
Tutorial for Image Keypoint Matching

影像特徵點匹配

Author: You-Jia Wu

Edit by Jian-Jiun Ding

吳悠嘉 著

丁建均老師編輯

2021.12

Abstract

 Keypoint matching is often applied in image processing. By matching the features

of two different pictures, we can perform object detection, image stitching or even

motion tracking. There are a variety of applications for keypoint matching. Researchers

have been focusing on finding features that are robust to environment change, scaling,

rotation or other transforms. Furthermore, effective and efficient generation of features

are also important in computer vision.

 In this tutorial, we will introduce different ways to detect features and construct

their descriptors. These methods and some stimulation results of feature matching will

also be presented.

We try to make the tutorial as clear as possible to make the readers can realize the

knowledge about keypoint matching.

Content

 Chapter 1 Introduction ………………………………………………… p.1

 Chapter 2 Fundamental Corner Detectors

 2.1 Moravec Corner Detector ... p.2

 2.2 Harris Corner Detector .. p.3

 2.3 FAST ... p.5

 Chapter 3 Non-binary Descriptor

 3.1 SIFT .. p.7

 3.2 PCA-SIFT ... p.14

 3.3 SURF ... p.15

 Chapter 4 Binary Descriptor

 4.1 BRIEF ... p.21

 4.2 ORB .. p.22

 4.3 BRISK ... p.24

 4.4 FREAK ... p.29

 Chapter 5 Keypoint Matching

 5.1 Matching for Non-binary and Binary Descriptors p.33

 5.2 The Application of RANSAC ... p.33

Chapter 6 Simulation Results

 6.1 Affine Transform .. p.35

 6.2 Viewpoint Change ... p.36

 6.3 Zoom and Rotate ... p.37

 6.4 Brightness Change .. p.38

 6.5 JPEC Compression .. p.39

 6.6 Blurring ... p.40

 Chapter 7 Conclusion ... p.42

 Reference ... p.43

1

Chapter 1 Introduction

 Keypoints, also known as interest points, are the points that contain some distinctive

properties within an image. For example, the corners can be view as a type of the keypoints

within an image (but may not be the best one). Matching the keypoints of two different images

may help us to realize which parts of an image are similar to those of the other image. The

number of keypoints is much less than the number of pixels. (For example, a typical image

may have more than 1M pixels but have only about 100~1,000 corners). Therefore, using

keypoint for template matching is much more efficient than using the original image directly.

Thus, in object detection, image stitching, and motion tracking, keypoint matching plays a

significant role.

 The process of keypoint matching can be briefly described in three steps (Fig. 1.1): (i)

keypoint detection, (ii) keypoint description, and (iii) keypoint matching.

Fig. 1.1: Main steps of keypoint matching.

In keypoint detection, we localize where the keypoints are. In keypoint description, we want to

construct the descriptors of keypoints. As for the final matching, we see whether the features

from different images are alike or not. The term “descriptor” means a vector that can describe

the properties surrounding the keypoints. With descriptors, keypoint matching can be

performed by measuring the similarities of the surrounding properties (e.g., the similarities of

colors, intensities, and the distributions of gradients).

 In this tutorial, we will first introduce some basic keypoints. Then, the content will be

extended to keypoints with non-binary and binary descriptors. Finally, how to perform keypoint

matching will be discussed. Figure 1.2 shows the features that we will introduce in detail in

the following chapters.

Fig. 1.2: Summary of the features that will be introduced in the following chapters.

2

Chapter 2 Fundamental Corner Detectors

 In this chapter, three fundamental corner detectors will be introduced. These corner

detectors do not compute descriptors for robust matching. However, they can easily extract

some distinctive points in pictures. Some of the feature detection methods presented after this

chapter are the extensions these three detectors.
 We will introduce the corner detectors of (i) Moravec [12], which is one of the earliest

corner detectors; (ii) Harris [1], which is the improvement of Moravec; (iii) FAST [2], which

is a completely different detector.

2.1 Moravec Corner Detector

Moravec introduced a corner detection algorithm in 1980 [12], which is known as one of

the earliest methods. He firstly defined a corner as a low self-similarity point and we can easily

recognize the point by looking through a small “window”.

Shifting the window should give different kinds of change of intensity when it is centered

at a flat area, an edge, or a corner. The illustration is shown in figure 2.1.

Fig. 2.1: Illustration of the windows through a flat region, an edge, and a corner. Look at the black and
gray distribution in the red circle, it shows that for different regions, the distributions of intensity are
also different.

 The variation of intensity corresponding to a shift ሺ𝑢, 𝑣ሻ is defined as:

 𝐸,ሾ𝑢, 𝑣ሿ ൌ ∑ 𝑤ሺ𝑚 െ 𝑥, 𝑛 െ 𝑦ሻሾ𝐼ሺ𝑥 𝑢, 𝑦 𝑣ሻ െ 𝐼ሺ𝑥, 𝑦ሻሿଶ
௫,௬ , [2-1]

where w[x, y] is a square window function

 𝑤ሾ𝑥, 𝑦ሿ ൌ ቊ
 ଵ

ሺଶାଵሻమ 𝑓𝑜𝑟 െ 𝐿 𝑚, 𝑛 𝐿

 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, [2-2]

I[x, y] is the intensity and 𝐼ሾ𝑥 𝑢, 𝑦 𝑣ሿ is the intensity shifted by ሾ𝑢, 𝑣ሿ which is

considered in four directions: ሾ𝑢, 𝑣ሿ ൌ ሺ1,0ሻ, ሺ1,1ሻ, ሺ0,1ሻ, 𝑜𝑟 ሺെ1,1ሻ.

3

Then, we determine 𝑚𝑖𝑛 ሺ𝐸,ሻ from

 𝑚𝑖𝑛൫𝐸,൯ ൌ 𝑚𝑖𝑛 ሺ𝐸,ሾ1,0ሿ, 𝐸,ሾ1,1ሿ, 𝐸,ሾ0,1ሿ, 𝐸,ሾെ1,1ሿሻ [2-3]

The corner pixel will have a larger value of 𝑚𝑖𝑛 ሺ𝐸,ሻ . Therefore, by looking for local

maxima of 𝑚𝑖𝑛 ሺ𝐸,ሻ, we can find the corners. However, Moravec’s detector exists some

problems:

1. Noisy response due to the binary 𝑤ሾ𝑚, 𝑛ሿ.

2. Only a set of shifts at every 45 degree is considered.

3. Only minimum of E is taken into account which results in too many edges misjudged

as corners.

The Harris corner detector is an improvement of Moravec’s detector and can solve the

problems above.

2.2 Harris Corner Detector

In 1988, Chris Harris and Mike Stephens [1] introduced an improvement of Moravec’s

detector. It is the most popular to extract corners.

First, in order to eliminate the noisy response due to a binary window function, Harris

used a Gaussian function as follows instead of a rectangular window.

 wሺx, yሻ ൌ 𝑒ିሺೣమశమሻ
మమ [2-4]

Next, consider all possible small shifts by Taylor’s expansion instead of shifting the

window only at every 45°. 𝐸,ሾ𝑢, 𝑣ሿ is changed as follows:

 𝐸,ሾ𝑢, 𝑣ሿ ൌ ∑ 𝑤ሺ𝑚 െ 𝑥, 𝑛 െ 𝑦ሻሾ𝐼ሺ𝑥 𝑢, 𝑦 𝑣ሻ െ 𝐼ሺ𝑥, 𝑦ሻሿଶ
௫,௬

 ൌ ∑ 𝑤ሺ𝑚 െ 𝑥, 𝑛 െ 𝑦ሻൣ𝐼௫𝑢 𝐼௬𝑣 𝑂ሺ𝑢ଶ, 𝑣ଶሻ൧
ଶ

,௫,௬ [2-5]

where

 𝐸,ሾ𝑢, 𝑣ሿ ൌ 𝐴𝑢ଶ 2𝐶𝑢𝑣 𝐵𝑣ଶ, [2-6]

 𝐴 ൌ ∑ 𝑤ሺ𝑥, 𝑦ሻ𝐼௫
ଶሺ𝑥, 𝑦ሻ௫,௬ , [2-7]

 𝐵 ൌ ∑ 𝑤ሺ𝑥, 𝑦ሻ𝐼௬
ଶሺ𝑥, 𝑦ሻ௫,௬ , [2-8]

4

 𝐶 ൌ ∑ 𝑤ሺ𝑥, 𝑦ሻ𝐼௫ሺ𝑥, 𝑦ሻ𝐼௬ሺ𝑥, 𝑦ሻ௫,௬ [2-9]

 At last, to reduce the misjudgment between an edge and a corner, consider a new corner

measurement by investigating the shape of the error function. For small shifts ሺ𝑢, 𝑣ሻ, apply a

bilinear approximation. 𝐸 can be rewritten as follow:

 𝐸,ሾ𝑢, 𝑣ሿ ≅ ሾ𝑢 𝑣ሿ𝑴 ቂ
𝑢
𝑣ቃ , 𝑤ℎ𝑒𝑟𝑒 𝑴 ൌ ቂ𝐴 𝐶

𝐶 𝐵
ቃ [2-10]

M is a hessian matrix performed on an image patch. Analyze the two eigenvalues of M and the

relation between the eigenvalues, 𝜆ଵ and 𝜆ଶ, and the kinds of points is shown in Figure 2.2

(a) & (b).

 Thus, measurement of corner response R is calculated as follow:

 𝑅 ൌ det 𝑴 െ 𝑘ሺ𝑡𝑟𝑎𝑐𝑒𝑴ሻଶ, [2-11]

where

 det𝐌 ൌ 𝜆ଵ𝜆ଶ ൌ 𝐴𝐵 െ 𝐶ଶ, [2-12]

 trace𝐌 ൌ 𝜆ଵ 𝜆ଶ ൌ 𝐴 𝐵, [2-13]

and k is a constant threshold, usually chosen between 0.04~0.06.

Fig. 2.2: How eigenvalues represent the type of region. (a) shows the geometrical meaning of two
eigenvalues. Then, extend (a) to (b), showing the shape of 𝐸ሺ𝑢, 𝑣ሻ and the corresponding region. (c)
add the contour of the amplitude of response function to (c) [1].

 In Eqs. (2-6)~(2-9), A, B, C, 1, 2, and R are all functions of [m, n] (i.e., their values vary

for different pixels). The response R is illustrated in Figure 2.2 (c). That is:

(i) If both 1 and 2 are small, then it means that 𝐼ሾ𝑚, 𝑛ሿ varies slowly along all

directions. Therefore, [m, n] should be at a flat region.

(ii) If 1 is large but 2 is small (or 1 is small but 2 is large), then it means that

𝐼ሾ𝑚, 𝑛ሿ varies fast along a direction but varies slowly along another direction.

Therefore, [m, n] should be on an edge.

5

(iii) If both 1 and 2 are large, then it means that I[m, n] varies fast along all directions.

Therefore, [m, n] should be at a corner.

We apply the value of R in Eq. (2-9) to check whether both 1 and 2 are large. For a pixel

[m, n], if

(i) 𝑅ሾ𝑚, 𝑛ሿ 𝑅ሾ𝑚 𝑎, 𝑛 𝑏ሿ 𝑤ℎ𝑒𝑟𝑒 െ 1 𝑎, 𝑏 1, 𝑎, 𝑏 ് ሾ0,0ሿ [2-14]

(ii) 𝑅ሾ𝑚, 𝑛ሿ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 [2-15]

then [m, n] is identified as a corner. The threshold can be set as a fixed constant. From our

experiment, it would be better to set it according to

 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ൌ 𝑀𝑎𝑥ሺ𝑅ሾ𝑚, 𝑛ሿሻ/100 [2-16]

Although the Harris corner detector does not take scale and rotation invariant into

consideration, it still establishes a foundation of feature extracting.

2.3 FAST: Features from Accelerated Segment Test

Fig. 2.3: An example of FAST detector with radius 3. The center point p is the point we want to
classify. The pixels with number 1, 5, 9 and 13 is firstly checked for high speed test. [2]

FAST [2], features from accelerated segment test, is also a simple way to detect corner

features, but much different from the two methods above. It operates by considering a circle of

sixteen pixels around the corner candidate p, which is illustrated in figure 2.3. It shows a circle

with radius 3 and 16 pixels on the circle.

Suppose that p is the interested point and its intensity is 𝐼. Then, p is identified as a

corner if there exists a set of n contiguous pixels in the circle which are all brighter than 𝐼 𝑡

or all darker than 𝐼 െ 𝑡 where t is some threshold. Denote the number of pixels on the circle

as P. We can denote a FAST detector as FAST n-P. The detailed algorithm of FAST 12-16 is

shown below:

6

1. Choose a pixel p and a proper value of threshold t and consider a circle of radius 3

centered at p.

2. For a high speed test, we first check the intensity of pixels 1, 5, 9 and 13

(corresponding figure 2.3). Examine whether 𝐼ଵ, 𝐼ହ, 𝐼ଽ and 𝐼ଵଷ are all brighter than

𝐼 𝑡 or all darker than 𝐼 െ 𝑡. If yes, repeat this examination for the rest of the

pixels. If no, p will not be taken as a corner.

3. Calculate how many pixels are contiguous in the set of pixels passing the test above.

If there exists more than 𝑛 ൌ 12 pixels fall in the criterion, p is considered a corner.

FAST simply uses comparison of the intensity of the interest point and its surrounding

points. It might be the easiest understanding method. Although, it does not holds image

transformation robustness, it is commonly applied as the first step to detect features.

7

Chapter 3 Non-binary Descriptor

 To be robust to a variety of possible transformations of images, such as scaling, rotating

or even change in illuminance, the keypoints with descriptors should be applied. In this chapter,

keypoints with non-binary descriptors will be adopted. The scaled invariant feature transform

(SIFT) [3][4], considered a mostly used keypoint, will be presented first. Then, two improving

methods of it, the principle component analysis SIFT (PCA-SIFT) [5] and the speeded up

robust feature (SURF) [6], will be discussed.

3.1 SIFT: Scale Invariant Feature Transform

The Scale Invariant Feature Transform (SIFT) was first presented in 1999 [3] and finally

completed in 2004 [4] by D. Lowe. It aims to transform an image into a large set of local feature

vectors, which are invariant to image translation, scaling, and rotation, partially invariant to

illumination changes, and robust to noise. It is considered one of the most important algorithms

of feature detection and has inspired many template-matching and object detection applications

that will be introduced later.

3.1.1 Keypoint Localization

The SIFT algorithm for keypoints detection can be mainly divided into three steps. The

flow chart is shown in figure 3.1 and the algorithm will be introduced step by step.

Fig. 3.1: Flow chart of keypoint localization of SIFT.

 Step 1: Construct Scale Space

The scale space is divided into octaves. Each octave holds different scale of images.

The next octave is the downsampling result of the previous octave in order to construct an

image pyramid. The illustration is shown in figure 3.2.

Furthermore, it has been shown that under some rather general assumptions on scale

invariance, the Gaussian kernel and its derivatives are the only possible smoothing kernels

for scale space analysis. Thus, in [3], the Gaussian kernel was used to create the scale

space.

8

Fig. 3.2: Illustration of an image pyramid. Each image is the
downsampling result of the previous one. The higher the octave is, the
smaller the image will be. The photo of Einstein is from [16].

In each octave, the first image 𝐼ሺ𝑥, 𝑦ሻ is filtered with a Gaussian kernel to get the

second blurred image 𝐿ሺ𝑥, 𝑦, 𝜎ሻ. The function is denoted as

 𝐿ሺ𝑥, 𝑦, 𝜎ሻ ൌ 𝐺ሺ𝑥, 𝑦, 𝜎ሻ ∗ 𝐼ሺ𝑥, 𝑦ሻ [3-1]

where

 𝐺ሺ𝑥, 𝑦, 𝜎ሻ ൌ ଵ

√ଶగఙ
𝑒

ି௫మ

ଶఙమൗ [3-2]

Then, for the next blurred image multiply a constant k to the scale of the previous. That

is, the third blurred image can be denote as follow

 𝐿ሺ𝑥, 𝑦, k𝜎ሻ ൌ 𝐺ሺ𝑥, 𝑦, k𝜎ሻ ∗ 𝐼ሺ𝑥, 𝑦ሻ [3-3]

Thus, the scale of fourth image is 𝑘ଶ𝜎 and so on. k is usually √2 and σ doubles for

the next octave. The scale space is constructed and an example is given in figure 3.3.

Fig. 3.3: This is an example of scaling space. In each octave, images are blurred from the previous
one. As it has mentioned, as octaves goes higher, images become smaller. (Modified from the picture
from [13]).

9

 Step 2: Locate Potential Keypoints

 To find the location of keypoints, first, the Difference-of-Gaussian (DoG) filter

defined as follows is applied to the scale space.

 𝐺ሺ𝑥, 𝑦, 𝑘𝜎ሻ െ 𝐺ሺ𝑥, 𝑦, 𝜎ሻ [3-4]

Then, convolution the scale space with a DoG filter:

 𝐷ሺ𝑥, 𝑦, 𝜎ሻ ൌ ൫𝐺ሺ𝑥, 𝑦, 𝑘𝜎ሻ െ 𝐺ሺ𝑥, 𝑦, 𝜎ሻ൯ ∗ 𝐼ሺ𝑥, 𝑦ሻ

 ൌ 𝐿ሺ𝑥, 𝑦, 𝑘𝜎ሻ െ 𝐿ሺ𝑥, 𝑦, 𝜎ሻ [3-5]

It shows that simply subtracting the next image with the previous image in the same octave

will get the result. Figure 3.4 (a) shows the illustration of the scale space applied with a

DoG filter. The SIFT uses this because it is efficient and stable.

 Next, locate the extrema of the DoG outputs. For each pixel, scan their neighboring

points (as the green points in figure 3.4 (b)). One pixel in an image is compared with its 8

neighbors as well as 9 pixels in the next scale and 9 pixels in the previous scales. The

pixel x is selected if it is the maxima or the minimum among these comparing points.

Fig. 3.4: Illustration of the DoG pyramid. In (a), after applying Gaussian smoothing filters on
each level in each octave, the difference of Gaussian is applied to perform keypoint localization.
In (b), the point with an x on is the interest point and the green ones are neighbors that will be
compared to it in order to confirm if x is an extremum. [4]

10

 Step 3: Sub-pixel Location

The extrema mentioned in step2 are search in discrete space, so these value isn’t the

real extreme values. Fig. 3.5 illustrates the reason. Thus, using the known discrete space

to obtain extrema in continuous space is called sub-pixel location [18]. In this way, we

can find the accurate location of keypoints.

Fig. 3.5: This figure is an illustration of the different
between minimum in discrete and continuous space.
Our goal is to find the real minimum (the green point).

First, apply Taylor expansion on a DoG image D

 𝐷ሺ𝒙ሻ ൌ 𝐷 ப

డ𝒙

்
𝒙 ଵ

ଶ
𝒙் డమ

డ𝒙మ 𝒙 [3-6]

 x is the location of a point on D. Then, to find the extreme value find a location 𝒙ෝ to

make Eq.(3-6) have zero value.

 𝒙ෝ ൌ െ డమ

డ𝒙మ

ିଵ డ

డ𝒙
 [3-7]

Next, the extrema 𝐷ሺ𝒙ෝሻ can be derived as follow

 𝐷ሺ𝒙ෝሻ ൌ 𝐷 பୈ

డ𝒙

்
𝒙ෝ ଵ

ଶ
𝒙ෝ் డమ

డ𝒙మ 𝒙ෝ [3-8.1]

 ൌ 𝐷 பୈ

డ𝒙

்
𝒙ෝ ଵ

ଶ
൬െ డమୈ

డ𝒙మ

ିଵ డ

డ𝒙
൰

்
డమ

డ𝒙మ ൬െ డమୈ

డ𝒙మ

ିଵ డ

డ𝒙
൰ [3-8.2]

 ൌ 𝐷 பୈ

డ𝒙

்
𝒙ෝ ଵ

ଶ

பୈ

డ𝒙

் డమୈ

డ𝒙మ

ି் డమ

డ𝒙మ

డమୈ

డ𝒙మ

ିଵ డ

డ𝒙
 [3-8.3]

 ൌ 𝐷 பୈ

డ𝒙

்
𝒙ෝ ଵ

ଶ

பୈ

డ𝒙

் డమୈ

డ𝒙మ

ିଵ డ

డ𝒙
 [3-8.4]

 ൌ 𝐷 பୈ

డ𝒙

்
𝒙ෝ ଵ

ଶ

பୈ

డ𝒙

்
ሺെ𝒙ෝሻ [3-8.5]

11

Substitute 𝒙ෝ in Eq. (3-8.1) with Eq. (3-7) to get Eq. (3-8.2). Then, in Eq. (3-8.3), due to

డమ

డ𝒙మ

డమୈ

డ𝒙మ

ିଵ
ൌ 0 and D is a 2D matrix, i.e.

డమୈ

డ𝒙మ

ି்
ൌ డమୈ

డ𝒙మ

ିଵ
 , we can obtain Eq. (3-8.3).

Finally, changing
డమୈ

డ𝒙మ

ିଵ డ

డ𝒙
 back to െ𝒙ෝ , we can get the accurate DoG extreme value

𝐷ሺ𝒙ෝሻ on location 𝐱ො.

 Step 4: Filter Edge and Low Contrast Responses

 Finally, edges and low contrast points should be removed from the potential

keypoints. To remove low contrast points, we apply a low contrast points filter which is

equal to the real extrema of D in Eq. (3-8.5). Then, remove the points with the following

constraint

 |𝐷ሺ𝒙ෝሻ| ൏ 0.03 [3-9]

To remove points on edges, consider a Hessian matrix of a potential keypoint

 𝑯 ൌ
𝐷௫௫ 𝐷௫௬

𝐷௫௬ 𝐷௬௬
൨ [3-10]

From the knowledge mentioned in chapter 2.1, the absolute value of the disparity between

the two eigenvalues of 𝑯, 𝜆ଵ and 𝜆ଶ, should be large. Thus, consider the trace and the

determinant of 𝑯:

 𝑡𝑟ሺ𝑯ሻ ൌ 𝜆ଵ 𝜆ଶ [3-11]

 𝑑𝑒𝑡ሺ𝑯ሻ ൌ 𝜆ଵ𝜆ଶ [3-12]

 Let 𝜆ଵ ൌ 𝑟𝜆ଶ, we have

௧ሺ𝑯ሻమ

ௗ௧ ሺ𝑯ሻ
ൌ

ሺାଵሻమ

 [3-13]

Note that

 ሺାଵሻమ

→ ∞ 𝑤ℎ𝑒𝑛 𝑟 → 0 𝑜𝑟 𝑟 → ∞ [3-14]

and ሺାଵሻమ

 is minimum at r ൌ 1. Since SIFT points are usually corner-like and for a

corner-like pixel 1 and 2 should not have a very large difference, to identify

whether a pixel is a SIFT point, we can identify a threshold T:

12

 𝑇 ൌ
ሺబାଵሻమ

బ
 [3-15]

where r0 is some adjustable constant, which corresponds to the maximal allowed ratio of

2 to 1 for a SIFT point. If

௧ሺ𝑯ሻమ

ௗ௧ ሺ𝑯ሻ
 T, ሾ3-16ሿ

then the potential keypoint is treated as a SIFT point.

3.1.2 Keypoint Description

 For rotation invariance, assigning an orientation to each keypoint is necessary. After

assigning the orientation, the descriptors for each keypoint will be determined. The descriptors

are helpful for keypoint matching, i.e., determining whether the keypoints in different images

correspond to the same part of an object.

 Orientation Assignment

Consider the Gaussian-smoothed image L. The gradient magnitude 𝑚ሺ𝑥, 𝑦ሻ and the

orientation 𝜃ሺ𝑥, 𝑦ሻ at the keypoint (x, y) are defined as follows:

 𝑚ሺ𝑥, 𝑦ሻ ൌ ට൫𝐿ሺ𝑥 1, 𝑦ሻ െ 𝐿ሺ𝑥 െ 1, 𝑦ሻ൯
ଶ

 ൫𝐿ሺ𝑥, 𝑦 1ሻ െ 𝐿ሺ𝑥, 𝑦 െ 1ሻ൯
ଶ [3-17]

 𝜃ሺ𝑥, 𝑦ሻ ൌ 𝑡𝑎𝑛ିଵሺሺ௫,௬ାଵሻିሺ௫,௬ିଵሻ

ሺ௫ାଵ,௬ሻିሺ௫ିଵ,௬ሻ
ሻ [3-18]

For the region around the keypoint, we create a histogram with 36 bins for orientation,

i.e., each bin has the range of 10 degrees. As the process shown in figure 3.6, we weight

each point with Gaussian window of 1.5𝜎. Assign the orientation value that is the highest

peak in the histogram. Then, consider all peaks with the histogram value larger than

0.8Max(histogram). Create keypoints with same location and scale and assign the

orientation value that has the peaks with value bigger than 0.8Max(histogram). It means

that keypoints with same location and scale, but different directions, are created in order

to contributes the stability of matching. The maximal number of multiple peaks at the

same location is limited to 2.

13

Fig. 3.6: Illustration of the process of SIFT orientation assignment. The chart on the lower righter
corner is the orientation histogram. In this case, we can see that there are 2 peaks above
0.8Max(histogram). Thus, 2 keypoints with same locations and scales but different orientation is
created. (Modified from [15])

 Local Image Descriptor

Now, each keypoint has its location, scale, and orientation. The final step is to

construct a descriptor for each keypoint.

First, find the blurred image according to the scale of the keypoint and consider a

16 ൈ 16 window center at the point. Then, rotate the gradients and coordinates by the

previous assigned orientation. Divide the window to 4 ൈ 4 and create a histogram for

each sub-region with 8 bins, i.e., the histograms of the gradients along 8 different

orientations (see figure 3.7). 4 ൈ 4 ൈ 8 directions give a 128 bins. For illumination

independence, normalized the intensity, any number (of the 128) greater than 0.2 is

changed to 0.2, and then renormalized it. Finally, a descriptor is presented in a dimension

of 128 vector which is quite large for computation and this is indeed a problem of the

SIFT.

Two matching examples of SIFT are shown in fig. 3.8. The red points are the detected

SIFT keypoints and the lines are the matching results. We can see that even though the

image is transformed (scaling in (a) and shearing in (b)), the relative locations of red points

remain unchanged. This represents that SIFT is robust to some affine transformations.

Although the SIFT descriptor is accurate and has invariant properties, it is really time-

consuming, so it may not be the best choice for real-time application. Also, it is not robust

enough to luminance changes. Thus, many other algorithms were developed to improve

the performance and reduce the complexity of the SIFT.

14

Fig. 3.7: The SIFT considers an 16 ൈ 16 area around the keypoint and each
pixel has its own orientation(the left part). Then divide this area to 4 ൈ 4 sub-
block and get the histogram of each sub-block (the right part).[14]

Fig. 3.8: This figure shows two example of SIFT keypoint locations and matching. ((a) for scaling and (b)
for shearing.) Those red points and lines are SIFT keypoints and matching results respectively. We can see
that the relative locations of keypoints remain unchanged, e.g. there’s a SIFT keypoint on the right top of
the chimney in original picture and there’s also one in each of the transformed image.

3.2 PCA-SIFT

The principle component analysis SIFT (PCA-SIFT) [5] is the simplest way to accelerate

the SIFT. Principle component analysis (PCA) is used to reduce the dimension of SIFT

descriptors. Its algorithm in keypoints localization and orientation assignment is the same as

that of the SIFT. It only changes the way to get final descriptors.

First, the PCA-SIFT create 41 ൈ 41 patches centered at the keypoint and pre-compute

an eigenspace to express the gradient images for both horizontal and vertical directions of the

patch. It only chooses the center 39 ൈ 39 area of the patch for the computation of next step.

Thus, here we get 2 ൈ 39 ൈ 39 ൌ 3042 elements (the 2 is for the two direction: horizontal

and vertical). Next, PCA is applied to the covariance matrix of the 3042-element vectors. Find

the eigenvalues and sort the eigenvectors from the largest to the smallest eigenvalue.

Finally, preserve only the top 20 of the eigenvectors. The original SIFT descriptor has a

dimension of 128 and the gradients of each sub-block has to be computed individually. The

PCA-SIFT reduces the dimension to 20 and the gradient is simply presented by the eigenspace

corresponding to these 20 eigenvectors. It efficiently reduces the computation time of the SIFT.

15

3.3 SURF: Speed Up Robust Features

 The PCA-SIFT decreases the matching complexity only by dimensionality reduction of

descriptors. The speed up robust features (SURF) [6] not only reduces the dimension of

descriptors, but also apply box filters and the integral image calculation to reduce the

computation time of keypoint extraction. Meanwhile, the SURF applies new ways to decide

the locations and orientations of keypoints.

3.3.1 Keypoints Extraction

 For computational efficiency, integral images and hessian approximation with box filter

are applied. In the followings, these two tools will be introduced first. Thus, how to construct

the SURF’s scale space and localize keypoints will then be presented.

 Integral Images

The SURF applies the idea of integral images that was first introduced by Viola and

Jones for fast computation of box type convolution filters, which can be used in Hessian

matrix approximation introduced in the next step.

The entry of an integral image 𝐼ஊሺ𝒙ሻ at a location 𝒙 ൌ ሺ𝑥, 𝑦ሻ் represents the sum

of all pixels in the input image I within a rectangular region formed by the origin and 𝒙.

 𝐼ஊሺ𝒙ሻ ൌ ∑ ∑ 𝐼ሺ𝑖, 𝑗ሻஸ௬
ୀ

ஸ௫
ୀ [3-19]

In figure 3.9, by using the idea of integral image, the sum of intensity in the area Σ can

be easily found out by simply calculating 𝐼 െ 𝐼 െ 𝐼 𝐼 . It can much reduce the

computation time.

Fig. 3.9: Illustration of the use of integral image. To obtain the intensity in ∑, only three additions
are taken (modified from [6]).

16

 Hessian Matrix Approximation

The SUFF applies Hessian matrix approximation which is different from the DoG

image in the SIFT because of its computation efficiency and good performance in accuracy.

Given a point 𝒙 ൌ ሺx, yሻ in an image I and the Gaussian filter is used first to make

keypoints scale-invariant. The Hessian matrix ℋሺ𝒙, 𝜎ሻ in 𝒙 at scale 𝜎 is defined as

 ℋሺ𝒙, 𝜎ሻ ൌ ቈ
𝐿௫௫ሺ𝒙, 𝜎ሻ 𝐿௫௬ሺ𝒙, 𝜎ሻ
𝐿௫௬ሺ𝒙, 𝜎ሻ 𝐿௬௬ሺ𝒙, 𝜎ሻ [3-20]

where 𝐿௫௫ሺ𝒙, 𝜎ሻ is the convolution of the Gaussian second order derivatives
డమ

డ௫మ 𝑔ሺ𝜎ሻ

with 𝐼ሺ𝒙ሻ and similarly for 𝐿௫௬ሺ𝒙, 𝜎ሻ and 𝐿௬௬ሺ𝒙, 𝜎ሻ.

 Furthermore, the SURF pushes the approximation for the Hessian matrix with the

box filter, shown in figure 3.10, which combine the 2 processes, (i) Gaussian smoothing

and (ii) second derivative, to only one step. This approximation can use integral image for

calculation to reach low computational cost. The Hessian matrix is changed as

 ℋ௫ሺ𝒙, 𝜎ሻ ൌ ቈ
𝐷௫௫ሺ𝒙, 𝜎ሻ 𝐷௫௬ሺ𝒙, 𝜎ሻ
𝐷௫௬ሺ𝒙, 𝜎ሻ 𝐷௬௬ሺ𝒙, 𝜎ሻ [3-21]

Fig. 3.10: The SURF uses box filters instead of the original Gaussian kernels. The
top part shows the approximation of Gaussian second order partial derivatives in y-
direction. The lower part shows the one in xy-direction.[6]

Finally, similar to the DoG images of the SIFT, the transformed images for keypoint

localization is needed. The SURF then uses the approximation of 𝑑𝑒𝑡 ሺℋ௫ሻ:

 𝑑𝑒𝑡൫ℋ௫൯ ൌ 𝐷௫௫𝐷௬௬ െ ൫0.9𝐷௫௬൯
ଶ [3-22]

17

It can be viewed as a simplification of Eqs. (2-9) and (3-11). This operation is applied to

every 𝒙 over different scales and the local maxima of 𝑑𝑒𝑡ሺℋ௫ሻ are considered as

potential keypoints.

 Scale Space and Keypoints Localization

The scale space of the SURF is much similar to the one in the SIFT. However, instead

of downsampling the image to get the next octave image (see fig. 3.11(a)), for the SURF

the input image is convolved with a set of filters of increasing size (see fig. 3.11(b)). With

the help of the integral image and the box filter, it can filter the image with a variety of

filter sizes in an efficient way.

Fig. 3.11: The comparison of SIFT and SURF scale spaces. In (a), the image
is getting smaller along the scale axis. However, in (b), the image size remains
the same and the filter sizes keep changing instead. [6]

Denote the order of the octave as 𝑛, i.e the first octave is 𝑛 ൌ 1, The increasing rule

of the filter size is defined as follows (We can compare the rule with that of the SIFT in

figure 3.2 and figure 3.3):

‧ Construct the scaled space starts with the 9 ൈ 9 filter, which is for the image

of the smallest scale.

‧ For the first octave, the following filter size is increased by 6 pixels, as in figure

3.10. The first filter is with sizes 9 ൈ 9 and then 15 ൈ 15 , 21 ൈ 21 , and

27 ൈ 27.

‧ For other octaves, denote the smallest side length of the filter of the nth octave

as 𝑓ሺ𝑛ሻ, then

 𝑓ሺ𝑛 1ሻ ൌ 𝑓ሺ𝑛ሻ 6ሺ𝑛 െ 1ሻ, 𝑓ሺ1ሻ ൌ 9 [3-23]

‧ For each octave, the increasing size of the following filter is doubled. That is,

for the second octave, the filter size is increased by 12 pixels, and for the third

octave, the filter size is increased by 24 pixels.

18

Fig. 3.12: The graphical representation of the filter size lengths for the first three
octaves. The original image is filtered with a 9 ൈ 9 filter and the filter size increasing
rule is as mentioned. (Modified from [6])

Now, the scale space is finally constructed. A graphical representation of the filter

side lengths is shown in figure 3.12. The keypoint localization is much similar to that of

the SIFT. However, the SURF finds the maximum of 𝑑𝑒𝑡൫ℋ௫൯ instead of finding

the extrema of the DoG.

3.3.2 Keypoint Description

 Quite different from the SIFT, the SUFT applies the response of the Haar wavelet to

keypoint description rather than the gradient. The first step consists of fixing a reproducible

orientation based on the information from a circular region around a keypoint for rotation

invariant. The next step is to construct the descriptor.

 Orientation Assignment

First, calculate the Haar wavelet responses in both x and y direction within a circular

neighborhood of radius 6𝑠 centered at the keypoint. (𝑠 denotes the scale of the keypoint.)

Then, filter the responses with a Gaussian (𝜎 ൌ 2𝑠). For fast filtering, the filter shown in

figure 3.13 is used and integral image calculation can be applied.

Next, sum up the horizontal and vertical responses, 𝑑௫ and 𝑑௬ , within a sliding

orientation window which is a circular sector with 𝜃 ൌ 𝜋
3ൗ (see figure 3.14). The window

that has the largest sum of horizontal and vertical responses is then the orientation of the

keypoint.

19

Fig. 3.13: From the left to right, it shows the Haar wavelet filter to
compute the responses in x and y-direction. The dark parts have the
weight -1 and the light parts 1. [6]

Fig. 3.14: The gray area in this image is the sliding orientation window. It scans the image
patch and calculate the sum of Haar wavelet response in x and y-directions. The right most
part shows the final orientation and the density of the distribution of the responses is indeed
the highest.

 Local Image Descriptor

To construct the descriptor, a square window of size 20𝑠 ൈ 20𝑠 is first created (𝑠

denotes the scale of the keypoint.) The window is centered at the keypoint and rotated to

the orientation of the keypoint. Then, the window is divided into 4 ൈ 4 square sub-

regions. Each sub-region has the size of 5s 5s. For each sub-region, Haar wavelet

responses in both horizontal and vertical direction are calculated and filtered with a

Gaussian function (𝜎 ൌ 3.3𝑠).

Just like the orientation assignment mentioned above, the wavelet response, 𝑑௫ and

𝑑௬, is summed up. In order to bring information about the polarity of the intensity changes,

the sums of |𝑑௫| and ห𝑑௬ห are also considered. Figure 3.15 gives an example for the

different value of 𝑑௫, 𝑑௬, |𝑑௫| and ห𝑑௬ห in different image-intensity patterns. In this

figure, x is the horizontal axis and y is the vertical axis.

20

Fig. 3.15: The 4 descriptor entries perform differently in different image patterns.
In a homogeneous region (left), each values are low. When frequencies impulsively
vary in x-direction (middle), ∑|𝑑௫| is high. When frequencies equally vary in x-
direction (right), then both ∑|𝑑௫| and |𝑑௫| are high. [6]

Finally, for each sub-region, a descriptor 𝒗 with dimension of 4 is created as follows.

 𝒗 ൌ ሺ∑ 𝑑௫ , ∑ 𝑑௬ , ∑|𝑑௫| , ∑ห𝑑௬หሻ [3-24]

Concatenating all the 𝒗 for all sub-regions results in a 64D descriptor, which is a half of

the 128D SIFT descriptor. The illustration of a descriptor is shown in figure 3.16.

Fig. 3.16: Illustration of the construction of descriptors. In each sub-block, four
values are calculated and describe the orientation properties of each sub-block.
[6]

21

Chapter 4 Binary Descriptor

 In this chapter, 4 kinds of keypoints using binary descriptors are introduced. Different

from chapter 3, these keypoints use binary strings as efficient keypoint descriptors. They may

apply the Hamming distance rather than the 𝐿ଶ norm when matching. The details about

matching will be discussed in the next chapter. We will introduce the BRIEF [7] and the ORB

[8], which use random pairs when constructing descriptors. Other two keypoints, the BRISK

[9] and the FREAK [10], apply circular patterns.

4.1 BRIEF: Binary Robust Independent Elementary Features

 The binary robust independent elementary feature (BRIEF) [7] is one of the most

fundamental binary descriptors. Most of the binary descriptors before the BRIEF first compute

the full descriptors then reduce them to binary strings. This process cost lots of time. However,

the BRIEF directly computing binary strings from image patches which makes it fast to build.

A patch is defined as a square centered at some keypoint. First, we define a test function

𝜏 on an image patch 𝒑 of size 𝑆 ൈ 𝑆 as

 𝜏ሺ𝒑; 𝒙; 𝒚ሻ ∶ൌ ቄ1 𝑖𝑓 𝒑ሺ𝒙ሻ ൏ 𝒑ሺ𝒚ሻ
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 [4-1]

where 𝒙 and 𝒚 are the chosen two points in a patch (will be discuss next) and 𝒑ሺ𝒙ሻ is the

pixel intensity of 𝒑 at 𝒙 ൌ ሺ𝑢, 𝑣ሻ் after smoothing with a Gaussian kernel with 𝜎 ൌ 2.

 Next, choose a set of 𝑛ௗ ሺ𝒙, 𝒚ሻ -location pairs in the image patch. The selection is

randomly sampled as follows:

 ሺ𝑿, 𝒀ሻ ~ 𝑖. 𝑖. 𝑑. 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛ሺ0, ଵ

ଶହ
𝑆ଶሻ [4-2]

where i.i.d. means independent and identically distributed. The chosen pairs are sampled from

an isotropic Gaussian distribution with zero mean and 𝜎 ൌ
ଵ

ଶହ
𝑆ଶ. This test gives the best result.

Examples for chosing pairs in different ways also tested in [7] is shown in figure 4.1. 𝐺𝐼𝐼 is

the distribution of selected pairs, which BRIEF applies and is considered the best result. The

black lines in figure 4.1 are the chosen pairs, i.e. the two endpoints of each line are the chosen

points to form a pair.

 Finally, the BRIEF descriptor is taken to be 𝑛ௗ-dimensional bitstring 𝑓
ሺ𝒑ሻ

 𝑓
ሺ𝒑ሻ ∶ൌ ∑ 2ିଵ

ଵஸஸ
𝜏ሺ𝒑; 𝒙𝒊; 𝒚𝒊ሻ [4-3]

where 𝑛ௗ can be 128, 256 and 512. The BRIEF descriptor with different length is referred as

22

BRIEF-k, where 𝑘 ൌ 𝑛ௗ 8⁄ is the number of bytes required to store the descriptor.

Fig. 4.1: This shows some different distribution of chosen pairs in one
patch. BRIEF applies the distribution in GII. The two endpoints of each
dark line represent the two points which form a sampling pair. [7]

 BRIEF is fast to build and match, but it actually performs poorly with rotation because it

considers only the intensity. The next method, the ORB, improves it to the rotation-aware

BRIEF and makes it more robust to rotation.

4.2 ORB: Oriented FAST and Rotated BRIEF

 The oriented FAST and rotated BRIEF (ORB) [8] adds orientation assignment to the FAST

feature detector (see Section 2.3) and the BRIEF descriptor. In this section, two processes, (i)

the oFAST and (ii) the rBRIEF, will be introduced separately.

 oFAST: FAST Keypoint Orientation

The ORB starts by detecting FAST features in the image. It applies the FAST-9

detector for the best performance. To reduce large responses along edges, a Harris corner

measure is used to sort the FAST keypoints and pick the top N of them. For scale

invariance, the images are put in a scale pyramid and the keypoints are localized at each

scale.

Orientation of keypoints is measured by the intensity centroid. It is assumed that the

intensity of the corner is offset from its center. The centroid is defined as

 𝐶 ൌ ቀ
భబ

బబ
,

బభ

బబ
ቁ [4-4]

23

where 𝑚ଵ, 𝑚ଵ and 𝑚 are the moments of a patch.

 𝑚 ൌ ∑ 𝑥𝑦𝐼ሺ𝑥, 𝑦ሻ௫,௬ . [4-5]

The patch is chosen to be a circular region of radius r, so 𝑥, 𝑦 ሾെ𝑟, 𝑟ሿ.

Then, construct a vector 𝑂𝐶ሬሬሬሬሬ⃑ from the corner center 𝑂 to the centroid C. Finally,

the orientation of the patch is

 𝜃 ൌ 𝑎𝑡𝑎𝑛2ሺ𝑚ଵ, 𝑚ଵሻ [4-6]

where atan2 is the quadrant-aware version of arctan, i.e.,

 θ ൌ arctan ቀబభ

భబ
ቁ ൌ arcsin ൬

బభ

ඥబభ
మାభబ

మ൰ ൌ arcsin ൬
భబ

ඥబభ
మାభబ

మ൰ [4-7]

An illustration of orientation assignment is shown in figure 4.2.

Fig. 4.2: An illustration of centroid orientation. The
center 𝑂 of the circular image patch is the detected
keypoint and 𝜃 is its orientation. C is the intensity
centroid.

 rBRIEF: Rotation-Aware BRIEF

The rotation-aware BRIEF (rBRIEF), as its name implies, improves the original

BRIEF descriptor by including orientation description. From the knowledge mentioned in

Section 4.1, a BRIEF descriptor with length 𝑛ௗ is taken to be

 𝑓
ሺ𝒑ሻ ∶ൌ ∑ 2ିଵ

ଵஸஸ
𝜏ሺ𝒑; 𝒙; 𝒚ሻ [4-8]

 where the test 𝜏ሺ𝐩; 𝒙; 𝒚ሻ is defined as

 𝜏ሺ𝒑; 𝒙; 𝒚ሻ ∶ൌ ቄ1 𝑖𝑓 𝒑ሺ𝒙ሻ ൏ 𝒑ሺ𝒚ሻ
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 [4-9]

The random selection of ሺ𝒙, 𝒚ሻ-location pairs are also i.i.d. 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛ሺ0, ଵ

ଶହ
𝑆ଶሻ.

24

For the ORB, usually the descriptors of the BRIEF-32 are applied (i.e. 𝑛ௗ ൌ 256.

See the definition in chapter 4.1). Furthermore, to allow the BRIEF to be robust to in-

plane rotation, it is steered according to the orientation of keypoints. For any set of 𝑛ௗ

binary tests at location ሺ𝒙, 𝒚ሻ, an 2 ൈ 𝑛ௗ matrix 𝓢 is defined:

 𝓢 ൌ ቀ
𝒙, … , 𝒙
𝒚, … , 𝒚

ቁ [4-10]

Use the patch orientation, 𝜃, calculated in the oFAST, and rotate the patch to 𝜃

with a rotation matrix 𝓡ఏ. Then, the steered version of 𝓢 is constructed:

 𝓢ఏ ൌ 𝓡ఏ𝓢 [4-11]

Finally, an rBRIEF descriptor 𝑔
 which is the rotated version of 𝑓

 can be

created. It means that under the condition that ሺ𝐱, 𝐲ሻ in f୬ౚ
ሺ𝐩ሻ belongs to 𝓢ఏ, 𝑔

can be defined:

 𝑔
ሺ𝒑, 𝜃ሻ ≔ 𝑓

ሺ𝒑ሻ|ሺ𝒙, 𝒚ሻ ∈ 𝓢ఏ [4-12]

In conclusion, the ORB combines the advantage of the computation efficiency of FAST

and BRIEF, and makes some correction to have robustness to rotated cases. It requires less

computation time than the SIFT and the SURF, meanwhile, remaining a good performance in

distorted images.

4.3 BRISK: Binary Robust Invariant Scalable Keypoints

 The binary robust invariant scalable keypoints (BRISK) [9] combines a FAST-based

detector and bit-string descriptors. Unlike the BRIEF and the ORB, it applies circular image

patches and the sampling points are equally distributed. The two steps, (i) keypoints

localization and (ii) description, will be introduced separately.

4.3.1 Keypoint Localization

 To localize keypoints, the BRISK mainly applies FAST 9-16 detectors (see Section 2-3)

to find possible features. Its process can be summarized as the flowchart shown in figure 4.3.

These steps are applied in the scaling space, so its scaling space will be introduced first.

25

Fig. 4.3: Flow chart of the BRISK.

 The Scaling Space

In the BRISK, the scaling space consists of 𝑛 octaves (denoted by 𝑐, i = 1, 2, …,

n) and 𝑛 intra-octaves (denoted by 𝑑, i = 1, 2, …, n) and usually 𝑛 ൌ 4. Each octave

or intra-octave is the downsampling result of the previous one. The downsampling rules

are as follows:

‧ 𝑐ାଵ is downsampled from 𝑐 by a factor of 2.

‧ 𝑑ାଵ is downsampled from 𝑑 by a factor of 2.

‧ 𝑑 is downsampled from 𝑐 by a factor 1.5.

The illustration of the above method is shown in the left part of figure 4.4.

 FAST 9-16 Detection and Non-maxima Suppression

A FAST 9-16 detector, which needs 9 consecutive pixels in the 16-pixel circle to

satisfy the criterion of FAST, is applied on each octave and intra-octave with the same

threshold. Before using FAST, the image should be smoothed with Gaussian kernels as

the others mentioned before. Integral images and the box filter, i.e. the skills in the SURF,

can be used here for computation efficiency.

The non-maxima suppression is quite similar to the SIFT. The BRISK estimates the

FAST score 𝑠 of a potential keypoint and its 33 1 = 26 neighbors. (8 in the same layer

and total 18 in the lower and upper layer). An keypoint must be a local maximum in this

score. The FAST score 𝑠 is defined as:

 𝑠 ൌ ∑ ห𝐼 െ 𝐼
หଵ

ୀଵ [4-13]

where 𝐼 is the intensity of the interest point and 𝐼
 is the intensity of the ith point on

the circle in Fig. 2.3.

 Moreover, in the case where 𝑐 which is the original input image, the FAST 5-8

detector is applied. By this way, keypoints can be well localized in 𝑐.

Each potential point is compared with those in upper and lower layers.

26

Fig. 4.4: Illustration of the BRISK scale space. In the left part, we can see that
the scales of octaves and intra-octaves follow the rules above. The red points
are the keypoint and its corresponding points on the neighboring octaves. In
the left part, a fitted parabola of the scale and score of these three red points
on the octaves is shown. The maximum in score-axis is the green point. With
the help of its scale, we can re-interpolate a position between the octaves to be
the final keypoint location (the biggest red point on the right part). [9]

 Location Interpolation

To improve the performance in the blurred image, the BRISK aims to estimate the

true scale of each keypoint. Thus, interpolation is applied to get a more precise location

and scale. To obtain the location, apply sub-pixel location (similar to Eq. (3.6) and (3.7)

in SIFT) on the FAST-scored-patch of the keypoint and the corresponding ones in upper

and lower octaves. Thus, we can obtain a more accurate location in each of these three

octaves, which are the 3 red points on 𝑑ିଵ, 𝑐 and 𝑑 respectively in the left part of

figure 4.4.

To avoid resampling, reconsider a 3 ൈ 3 patch on each of these three octaves and

calculate the new scores using Eq. (4-13). Next, fit a 1D parabola along the refined scores

and the scale of the 3 points mentioned above. This step is illustrated in the right part of

figure 4.4. The scale of the point with maximum score value on the fitted parabola (the

green point on figure 4.4) is considered the real scale of the keypoint.

Eventually, after interpolating a new position with the scale of the previous 3 points

and the final real scale, a keypoint with accurate scale and location is created.

27

4.3.2 Keypoint Description

 After keypoints localization, the keypoint descriptors are determined. Before discussing

its orientation, the sampling pattern for keypoint description will first be presented.

 The Sampling Patterns

The sampling pattern is shown in figure 4.5. We can see that the samples (denoted

by blue dots) are equally distributed in the image patch and form concentric circles with

the keypoint, which is quite different from the random sampling in the BRIEF and the

ORB. The points should be Gaussian smoothed before sampling the image intensity. To

avoid aliasing effects, 𝜎 of Gaussian kernels is proportional to the distance between the

samples and the keypoint. We can denote the intensity of ሺ𝑥, 𝑦ሻ in the receptive field

filtered with Gaussian kernel with 𝜎 as Iሺx, y, σ).

Similar to the BRIEF and the ORB, the selection of sampling-point pairs is required.

Here, every point is paired with the other points in the image patch. Thus, we have

 𝐶ଶ
ே ൌ 𝑁ሺ𝑁 െ 1ሻ 2⁄ [4-14]

pairs in total in each image patch.

Fig. 4.5: Illustration of the BRISK sampling pattern with 60 points. The center
is the detected keypoint and the other blue points are the sampling points. The
red circles with different radius represent different Gaussian kernels. The
bigger the circles are, the bigger the sizes of the kernels are. [9]

 Orientation Assignment

In the BRISK, local gradients are considered to be the orientations of the keypoints.

The local gradients 𝑔൫𝒑, 𝒑൯ of a sampling-point pair ൫𝒑, 𝒑൯ is defined as

28

 𝑔൫𝒑, 𝒑൯ ൌ ൫𝒑 െ 𝒑൯ ∙
ூ൫𝒑ೕ,ఙೕ൯ିூሺ𝒑,ఙሻ

ฮ𝒑ି𝒑ೕฮ
మ , [4-15]

where 𝐼ሺ𝒑, 𝜎ሻ and 𝐼൫𝒑, 𝜎൯ are the smoothed intensity of the points 𝒑 and 𝒑 𝜎

and 𝜎 are smoothing scales of their receptive field respectively.

 For the overall keypoint orientation, the set 𝒜 of all sampling points is considered:

 𝒜 ൌ ൛൫𝒑, 𝒑൯ ∈ ℝଶ ൈ ℝଶ | 𝑖 ൏ 𝑁 ∧ 𝑗 ൏ 𝑖 ∧ 𝑖, 𝑗 ∈ ℕൟ [4-16]

To choose the most valuable pairs, the BRISK then consider another two subsets

constrained in the distance of the pair. It can be classified to short-distance pairings, 𝒮,

and long-distance pairings, ℒ.

 𝒮 ൌ ൛൫𝒑, 𝒑൯ ∈ 𝒜 | ฮ𝒑 െ 𝒑ฮ ൏ 𝛿௫ ൌ 13.67𝑡ൟ ⊆ 𝒜 [4-17]

 ℒ ൌ ൛൫𝒑, 𝒑൯ ∈ 𝒜 | ฮ𝒑 െ 𝒑ฮ 𝛿 ൌ 9.75𝑡ൟ ⊆ 𝒜 [4-18]

where 𝑡 is the scale of the keypoints. Thus, the pairs in ℒ is considered valuable and is

the overall gradient, i.e. all the long-distance pairs are used for the keypoint orientation.

The orientation is defined as ℊ

 ℊ ൌ ቀ
𝑔௫
𝑔௬

ቁ ൌ ଵ

∑ 𝑔൫𝒑, 𝒑൯൫𝒑,𝒑ೕ൯∈ℒ [4-19]

 Building the Descriptor

Applying the orientation assignment above, rotate the sampling pattern by

 𝛼 ൌ arctan2൫𝑔௬, 𝑔௫൯ ൌ arctan ሺ

ೣ
ሻ [4-20]

around the keypoint. Then, the descriptor is obtained by the intensity comparisons of point

pairs in the short-distance set 𝒮. The descriptor b is defined as

 𝑏 ൌ ቊ
1, 𝐼൫𝒑

ఈ, 𝜎൯ 𝐼ሺ𝒑
ఈ, 𝜎ሻ

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 , ∀ሺ𝒑

ఈ, 𝒑
ఈሻ ∈ 𝒮 [4-21]

ሺ𝐩୧
ఈ, 𝐩୨

ఈሻ is a short-distance sampling pairs rotated by the derived orientation angle α.

Using pairs in 𝒮 only is because the intensity of two close points won’t differ a lot.

Thus, the descriptor of BRISK can be robust to brightness change and it’s usually a 512

bit-string which can performs a fast matching.

29

4.4 FREAK: Fast Retina Keypoints

 The fast retina keypoint (FREAK) [10] is usually used together with the FAST detector.

The FREAK applies circular image patches which are similar to those of the BRISK, but the

sampling patterns are close to the distribution of ganglion cells in human’s retina. We will

briefly introduce human’s retina first and then extends it to the FREAK descriptor.

4.4.1 Human Retina

The retina is the innermost and light-sensitive layer tissue of an eye. Ganglion cells are

the communicating directly with the brain. In figure 4.6, the right image shows the four areas

in retina: foveola, fovea, parafoveal and perifoveal. The density of ganglion cells reduces

exponentially along the radius from perifoveal to foveola. The size of the receptive field, where

light influences the response of a ganglion cell, increases with radial distance from the center.

The sampling pattern in the FREAK is just like the distribution mentioned above.

Fig. 4.6: Illustration of human’s retina. The left part shows the density of
ganglion cells and the right part shows the four areas in retina: foveola
(the center part), fovea, parafoveal and perifoveal. [10]

4.4.2 FREAK Descriptor

 Retinal Sampling Pattern

To stimulate human’s retina, the FREAK uses circular patterns with equally spaced

samples on concentric circles. It separates the image patch to 4 parts just like retina. The

most inner part is the detected keypoint. As the distance to the keypoint decreases, the

density of sampling points goes higher and the smoothing kernel size gets smaller.

Until now, the FREAK and the BRISK are quite alike. To make it closer to the retina

model, the Gaussian kernel size exponentially increases with the radius and it makes the

smoothed area (circles in figure 4.7(b)) overlapped to capture more information. In

FREAK, we called the smoothed areas “receptive fields” because of their similarity in

size distribution (see chapter 4.4.1 again for introduction of receptive fields). Comparing

(b) to (a), we can see that FREAK’s sampling pattern is similar to retina cells.

30

Fig. 4.7: From left to right are the human retina cells, FREAK sampling pattern and the pairs
selection. We can see that (b) and (a) are similar. Each circles in (b) and (c) represents an area,
called receptive filed here, smoothed with a Gaussian kernel. The bigger the circle is, the larger
the kernel is. The black lines in (c) means sampling pairs [10]

 Orientation Assignment

For the purpose of rotation invariance, orientation assignment is needed. The FREAK

puts sampling points to pairs and sums up their gradients. Unlike the BRIEF and the ORB,

the FREAK selects sampling point pairs with symmetric receptive fields with respect to

the center. In figure 4.7(c), each black lines represents a sampling pairs and we can see

that the lines form a symmetric pattern centered at the keypoint.

Let 𝒢 be the set of all the pairs used to compute the local gradients with M pairs.

The orientation of the keypoint is

 𝑂 ൌ ଵ

ெ
∑ ቀ𝐼൫𝑃

భ൯ െ 𝐼൫𝑃
మ൯ቁ

ೝభି

ೝమ

ฮ
ೝభି

ೝమฮ∈𝒢 [4-22]

where 𝑃
భ is the 2D vector of the spatial coordinates of the center of the first receptive

field and 𝑃
మ is of the second. We can think of the receptive fields as the different scaled

images in one octave of SIFT because they are both images (or patches) smoothed with

Gaussian in different size. Then, just like the process in SIFT (Eq. (3-5)), difference of

Gaussian (DoG) is applied on the receptive fields. Then, the following binary test can be

performed on the DoG of receptive fields.

 The Binary Test

Here, the descriptor ℱ is formed by a sequence of the one-bit DoG.

 ℱ ൌ ∑ 2𝑇ሺ𝑃ሻஸழே [4-23]

where 𝑃 is a pair of receptive fields, N is the desired size of the descriptor. T is a binary

test defined as

31

 𝑇ሺ𝑃ሻ ൌ ൜1 𝑖𝑓 𝐼൫𝑃
భ൯ െ 𝐼൫𝑃

మ൯ 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 [4-24]

𝐼൫𝑃
భ൯ is the smoothed intensity of the first receptive field of the pair 𝑃 and 𝐼൫𝑃

మ൯

denotes that of the second area. Finally, the binary descriptor T is constructed, but there’s

still too much elements, so non-maxima suppression is needed.

 Non-maxima Suppression

Descriptors are now constructed by a binary test. However, some pairs might not be

useful to efficiently describe an image. Thus, the following algorithm is helpful to get the

best pairs:

1. Create a matrix D with each row representing the descriptor for each keypoint.

2. Compute the mean of each column and order the columns with respect to the

highest variance.

3. A mean of 0.5 results in the highest variance of a binary distribution. Keep the

column whose mean > 0.5 and iteratively add remaining columns having low

correlation with the selected columns.

In average, the first 512 pairs are the most relevant and hold the best performance.

Finally, the FREAK descriptor is completed.

Now, the introduction of different keypoints comes to an end. Let’s take a brief review of

the content covered in chapter 2 to 4. In chapter 2, we introduce some basic corner detection

method. Moravec’s detector determine the corner by measuring the variation of intensity

corresponding to shifts in an image patch. Then Harris corner detector improves Moravec’s

method and detect a corner by measurement of corner response R. FAST aims to present a

really fast and easy way. It compares the intensity of the points which are on a circles center at

a potential keypoint.

The methods above are simple, but aren’t invariant when some transformations occur.

Thus, chapter 3 and 4 have both presented some keypoints approaching to be robust to scale,

rotation, illuminance and any other transformations happening in real life. Furthermore, they

all construct descriptors to enhance the accuracy in matching. Table 4.1 gives an overview of

these keypoints. Those in upper region are with non-binary descriptors (chapter 3) and those in

lower one are with binary descriptors (chapter 4). BRIEF isn’t on the table because it isn’t

considered a kind of keypoints and is actually a fundamental binary descriptor. PCA-sift isn’t

there either because its process is almost same as SIFT. It performs PCA to reduce the

dimension of the outputs of SIFT’s descriptors.

32

Table. 4.1: It is an overview of keypoints introduced in chapter 3 and 4. The upper region shows those with non-

binary descriptors and the lower, binary.

 SIFT SURF

Scale space Scale pyramid

Each octave holds different image size

and blurred images.

Scale pyramid

Image sizes remain the same but box filter’s

sizes change.

Keypoint

Detection

Sub-pixel localization on extrema of DoG Sub-pixel localization on maxima of

𝑑𝑒𝑡ሺℋ𝑎𝑝𝑝𝑟𝑜𝑥ሻ

Orientation

Assignment

The peak of gradient of gradient

histogram

Sum of Harr wavelet responses in both x &

y direction

Descriptor

Dimension

A 128D vector A 64D vector

Image Patch

for

Descriptor

Divide a 16 ൈ 16 window centered at a

keypoint to 16 4 ൈ 4 sub blocks

Divide a 20s ൈ 20s window centered at a

keypoint (s: scale of the keypoint) 16

5s ൈ 5s sub blocks

Descriptor

Construction

Orientation of each sub block Sum of Harr wavelet responses in both x &

y direction and their absolute value of each

sub block

 ORB BRISK FREAK

Scale space Same as SIFT - -

Sampling

pattern

Points on a circle center at a

keypoint

Uniform distributed points

form concentric circles

Similar as BRISK, but more

alike to human’s retina.

Keypoint

Detection

oFAST

(FAST + Orientation)

FAST 9-16 Usually use FAST

Orientation

Assignment

Intensity Centroid Intensity gradient of long-

distance sampling pairs

Intensity gradient of

sampling pairs

Descriptor

Dimension

A 256 bit string Usually a 512 bit string Usually a 256 or 512 bit

string

Sampling

pair for

Descriptor

Random pairs

~ i. i. d. Gaussianሺ0,
1

25
𝑆ଶሻ

Every point is paired with

the other points of the

sampling pattern.

Symmetrically chosen with

respect to the center

Descriptor

Construction

rBRIEF

(Rotation-Aware BRIEF)

Intensity binary test on

sampling pairs with

sampling pattern rotated to

its orientation

Bit strings formed by a

sequence of one-bit DOG

33

Chapter 5 Keypoint Matching

In the previous two chapters, we focus on different methods to extract features and obtain

descriptors of keypoints. We can see that a descriptor consists of the information of the

neighboring points. Thus, the comparison between descriptors can lead to a better matching

result than comparing only the intensities of keypoints. In other words, features introduced in

chapters 3 and 4 are more often applied to template matching than those in chapter 2.

In this chapter, matching ways of non-binary and binary descriptors are discussed. Last

but not least, RANSAC, which is considered a helpful tool, is also introduced.

5.1 Matching for Non-binary and Binary Descriptors

 To match two keypoints, the most direct way is to calculate the distances of their

descriptors. The pairs with the minimal distances are considered the matched keypoints.

 For non-binary descriptors, Euclidean distance is used.

 𝑑ሺ𝒑, 𝒒ሻ ൌ ඥሺ𝑝௫ െ 𝑞௫ሻଶ ሺ𝑝௬ െ 𝑞௬ሻଶ [5-1]

 As for binary descriptors, the Hamming distance is applied. The Hamming distance

represents the number of bits different in the two bit-strings which can measure how similar

the two descriptors are.

 In order to reduce the mismatching probability, a threshold can be set to constrain the

minimal distance. Consider two different images, A and B, we want to match the features from

A to B. If the minimal distance of a keypoint on A and all the keypoints on B is larger than the

threshold, then there is no matching point to this feature.

5.2 The Application of RANSAC

 The random sample consensus (RANSAC) [11] is an iterative algorithm for finding a

mathematical model from a set of data. A simple example shown in figure 5.1 is to fit a set of

2D data by a line. The red line is the resulting fitting line. The blue points which are near the

line are called inliers and other points in black are considered outliers.

Fig. 5.1: It’s the simplest example of RANSAC. The red line is the output fitting line.

34

 Consider 𝑁 data points. The algorithm of RANSAC is shown as follows:

1. Choose 𝑛 samples in the data randomly.

2. Fit a mathematical model with these 𝑛 samples.

3. For each of other 𝑁 െ 𝑛 points, compute their distances to the fitting model and

count the number of inlier points, 𝑐.

4. Run the above steps for 𝑘 times and output the model with the largest 𝑐.

For the application in matching keypoints, the RANSAC algorithm is performed on the

differences of x-coordinate and y-coordinate of the potential matching points. Here, the

objective model is the fitting line. Finally, we preserve the inliers of the output model to be the

final matching pairs. Figure 5.2 shows a comparison of SIFT feature matching without the

RANSAC and with the RANSAC, respectively. We can see that applying RANSAC leads to a

better result.

Fig. 5.2: Comparison of SIFT feature matching without RANSAC and with RANSAC. The red points are
outliers and the green ones are inliers. We can see that after using RANSAC, the results become better.

35

Chapter 6 Stimulation Results

 In this chapter, we take advantage of Computer Vision Toolbox in MATLAB to stimulate

the matching results of the SURF, the ORB, the BRISK and the FREAK descriptor with the

FAST detector. A variety of datasets are applied. In the first section, the results of some simply

affine transformed images are shown, while in the latter sections, some more complicated cases

will be discussed. Results of viewpoint changed, zoomed and rotated, brightness changed,

JPEG compressed and blurred images will then be presented. To make the resulting matching

lines clearer, the number of matching points is controlled to be less than 30 if possible. The

datasets in the second to the last sections are all from [17].

6.1 Affine Transform

Fig 6.1 Lena: The leftmost one is the original image. Then, from the left to right are
images: rotated by 30° clockwise, scale to 1.5𝑀 ൈ 1.6𝑁 (M, N are the original length
and width) and sheared along y-axis.

Figure 6.1 are the test images in this section, the left most image is the original image. We

will match its keypoints to some affined transformed images. Figure 6.2 and 6.3 are the results.

Fig 6.2: The results of SURF and ORB. Red images in the background of each results are the
original images and the blue ones are the transformed. The yellows lines point to which points are
matched with.

36

Fig 6.3: The results of BRISK and FAST+FREAK. Red images in the background of each
results are the original images and the blue ones are the transformed. The yellows lines
point to which points are matched with.

6.2 Viewpoint Change

Fig 6.4 Graffiti: The one on the upper-left corner is the original image and the followings are
the same graffiti but taken from different point of view.

After the stimulation of simple transforms, we start to perform experiments on the more

complicated cases. In this section, the goal is to see whether the features can be matched

correctly even the pictures are taken in different viewing angle. Figure 6.4 shows our original

data and figure 6.5 presents the stimulation results.

In these 6 test images, a latter one can be considered a more difficult case. See figure 6.4,

no matter which method is chosen, as the viewing angle becomes steeper, the matching lines

in the result get messier. Starting from the fourth experiment, most of the keypoints cannot be

matched properly. However, in such a severe challenge, the ORB performs relatively well. We

can see that in the top four matching experiment, it can match properly. Even in the fourth one

that other methods have already failed, it still has a high correctness.

37

Fig 6.5: The matching results of Graffiti. In this case, the ORB performs the best.

6.3 Zoom and Rotation

Fig 6.6 Boat: The one on the upper-left corner is the original image and the following
ones are the same landscape of boat but are rotated along with zoom.

In this section, we make the rotation case a bit harder. Each transformed image is not only

rotated, but is also zoomed in. It is the most irregular transform among our stimulations. The

image in the upper left corner of figure 6.6 is the original image and the followings are images

with different rotation degrees and different scales of zooming. See figure 6.7, the ORB also

has the best performance here. In these five experiments, it matches almost perfectly.

Furthermore, the SURF matches well when the rotation angle is small, but when the image is

rotated by a large degree, e.g. the third and the fifth results, the performance becomes worse.

38

The BRISK and FAST+FREAK have the similar problem. However, for the fourth experiment,

which only performs zooming, the SURF, the ORB, and the BRISK keypoints perform well.

Fig 6.7: The matching results of image Boat. In this case, the ORB performs the best.

6.4 Brightness Change

Fig 6.8 Leuven: The one on the upper-left corner is the original image and the followings are the darken
ones.

In this section, we investigate whether the brightness change affects the matching result.

Figure 6.8 shows our data here and we can see that the images go darker and darker. As for the

matching results in figure 6.9, it seems that most of the features are perfectly matched except

the SURF. It shows that the SURF is less robust to the brightness change.

39

Fig 6.9: The matching results of the Leuven image. In this case, most of the methods perform well.

6.5 JPEG Compression

Fig 6.10 Ubc: The sub-image on the upper-left corner is the original image and the followings are
the ones applied JPEC Compression with different quantization levels.

In this section, we aim to see the matching results of different quantization levels of JPEC

compression. The image on lower right corner in figure 6.10 misses most of the details of the

original image. In this case, all the features of the corresponding methods are matched perfectly

(see figure 6.11).

40

Fig 6.11: It’s the matching results of the Ubc image. In this case, most of the methods perform well.

6.6 Blurring

Fig. 6.12 Bikes: The one on the upper-left corner is the original image and the followings are its blurred
results.

In the final section of this chapter, we perform some experiments on the blurred images.

From upper left to lower right, the images are getting blurring in each stimulation. The test

images and the matching results are all shown in figures 6.12 and 6.13, respectively. In this

case, the ORB and the BRISK keypoints can be matched perfectly.

41

Fig. 6.13: The matching results of image Bikes. In this case, FAST+FREAK is the least sensitive in blurring. The
ORB and the BRISK are seem to be perfectly matched.

According to our stimulations, we can conclude that rotation and viewpoint change could

affect the performance of keypoint matching. By contrast, most of existing keypoint matching

methods are robust to scaling, shearing, brightness change, JPEG compression, and blurring.

Among the four kinds of features that we have compared, the ORB seems to have a more stable

performance in each case.

42

Chapter 7 Conclusion

In early times, keypoints can only be corners or some points on edges. With the

development of the SIFT, the SURF, the ORB, the BRISK, and the FREAK, keypoints can

definitely describe some properties of small parts of an image. In this tutorial, we can see that

there are a variety of ways to extract keypoints and to construct descriptors. Some methods aim

to reduce the complexity of previous research, while some approach is more robust to rotation,

noise, illuminance, etc. From our experimental results, we can see that each kind of features

has its own pros and cons. We can choose the most appropriate features depending on which

kind of data set it is. As mentioned, there are lots of applications of feature matching. In the

future, extracting features with efficient ways meanwhile remaining its performance on

matching will still be an interesting issue.

43

Reference

[1] C. Harris, M. Stephens, A combined corner and edge detector, in: Proceedings of the Alvey

Vision Conference, 1988, pp. 147-151

[2] E. Rosten, T. Drummond, Machine Learning for high speed corner detection, in: In

European Conference on Computer Vision, volume 1, 2006.

[3] D. Lowe, Object recognition from local scale-invariant feature, in: ICCV, 1999.

[4] D. Lowe, Distinctive image features from scale-invariant keypoints, in: IJCV 60 (2) (2004)

91-110.

[5] Y. Ke, R. Sukthankar, PCA-SIFT: a more distinctive representation for local image

descriptors, in: CVPR, issue 2, 2004, pp. 506-513.

[6] H. Bay, A. Ess, T. Tuytelaars, L. V. Gool, SURF: Speed-Up Robust Features, Computer

Vision and Image Understanding 10, 346-359, 2008.

[7] M. Calonder, V. Lepetit, C. Strecha, P. Fua, BRIEF: Binary robust independent elementary

features, in: In European Conference on Computer Vision, 2010.

[8] E. Rublee, V. Rabaud, K. Konolige, G. Bradski, ORB: an efficient alternative to SIFT or

SURF, in: IEEE International Conference on Computer Vision, 2011.

[9] S. Leutenegger, M. Chli, and R. Siegwart. BRISK: Binary Robust Invariant Scalable

Keypoints, in: IEEE International Conference on Computer Vision, 2011.

[10] Alahi, A., Ortiz, R., & Vandergheynst, P. (2012, June). Freak: Fast Retina Keypoint. in:

IEEE conference on computer vision and pattern recognition (pp. 510-517), 2012.

[11] M.A. Fischler and R.C. Bolles. Random sample consensus: A paradigm for model fitting

with applications to image analysis and automated cartography. in: Communications of

the ACM, 24(6):381–395, 1981.

[12] H. P. Moravec, Obstacle Avoidance and Navigation in the Real World by Seeing Robot

Rover, Doctoral dissertation, Stanford University, 1980.

[13] H. Kamel, Y. Chahir. SIFT Detectors for Matching Aerial Images in Reduced Space. in:

4th International Conference on Computer Integrated Manufacturing CIP, 2007

[14] N. Hatami, Y. Gavet, J. Debay. Bag of Recurrence Patterns Representation for Time‑series

classification. in: Pattern Analysis and Applications. 22. 10.1007/s10044-018-0703-6,

2018

[15] https://www.eecs.tu-berlin.de/fileadmin/fg144/Courses/10WS/pdci/talks/sift-

feature_extraction.pdf

[16] https://www.gettyimages.hk/%E5%9C%96%E7%89%87/albert-einstein

[17] http://kahlan.eps.surrey.ac.uk/featurespace/web/data.htm

[18] Brown, Matthew A. and David G. Lowe. Invariant Features from Interest Point Groups.

in: BMVC, 2002.

