0 1
[ ( , , , )]

0

1

0 1

k k

J k k k k

k k

 

 

 



 

 

  
  
 

  
  

 
  
 

  

 

 

2.3.1 Order-8 Integer Even Sine-1 Transform 

Because there are many types of integer sine transforms, we only take the order-8 even sine-1 

integer transform as an example. Let [T] be the kernel of order-8 even sine-1 transform and 

Tn(i, j) is the j
th

 component of the i
th

 even sine-1 transform basis vector as below. 

      
  1 12

, sin ,  for 0 , 1
1 2

n
i j

i j i j nT
n n

  
    

  
 (2.20) 

Consider the order-8 even sine-1 transform, we can get its kernel ： 

       0 0 1 1 2 2 3 3 4 4 5 6 6 7 75,  ,  , ,  ,  ,  ,,  
t

T kk J k J k J k J k J J k J k J     (2.21) 

where iJ  means i
th

 basis vector and ik  denotes a scaling constant then makes 1ii
k J  . 

Therefore, all eight vectors can be expressed as variables „a‟, „b‟, „c‟, and „d‟ in (2.22).  
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      

0

1

2

3

4

5

6

7

( )

( )

( 0 0 )

( )

( )

( 0 0 )

( )

( )

a b c d d c b ak

b d c a a c d bk

c c c c c ck

d a c b b c a dk
T

d a c b b c a dk

c c c c c ck

b d c a a c d bk

a b c d d c b ak

 
    
 

  
 

    
    
 

   
    
 

    

 (2.22) 

Like what we discuss in the integer cosine transform, the variable a, b, c, and d must be satis-

fied the condition to make the kernel [T] be orthogonal: 

       0,c a b d    (2.23) 

       2 0.a d b bdc     (2.24) 

To simplify (2.23) and (2.24), we can get 

       0 ,d a b c    (2.25) 

     2 2 .c aba b    (2.26) 

From (2.20) and (2.22), the relationship of the magnitude of the variables a, b, c, and d is for 

the order-8 even sine-1 transform: 

     > 0 .d c b a    (2.27) 

The other integer sinusoidal transforms can be derived as well as section 2.2 and are summa-

rized in Table 2.5. 

The integ-

er sinu-

soidal 

transform 

The basis vector of the transform  ,n i jT  

kernel and the transform kernel  T  

The orthogonal 

condition and rela-

tionship of the 

magnitude 

Even sine-1 
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1 12
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1 2
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>0.d c b a    
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Table 2.5 The integer sinusoidal transforms. 

 

2.4 Performance of the order-n ICTs 

2.4.1 Transform Efficiency Performance 

In transform coding in image, orthogonal transforms are used to convert highly correlated 

signals into coefficients of low correlation. The ability of decorrelation may be measured by 

the transform efficiency, which is defined on the first-order Markov process of adjacent ele-

ment correlation ρ. The Karhunen-Loeve transform (KLT) is the optimal transform that con-

verts signals into completely uncorrelated coefficients, and the KLT has a transform efficien-

cy equal to 100% for all ρ. 

Consider n-dimensional vector X, which is a sample from one-dimensional, zero-mean, 

unit-variance first-order Markov process with adjacent element correlation ρ, and Y is a 

transformed matrix. 
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  Y T X  (2.28) 
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T TC

s s

s s

   

 
 
 
  

 (2.29) 

where  XC  is covariance matrix of the n-dimensional vector X then the (i, j)th element of 

 XC  is i j   and  YC  is covariance matrix of the transformed matrix. The efficiency 

of the kernel [T] is defined on the transformed domain: 

 1

1 1

Efficiency .

n

ii
i

n n

pq
p q

s

s

 

 





 

 (2.30) 

 

2.4.2 Basis Restriction Mean-Square-Error Performance 

The data compression ability of a transform can be measured by means of the basis restriction 

mean-square-error [14]. Consider a two-dimensional zero-mean unit-variance non-separable 

isotropic Markov process with covariance function as following: 

 
 

   
2 2

, ,, ; ,

                     =

x i j p q

i p j q

i j p q EC x x

  

   
 (2.31) 

where ρ is the adjacent element correlation in the vertical and horizontal directions. Let the n

×n matrix [X] be a sample of the Markov process. If [X] is transformed into [C] by transform 

[T], we can get 

       ,
t

C T X T  (2.32) 
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where the elements of [X] and [C] are xi, j and cu, v, respectively. The covariance function of 

[C] is 

 

 

         

, ,, ; ,

                    = , ; , , , , , .

c u v r s

x
i j p q

u v r s EC c c

i j p q T u i T u j T r p T s qC

   


 (2.33) 

Therefore, the variance of cu, v is equal to 

    2 , = , ; , .cu v u v u vC  (2.34) 

Suppose   be the set containing M index pairs (u, v) corresponding to the largest M 

 ,c u v  then the basis restriction mean square error is defined as: 

 

 

 

2

,

2

,

( ) 1 .
,

c
u v

c
u v

u v

e M
u v






 

 


 (2.35) 

We can use the basis restriction mean-square-error to measure the data compression ability of 

a transform. Comparing the basis restriction mean-square-errors of the ICTs with various 

transforms when 0.95  . We can find that the relationship of the basis restriction mean 

square error: 

 WT>CMT>ICT>DCT>KLT,  (2.36) 

where WT and CMT are Walsh transform and C-matrix transform respectively. 

 

2.5 Implementation 

[T] is an ICT. From (2), we have 

     ,T K J  (2.37) 

        1
,

t t
T T J K


   (2.38) 
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where [K] is a diagonal matrix whose (i, i)th element is ki and [J] is a matrix whose ith row is 

shown in Table 2. [J] contains only integer elements because it is an ICT. The adaptive 1-D 

transform coding system utilizes an order-8 ICT shown in Fig. 2.1. The upper part of Fig. 2.1 

is the transmitter and the lower part is the receiver. 
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Fig. 2.1 The Adaptive 1-D transform coding system using an order-8 ICT. 

 

The fast algorithm of the ICT is like the DCT and only requires 4 iterations shown in Fig. 2.2. 
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Fig. 2.2 The fast algorithm of the order-8 ICT where ( ) / 2p b c a   and ( ) / 2 .q a d c   
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Chapter 3  

Integer Transform by Lifting Scheme 

 

 (這一章要強調 lifting scheme 可以將所有的 non-singular matrix 變成 reversible in-

teger transform，這也是 lifting scheme 可以逐漸取代 prototype matrix method 的主因) 

To compress digital signals without distortion, the transform must map integers to integers 

and be perfectly invertible. In Chapter 2, the DCT derived from prototype satisfies mapping 

integers to integers, but the inverse does not. As the result, the perfect reconstruction is not 

available. In [4], an optimal solution of reversible integer implementation for general linear 

transforms is presented. It is a generalized lifting scheme and can be applied to any invertible 

linear transform besides discrete wavelet transforms. After the factorization method proposed 

by Hao in [7], any non-singular matrix can be converted into a reversible integer transform. 

    An affine transform in finite-dimensional space can be expressed in a matrix form y = 

Ax + b, which becomes a linear transform when b=0. Perfect inversion of a transform de-

mands that both the forward transform and its reverse are integer reversible. Analogously, if 

the transformed values are changed due to quantization or some other operation, we still an-

ticipate that the values can be reversely transformed into integers. Then, the sufficient integer 

reversible condition is 1|| A || || A || 1

   . A transform matrix does not always satisfy this 

condition, but those called the elementary reversible matrices (ERMs) can. 

 

3.1 Elementary Reversible Matrix 

Many matrix computation algorithms map number x to number y, such as those for a linear 
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transform y = ax + b. If variable x can be assigned to an arbitrary integer, the condition of in-

teger output y is that both number a and number b are integers [16]. Since there might be 

some processing procedures in the transformation domain, the range of y is considered to be a 

set of integers without restrictions. In the case of an arbitrary integer output, the condition for 

the inverse transform that maps integers to integers is that both 1/a and b are integers. There-

fore, the perfectly integer-invertible condition of the transform is that a is an integer factor 

and b is an integer, where an integer factor is defined as a multiplier of integers that does not 

change their magnitude, which is denoted by j.  

If the computational ordering is properly arranged in y = Ax, we can find some elementary 

reversible structures for perfectly invertible integer implementation. A corresponding matrix 

is defined as an elementary reversible matrix (ERM). An upper or lower triangular transform 

matrix whose diagonal elements are integer factors is a kind of ERM, which is called a tri-

angular ERM (TERM). If all the diagonal elements of a TERM are equal to 1, the TERM 

will be a unit triangular matrix. A TERM has the following two important properties. 

 The product of two upper TERMs is also an upper TERM, and the product of two lower 

TERMs also makes a lower TERM. 

 The determinant of a TERM is an integer factor. 

If A = {amn} is an upper TERM, the computational ordering of linear transform y = Ax can be 

arranged to be top-down: 

 1

[ ]
,

N

m m m mn n m m m

n m

N N N

y j x a x j x b

y j x

 

  
     

  
 


 (3.1) 

where m = 1, 2, …, N-1. 

Its inverse ordering is reversed: 
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1

/

(1 / ) ( ) ,

   (1 / ) ( [ ])

N N N

N

m m m mn n

n m

m m m

x y j

x j y a x

j y b

 




 
    

 
   

  (3.2) 

                      where m = N, N-1, …, 1. 

If A is a lower TERM, the computational ordering of linear transform y = Ax can be arranged 

to be bottom-up and its inversion to be top-down: 

 

1

1

1 1 1

[ ]
,

m

m m m mn n m m m

n

y j x a x j x b

y j x





  
     

  
 


 (3.3) 

where m = N, N-1, …, 2. 

 

1 1 1

1

1

/

(1 / ) ( ) ,

   (1 / ) ( [ ])

m

m m m mn n

n

m m m

x y j

x j y a x

j y b








 
    

 
   

  (3.4) 

where m = 2, 3, …, N. 

Obviously, if a matrix can be converted into a TERM using row and column permutation on-

ly, it is also an ERM. Then, we can find another feasible ERM form known as single-row 

ERM (SERM) with integer factors on the diagonal and only one row of off-diagonal ele-

ments that are not all zeros. 

 

3.2 Matrix Factorizations 

In [4] and [5], it has been proved that a nonsingular matrix can be factorized into a product of 

at most three TERMs or a series of SERMs. An algorithm of matrix factorization for reversi-

ble integer mapping is shown in the following. 

If 
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(0) (0) (0)

1,1 1,2 1,

(0) (0) (0)

2,1 2,2 2,

(0) (0) (0)

,1 ,2 ,

,

N

N

N N N N

a a a

a a a
A

a a a

 
 
 
 
 
  

 (3.5) 

there must be a permutation matrix P1 for row interchanges such that 

 

(1) (1) (1)

1,1 1,2 1,

(1) (1) (1)

2,1 2,2 2,

1

(1) (1) (1)

,1 ,2 ,

,

N

N

N N N N

p p p

p p p
P A

p p p

 
 
 
 
 
  

 (3.6) 

and (1)

1, 0Np  . Therefore, there must exist a number s1 such that (1) (1)

1,1 1 1, 1Np s p  , and then s1 

would be (1) (1)

1 1,1 1,( 1) / Ns p p  . 

 

1 0,1 1

1

(1) (1)

1,2 1,

(1) (1) (1) (1)

2,1 1 2, 2,2 2,

(1) (1) (1) (1)

,1 1 , ,2 ,

1

0 1

1

          .

N

N N

N N N N N N

P AS P A I

s

p p

p s p p p

p s p p p

 
 
 
  

 
 

 
 
 

  

 (3.7) 

Using the forward elimination of the first column can be achieved by multiplying an elemen-

tary Gauss matrix L1.  

 

(1) (1)

1 2, 2,1

1 1 0,1 1 0,1

(1) (1)

1 , ,1

(2) (2)

1,2 1,

(2) (2)

2,2 2,

(2) (2)

,2 ,

1

1

1

1

0
          .

0

N

N N N

N

N

N N N

s p p
L P AS P AS

I

s p p

a a

a a

a a

 
 
 
 
 

 

 
 
 
 
 
  

 (3.8) 

Iterating the permutation and forward elimination for k = 2, 3, …, N-1. Pk is used to inter-

change the rows among the kth through the Nth rows to guarantee that the k
th

 element in the 
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Nth column is not zero. If there were no such Pk, A would be singular. 0,kS (SERMs) co-

vert ( )

,

k

k ka into 1s, and ( ) ( )

, ,( 1) /k k

k k k k Ns p p  . Lk record the row multipliers used for the Gaussian 

elimination of column k. Therefore, we derive 

 

1 1 2 2 1 1 0,1 0,2 0, 1

( 1) ( 1)

1,2 1,

( 1)

2,

( 1)

,

1

0 1

0 0

,

N N N

N N

N

N

N

N

N N

R

L P L P L P AS S S

a a

a

a

D U

  

 





 
 
 
 
 
  



 (3.9) 

where ( 1)

,

N i

N Na e   , (1,1,...,1, )i

RD diag e  , and  

 

( 1) ( 1)

1,2 1,

( 1)

2,

1

0 1
.

0 0 1

N N

N

N

N

a a

a
U

 



 
 
 
 
 
 

 (3.10) 

Now, multiplying all the SERMs ( 0,kS ) together, all the permutation matrices (Pk ) together, 

and all the unit lower triangular matrices (Lk ) together, we get  

 1

0,1 0,2 0, 1 0

1 1

1

.
1

1

N

N

I
S S S S

s s







 
 
  
 
 
  

 (3.11) 

 

1 1 2 2 1 1

1 1 2 1 1 2 1 2 1 1 2 1

1

( ) ( )( )

.

N N

T T T

N N N N N N N

T

L P L P L P

L P L P P P L P P P P P

L P

 

      







 (3.12) 

1

1 1 2 1 1 2 1 2 1 1 2 1where ( ) ( ),  and .T T T T

N N N N N N NL L P L P P P L P P P P P P

         

1 1

0 0Therefore, we derive  or .T

R RL P AS D U A PLD US    Having once gotten a TERM facto-

rization, we can easily obtain the corresponding SERM factorization. In [7], the authors prove 

that a matrix A has a TERM factorization of A = PLUS0 if and only if det(A) = ±1, where L, 
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U and S0 are unit lower TERM, unit upper TERM and a SERM (also a TERM). In other word, 

a matrix can be factorized into at most three TERMs besides a possible permutation matrix. 

    Furthermore, an matrix can be factorized into two unit SERMs if and only if all the mi-

nors of leading principal submatrices are 1s. Then, we have 

 
11 12 11 12

1 1

21 22 21 11 22 21 11 12

0
.

0

A A I A A
A

A A A A A A A A I
 

     
           

 (3.13) 

where det(A11) = 1, and the two factorized block matrices do not change the minors of each 

other‟s leading principal submatrices. Hence, the following factorization can be carried 

through： 

 

1 1 1

1 1 1 2 2 1

1 1 1

1 2 1 1 2 1 2 1

( ) ( )

  ( ) .N N N

A LU LUS S LUS S S S

LUS S S S S S S S S

  

  

 

  

  
 (3.14) 

Therefore, matrix A has a SERM factorization of A=PSNSN-1…S1S0 if and only if det(A) = 

det(P) = ± 1, where Sm(m=0, 1, …, N) are unit SERMs. 

     The transform matrix A of RGB to YCbCr is taken as an example here. As step in 

(3.6)-(3.12), we have 

 

0.229 0.587 0.114

0.169 0.331 0.5 .

0.5 0.419 0.081

 
   
 

   

A  (3.15) 

 

1 0 0 1 0 0

0 1 0 ,          0 1 0

6.7632 0 1 0 24.0419 1

1 0 0 1 0 0

3.2126 1 0 ,       3.2126 1 0

0.0478 0 1 0.0478 0 1

   
    
   
      

   
      
   
      

1 2

1 1

S S

L L

 (3.16) 

Then, we got 
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1 3.3278 0.114

0 0.9991 0.1338

0 0.0019 0.2197

1 0 0 1 3.3278 0.1140

                0 1 0 0 1 0.1338 .

0 0 0.2197 0 0 1

 
 
 

  

   
    
   
      

2 1 1 2L L AS S

DU

 (3.17) 

Therefore, the matrix A can be represented as a production of a lower TERM, an upper 

TERM, a diagonal matrix (if det(A) is not 1) and a SERM. 

 

1 1( ) ( )

1 0 0 1 0 0

  3.2126 1 0 0 1 0

7.139 2.2073 1 0 0 0.2197

1 3.3278 0.1140 1 0 0

                0 1 0.1338 0 1 0 .

0 0 1 6.7632 24.0419 1

 

   
   
   
       

   
    
   

       

2 1 1 2

0

A L L DU S S

LDUS

 (3.18) 

At last, we use (3.14) to convert A into a series of SERMs. 

 

3 2 1

1 0 0 1 0 0

0 1 0 3.2126 1 0.1338

0.0478 2.2073 1 0 0 1

1 3.3278 0.1140 1 0 0

                0 1 0 0 1 0 .

0 0 1 6.7632 24.0419 1

   
   
   
       

   
    
   

       

-1

0

D A

S S S S

 (3.19) 

 

Chapter 4  

Integer Color Transform 

 

In [6], this is the first paper discussing “reversible,” so there is necessity to review color 

space choice by integer color transform. The color transform is used to re-represent the pic-
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ture data in a form more suitable for the following compression. The actual compression is 

then performed in other representation. After decompression, the transformed colors are 

transferred back to the original color space. Since R, G and B data of ordinary images are 

highly correlated, it is reasonable to try to exploit this preliminary Knowledge. This can be 

done by compression scheme that take into account this correlation. However, the use of any 

transform inevitably bring along disadvantages too：image quality degradation in all practical 

cases, time loss and additional complexity. 

The optimal choice for color transform would satisfy the following conditions： 

 Decorrelate the data as much as possible. 

 Minimize the total number of bits in the data path needed for a certain quality level. 

 Need no calculation with critical accuracy. 

There are many popular color spaces, such as Atd, YIQ and YCbCr shown in (40) [17]. There 

are even a linear transform that completely removes global statistical dependence between its 

components. This orthogonal transform is known as the Karhunen-Loeve Transform (KLT), 

also called the Hotelling Transform shown in (41). In this tutorial, we focus on “integer” and 

“reversible,” so we do not discuss the de-correlation here. In the following, reversibility and 

word-length for transformation coefficients are discussed. 

 

  0.299   0.587   0.114

0.169 0.334   0.500 .

  0.500 0.419 0.081

b

r

Y R

C G

C B

     
       
     

           

 (4.1) 

 1

2

0.54933 0.60238 0.57912

0.80429 0.19322 0.56194 .

0.22661 0.7747 0.59063

L R

C G

C B

     
       
     

           

 (4.2) 
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4.1 Reversibility 

A choice of color spaces is based on the finite register length that effects the reversibility, i.e. 

the differences RGB - RGBrec. 

The factors in reversibility is consisted of two part： 

 The determination of the number of bits needed to represent the data in a particular color 

space. 

 The determination of the number of bits needed to represent the coefficients (for the 

multiplier) and the intermediate results (between the multiplier and adder). 

Saturation can only occur in the reverse transformation because of the possibly large round-

ing errors in the compression color space. In order words, the original color space cannot be 

perfected reconstructed due to the limit of bit length. There are detail experiments about how 

many bits are enough in [], and it highly depends on the human vision and the types of image. 

 

4.2 Word-Length for Transformation Coefficients 

4.2.1 Quantization of Transform Coefficients 

In this subsection, we discuss the reconstruction errors. First, we have: 

 ,oriv T R  (4.3) 

 1 ,recR T v  (4.4) 

with Rori and Rrec the original and reconstructed RGB values, T and T
-1

 the forward and re-

verse transformation matrix, and v the color values in the compression color space. 

This implies： 

 
1(( ) )

                 0

rec ori oriR R T T I R  


,
 (4.5) 
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with I the unity matrix. 

Now, both the matrix T and T
-1

 will be replaced by a quantized version. 

 ( ) ,f oriv Q T R  (4.6) 

 1( ( ) ) .rec r fR Q Q T v  (4.7) 

This results in a reconstruction error： 

 

1(( ( ( ) ) ( )) )

                  .

rec ori r f f ori

ori

R R Q Q T Q T I R

E R

  


 (4.8) 

From this last expression we can conclude that： 

 The reconstruction error is proportional to the original Rori. 

 The quantization of the forward transformation alone has no effect on the reconstruction 

error. Perturbations are compensated in the inverse matrix. 

 The quantization of the reverse transformation is not compensated for in any way. 

 

4.2.2 The Criterion of the Determinant of the Transform 

In this subsection, authors try to derive a condition under the inverse matrix quantized with 

Q1 bits right of the binary point representable without errors by using coefficients with Q2 

bits for the fractional part. 

Let F be the forward transformation matrix with Q1 bits right of the binary point and R the 

reverse transformation matrix with Q2 for its fractional part. 

 
Inv

F R  (4.9) 

 
1 2

int int
1 1

2 2

Inv

Q Q
F R  (4.10) 
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1 2

int int
1

2

Inv

Q Q
F R


  (4.11) 

Fint and Rint are matrices with integer coefficients. An element of Rint can be explicit as fol-

lows： 

 
1 2

1 2

1 2

int
int

int
int

int

1
minor ( )

2 minor ( )2 = .
1 det( )det( )

2

Q Qij Q Q ij

Q Q

F
F

r
FF






  (4.12) 

Therefore, the necessary condition for the inverse of F to be exactly representable with Q2 

bits right of the binary point, is that for all i, j 

 
1 2

int

int

2 minor ( )
,

det( )

Q Q
ij F

F



 (4.13) 

is integer, or det(Fint) is a divisor of 1 2
int2 minor ( )Q Q

ij F for all i, j. 

A sufficient condition is that det(Fint) is a divisor of 1 22
Q Q . This means that 

 int 1 2det( ) 2      with 0 ,iF i Q Q      (4.14) 

 
1

2
det( )   with  = matrix dimention.

2

i

NQ
F N   (4.15) 

Consequently, under this criterion, we can assure that the inverse matrix is representable with 

Q1 and Q2 bits right of the binary point respectively. 

 

4.3 Simple Transform 

Under the criterion above, a simple transform is constructed without multiplication. We call it 

SIM (from SIMple)： 
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S   0.25 0.50   0.25 R

I 0.50 0.00   0.50 G .

M 0.25 0.50 0.25 B

     
      
     

           

 (4.16) 

Its inverse transform is equally simple： 

 

R 1 1 1 S

G 1   0   1 I .

B 1   1 1 M

      
     
     

          

 (4.17) 

The SIM transform convert RGB color space into the SIM color space. Although the perfor-

mance of the SIM color space is worse than RGB space, no floating-point processor is needed 

in the transform. Then the perfect reconstruction is reachable, and the cost and time spending 

is much less in operation. 

For another example, the color transform used in the JPEG-2000 is shown in (4.18), and 

(4.19) is the inverse [21]. This transform is a lossless color transform with takes N-bit RGB 

components in and produces N-bit Y component and N+1 bit Ur and Vr components. The 

components can be inverted to the oringal N-bit RGB values without loss. 
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 (4.19) 

 



 33 

4.4 Reversible Integer Color Transform 

In Section 4.2, however, the criterion is coarse that still causes strong distortion. In [7], the 

authors introduce a systematic algorithm that can convert any 3 by 3 color transform into a 

reversible integer-to-integer transform and also discuss the ways to improve accuracy and 

reduce implementation complexity. In this section, we briefly discuss how to generate re-

versible integer color transform based on matrix decomposition [18]-[19]. There are five 

goals for the reversible integer color transform. 

 The integer color transform should be reversible. 

 No floating-point processor is required for both the forward and the inverse transforms. 

 The bit-length of the output should be constrained. 

 Less complexity for implementation 

 Accuracy: The integer transforms should well approximate the original transform. 

There are five advantages in the integer color transform：1) the ways to save the number of 

time cycles for implementation. 2) The method to analyze the accuracy by normalized root 

mean square error are proposed. 3) The closed-form solutions of coefficients are shown. 4) 

Instead of 1 , the entries of diagonal matrices can be 2k , so it is more general and accuracy. 

5) The derived integer transforms that are optimal in accuracy successfully. 

 

4.4.1 Decomposition and Integerization 

 

Step 1：Normalize the original 3 3 color transform A0 as A such that det(A)= 1 . 

 1/3
0 0,    where | det( ) | .A A A     (4.20) 

Step 2：Perform permutation, scaling, and sign changing operations for A. 
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 1 1
1 1 2 2 ,C D P AP D   (4.21) 

where P1 is a row-permuting matrix and P2 is a column-permuting matrix. D1 and D2 are di-

agonal matrices. 

 
1

2

[ , ] 2 .

[ , ] 2 .( 1,2,  3)

km

km

D m m

D m m m and

 

  
 (4.22) 

 1  2[ , ] 0,   .orD m n when m n   (4.23) 

D1 and D2 have the effects of scaling and sign changing. Note that there are 3! choices for P1 

and P2, and 2
6
 choices for the signs of the diagonal entries of D1 or 2[m, m]. If we do not con-

sider the case where det(C) = -1 and constrain that 

 0 ,m kk p   (4.24) 

then, in sum, there are  

 2 3 6 3(3!) ( 1) 2 / 2 1152( 1)k kp p    (4.25) 

choices for C. 

Step 3：Applying the lifting scheme, the single-row elementary reversible matrix scheme [4], 

[20] and several modification to decompose C into four one-row matrices. 

 4 3 2 1.C T T T T  (4.26) 

 

1 2

1 1 22 21

1

0 1 0 ,    ( 1) / .

0 0 1

t t

T where t c c

 
   
 
  

 (4.27) 

 2 1 2 1( ).t t z z    (4.28) 

 

1
21 22 231

31 32 332

.
1

c c cz

c c cz


    

           
 (4.29) 

where cmn are the entries of C. 
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 2 3 4

1 0 0

1 ,

0 0 1

T t t

 
 
 
  

 (4.30) 

3 21 4 2where  and .t c t z    

 3

5 6

1 0 0

0 1 0 ,

1

T

t t

 
 
 
  

 (4.31) 

5 22 31 21 32 6 32 31where  and .t c c c c t c tc     

 

7 8

4

1

0 1 0 ,

0 0 1

t t

T

 
 
 
  

 (4.32) 

7 12 1 11 6 8 8 13 1 11 2 12where  and .t c t c t t t c z c z c       

Step 4：After truncation operation Qr, we derive the reversible integer transform B that ap-

proximates A from 

 1 1 4 3 2 1 2 2 ,T TB P D V V V V D P  (4.33) 

where 

 

1 2

1 2 3 4

7 8

3 4

5 6

1 1 0 0

0 1 0 ,     1 ,

0 0 1 0 0 1

1 0 0 1

0 1 0 ,     0 1 0 .

1 0 0 1

g g

V V g g

g g

V V

g g

   
    
   
      

   
    
   
     

 (4.34) 

where 

 ( ),    1,2,...8n b ng Q t n   (4.35) 

 2 2 ,  ( 0  1).
b

n n
b n n n

n n

Q d d d or


 

 

 
     
 

 (4.36) 
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where b is an integer. 

 

1 2

1 2 3 4

7 8

3 4

5 6

1 1 0 0

0 1 0 ,     1 ,

0 0 1 0 0 1

1 0 0 1

0 1 0 ,     0 1 0 .

1 0 0 1

g g

V V g g

g g

V V

g g

   
    
   
      

   
    
   
     

 (4.37) 

Therefore, B is a binary matrix that approximates A, and its inverse B
-1

 is shown in (4.34). 

Obviously, BB
-1

=1.  

 1 1 1
2 2 1 2 3 4 1 1.B P D V V V V D P    (4.38) 

 

4.4.2 Bit Constraint, Time Cycle Problem and Accuracy Analysis 

Now, we try to satisfy Goal 3-5. If the least significant bit of gn is 2
-b

, and 2
-a

 and 2
-c

 are the 

least significant bits of x and z (z = Bx), then 

 4 .c a b   (4.39) 

Thus, the bit-length of z is much longer than that of x. To solve this problem, we can convert 

V1, V2, V3 and V4 in (4.33) into addition-truncation operations. For example, we can convert 

x2=V1x1 into  

 
2 1 1 1 2 1

2 1 2 1

[1] [1] { [2] [3]},

[2] [2],  [3] [3].

rx x Q g x g x

x x x x

  

 
 (4.40) 

where Qr is truncation operation. Therefore, the bit length is constrained ,and the reversibility 

is preserved. 

There is another problem for implementing the integer color transform. That is, too many 

time cycles are required. Suppose that in each time cycle we can only do one addition and 

one multiplication in each entry. Quantization (just throwing bits), permuting (just twisting 

circuit in hardware), and multiplying 2
-k

 (just doing bit shifting) does not require any time 
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cycle. Then, each of V1, V2, V3, and V4 requires three time cycles. However, from the facts 

that 1) two adjacent one-row matrices can be implemented together and 2) if the least signif-

icant bit of x1 is larger than one of 1 1 2 1[2] [3]g x g x , then (4.36) is equivalent to 

 2 1 1 1 2 1[1] { [1] [2] [3]}.rx Q x g x g x    (4.41) 

Therefore, we can reduce the number of time cycles into 5. Due to the proof is trivial, readers 

can refer to the original paper. 

Finally, we discuss the problem of accuracy, i.e., Goal 5. Note that, in Steps 2)–5), the trun-

cation operation Qr
-k

 is equivalent to adding a small number 

 
1 1

{ } ,    2 2 ,m m
m

r k r k
r kQ a a where      
       (4.42) 

and 

 2[ ] 0,   [ ] 4 /12.mr k
E E   

   (4.43) 

Then, due to (4.32), we have 

 1 1 4 3 2 1 2 2 1 2 3 4( { [ ( ) ] } ).T Tz P D V V V V D P x       (4.44) 

Therefore 

 
1 1 4 3 2 1 1 1 4 3 2 1 1 4 3

1 1 4 1 1 4 3 2 1 4 3 2 1 1 2 2

+

         + ( ) .

T T T

T T T

z y P D V V V P D V V P D V

P D P D V V V V T T T T D P

     

  
 (4.45) 

Suppose that b in (4.31) is large enough such that Vn = Tn+▽n, where the entries of ▽n is 

very small compared with those of Tn. 

 
4 3 2 1 4 3 2 1 4 4 3 3 2 2 1 1 4 3 2

4 3 2 1 4 3 2 4 3 2 4 3 2

( )( )( )( )

                               .

V V V V T T T T T T T T T T T T

T T T T T T T T T T T T

      

      
 (4.46) 

If b is very large, 1 2 3 4 and     are very small, and there are four terms could be ignored. 

 1 1 4 3 2 1 1 1 4 3 2 1 1 4 3 1 1 4+ + .T T T Tz y P D T T T P D T T P D T P D        (4.47) 

For example, for the case of the integer KLA transform, when r = 0 and b = 8, the last four 
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terms affect only 8.05% of error. When r = 0 and b = 12, these terms contribute only 0.07% 

of error. 

 

4.4.3 Experiment Results 

In the following, we try to convert the ten color transforms into reversible integer transforms, 

and shown in Table 4.1 and Table 4.2, where gk (k=1~8), D1, D2, P1 and P2 are the parameters, 

diagonal matrices, and permuting matrices using in the processes. 

(1) RGB to KLA                (2) RGB to IV1V2 

1 1 10.8185 0.8975 0.8629

1.19847 0.2879 0.8373         1 / 6 1 / 6 2 / 6   

0.3376 1.1539 0.8800 1/ 6 1 / 6 0

  
       
       

 

(3) RGB to XYZ             (4) RGB to UVW 

0.8706 0.2496 0.2868 0.8387 0.2402 0.2754

0.4288 0.8419 0.1635         0.6192 1.2156 0.2361   

0 0.0947 1.6606 0.3003 1.7125 1.2984

   
   
   
      

 

(5) RGB to YIQ               (6) RGB to DCT 

0.4722 0.9270 0.1800 0.5774 0.5774 0.5774

0.9412 0.4327 0.5058         0.7071 0 0.7071   

0.3332 0.8259 0.4927 0.4082 0.8165 0.4082

   
     
   

       

 

(7) RGB to YCbCr            (8) RGB to YUV 

0.299 0.587 0.114 0.299 0.587 0.114

0.500 0.419 0.081         0.148 0.289 0.437   

0.169 0.331 0.500 0.615 0.515 0.1

   
      
   
          

 

(9) RGB to RcGcBc           (10) RGB to RsGsBs 

1.609 0.447 0.104 1.167 0.146 0.151

0.058 0.977 0.051         0.114 0.753 0.159   

0.025 0.037 1.162 0.001 0.059 1.128

      
   
   
        

 

 

Table 4.1 Parameters of the reversible integer color transforms (part 1) 
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 RGB to KLA RGB to IV1V2 RGB to XYZ RGB to UVW RGB to YIQ 

g1 13/32 0 -175/128 -75/256 35/256 

g2 641/256 -47/128 -89/256 313/256 227/256 

g3 -115/256 1/2 205/256 141/256 -111/128 

g4 -77/128 -209/256 71/256 -25/128 -81/256 

g5 21/64 -157/256 95/256 7/256 -81/256 

g6 73/128 209/256 -27/256 97/256 57/256 

g7 -57/256 -101/128 -349/256 57/128 51/128 

g8 193/256 247/256 57/64 29/128 -31/128 

P1
T
xD

1
 

1

2

0 2 0

0 0 1

2 0 0





 
 
 
 
 

 
1

0 1 0

0 0 1

2 0 0

 
 
 
  

 

1

1

0 0 2

2 0 0

0 1 0





 
 
 
 
 

 

10 2 0

0 0 1

1 0 0

 
 
 
 
 

 

1

1

2 0 0

0 2 0

0 0 1





 
 
 
 
 

 

D
2
xP2

T
 

0 4 0

2 0 0

0 0 1

 
 
 

  

 

2 0 0

0 0 1

0 1 0

 
 
 

  

 

2 0 0

0 0 1

0 1 0

 
 
 

  

 

0 0 1

2 0 0

0 1 0

 
 
 
  

 

0 2 0

2 0 0

0 0 1

 
 
 
  

 

NRMSE 0.1609% 0.1842% 0.2156% 0.1291% 0.2703% 

 

Table 4.2 Parameters of the the reversible integer color transforms (part 2) 

 RGB to DCT 

RGB to 

YCbCr 

RGB to 

YUV 

RGB to 

RcGcBc 

RGB to 

RsGsBs 

g1 -215/1024 115/256 289/1024 53/128 139/1024 

g2 1313/1024 47/256 343/1024 325/1024 227/512 

g3 -107/512 -341/1024 99/1024 115/512 -81/256 

g4 221/256 -209/512 -347/512 -181/256 -443/1024 

g5 -857/1024 1 -137/256 -209/512 -423/512 
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g6 1047/1024 141/256 -125/1024 -254/1024 57/128 

g7 -149/1024 119/1024 201/1024 53/128 205/512 

g8 -7/1024 -557/1024 -79/512 325/1024 -31/256 

P1
T
xD

1
 

1

1

2 0 0

0 2 1

0 0 1





 
 
 
 
 

 

1

1

2 0 0

0 0 1

0 2 0





 
 
 
 
 

 1

0 0 1

2 0 0

0 1 0



 
 
 
  

 

0 1 0

0 0 1

1 0 0

 
 
 
  

 

1

1

0 2 0

1 0 0

0 0 2





 
 
 
 
 

 

D
2
xP2

T
 

2 0 0

0 0 2

0 1 0

 
 
 

  

 

0 0 2

0 2 0

1 0 0

 
 
 
  

 

0 2 0

1 0 0

0 0 1

 
 
 
  

 

0 1 0

1 0 0

0 0 1

 
 
 
  

 

0 1 0

2 0 0

0 0 2

 
 
 
  

 

NRMSE 0.1609% 0.1842% 0.2156% 0.1291% 0.2703% 

 

Chapter 5  Reversible Jacket Transform 

 

In this chapter, we survey the class of Reverse Jacket transform (RJT), where the 

Walsh-Hadamard transform (WHT) and weighted Hadamard transform are the special cases. 

The WHT and discrete Fourier transform are widely used in the field of signal processing [8], 

[9]. The weighted Hadamard transform is a special case of the WHT, where the partial entries 

should not have to be ± 1. As our two side jacket is an inside and outside compatible, at least 

two positions of a Reverse Jacket matrix are replaced by their inverse; this elements are 

changed and their position are moved, for example from inside of the middle circle to outside 

or from to inside without loss of signs [10]. In multidimensional subsampling, the Reversible 

Jacket transform can be used in Quincunx and various polygonal subsampling, PCI signal 

processing, and information theory. 

 

5.1 The Walsh-Hadamard Matrix 
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A Walsh-Hadamard matrix of order n is an n × n matrix of +1‟s and -1‟s such that HnHn
T
 = nI; 

the set of all Walsh-Hadamard matrices of order n is denoted by Hn. 

The 2 × 2 Walsh-Hadamard matrix is defined as 

 2

1 1
.

1 1
H

 
   

 (5.1) 

The 2
n
 × 2

n
 Walsh-Hadamard matrix can be defined recursively using (5.1) as follows: 

 

1 12 22 2 2

2 2 2        =

1 1 1 1 1 1
        = .

1 1 1 1 1 1

n n nH H H H H

H H H

    

  

     
              

 (5.2) 

The symbol ⊗ represents the Kronecker product. 

Because of the orthogonality of Hadamard matrices, there are eight different Hadamard ma-

trices of order 2: 

 

(1) (2)
2 2

(3) (4)
2 2

(5) (6)
2 2

(7) (8)
2 2

1   1   1 1
,   ,

1 1 1 1

1 1 1 1
,   ,

1   1   1 1

1 1 1 1
,   ,

1   1   1 1

1   1   1 1
,   .

1 1 1 1

H H

H H

H H

H H

   
        

    
    
   

      
        

    
          

 (5.3) 

The Hadamard transform is an orthogonal transform and is highly practical in signal 

processing, especially in data compression. The reason for the practicality of the WHT is the 

fact that the elements of the Walsh-Hadamard matrix are either +1 or −1, and thus there are 

only additions and subtractions in the computation. Without multiplication, computation time 

is shortened and hardware cost is reduced. 
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5.2 The Weighted Hadamard Matrix 

The Walsh-Hadamard matrix is an orthogonal matrix but the weighted Hadamard matrix is a 

nonorthogonal symmetric matrix and slightly different to the Walsh-Hadamard matrix. The 

weighted Hadamard matrix is generated by weighting center portion of the original Hada-

mard matrix. The lowest order weighted Hadamard matrix is of size 4 ×  4 and is defined as 

follows： 

 4

1 1 1 1

1 1
[ ] .

1 1

1 1 1 1

w w
W

w w

 
  
 

  
 

  

 (5.4) 

The inverse of (5.4) is 

 

1 1
1

4 1 1

1 1 1 1

1 11
[ ] .

4 1 1

1 1 1 1

w w
W

w w

 


 

 
 

  
  

  
   

 (5.5) 

The weighted Hadamard transform of an N ×  1 vector [f] and N ×  N (image) matrix [g] are 

given by  

    [ ] .
N

F W f  (5.6) 

     [ ] .
N N

G W g W  (5.7) 

As with the Hadamard matrix, the recursive relation also can be applied to the weighted Ha-

damard matrix to generate higher order one (5.8). 

    /2 2
[ ] ,N N
W W H   (5.8) 

where [H]2 is the lowest Walsh Hadamard matrix given by (5.1).  

    The fast algorithm of the weighted Hadamard transform is related to the fast Hadamard 

transform. It can be derived by decomposing [H]N into a product of k sparse matrices, each 
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having rows/columns with only two nonzero elements [11].  

    [ ] ,N N N
RC H WH  (5.9) 

where [RC]N is a coefficient matrix. Since [H]N
-1

 = 1/N[H]N , we have 

    
1

[ ] .NN N
WH H RC

N
  (5.10) 

 

5.3 The Reverse Jacket Matrix 

The Reverse Jacket matrix is a generalized weighted Hadamard matrix and has recursive 

structure and symmetric characteristics. A 2
k
 ×  2

k
 matrix 

2
[ ] kRJ is said to be a Reverse Jacket 

matrix with respect to the Hadamard matrix 
2kH if 

 1

2 2 22
[ ] [ ] .k k kkRJ H RJ H  (5.11) 

The general form of the Reverse Jacket matrices is derived in [10] in follows： 

 2[ ] ,
a b

RJ
b c

 
   

 (5.12) 

 4[ ] .

a b b a

b c c b
RJ

b c c b

a b b a

 
  
 

  
 

  

 (5.13) 

The inverse matrices of the Reverse Jacket transforms are 

 1
2[ ] ( ) ,

a b
RJ signum a c

b c

  
   

 (5.14) 

 
1

4

1 / 1 / 1 / 1 /

1 / 1 / 1 / 1 /
[ ] ( , , ) ,

1 / 1 / 1 / 1 /

1 / 1 / 1 / 1 /

a b b a

b c c b
RJ lcm a b c

b c c b

a b b a



 
  
 

  
 

  

 (5.15) 
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where lcm is the least common multiple. The interesting phenomenon is that the element po-

sitions of the matrix can be replaced by its inverse matrix and the signs of them are not 

changed. 

For the higher order reversible Jacket matrix, the recursive method still works out. 

 1 22 2 2

1 1
[ ] [ ] [ ] ,  2.

1 1
k k kRJ H RJ RJ k

 
      

 (5.16) 

                                                   

The fast algorithm for the reversible Jacket transform is similar to the weighted Hamadard 

transform. We first define a coefficient matrix as follows 

 
2 2 2

[ ] [ ] ,  2.k k kRC H RJ k   (5.17) 

Then the inverse matrix of the Reverse Jacket transform can be written as 

 

1 1 1

1

2 2 2

22 2

2 22 2

2 2 2

2 2

[ ] [ ]

              ( [ ] )

              ( )( [ ] )

              2 ( [ ] )

              2 [ ] .

k k k

k k

k k

k k

k

RC H RJ

H H RJ

H H H RJ

I H RJ

I RC

  





 

  

 

 

 (5.18) 

 

Chapter 6  Conclusion 

 

For traditional discrete transforms, floating point processors are required. So they cost more 

to implement and cannot be reconstructed perfectly. A well designed integer transform can 

solve all the problems. There is a trade-off between bit constrain and performance for the in-

teger transform. Based on the lifting scheme, perfect reconstruction can be achieved practi-

cally, and the integer transform progresses rapidly. Moreover, the Reverse Jacket transform, 
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which includes the Walsh-Hadamard transform and weighted Hadamard transform, is also an 

integer transform developed recently, and can be applied to many field, such as pattern rec-

ognition, CDMA, and information encryption. 
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