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Abstract 
 
Wavelet transforms have become increasingly important in image compression since 
wavelets allow both time and frequency analysis simultaneously. This paper 
investigates the fundamental concept behind the wavelet transform and provides an 
overview of some improved algorithms on the wavelet transform. The latter part of 
this paper emphasize on lifting scheme which is an improved technique based on the 
wavelet transform. 
 

1. Introduction 
 
The wavelet transform plays an extremely crucial role in image compression. For 
image compression applications, wavelet transform is a more suitable technique 
compared to the Fourier transform. Fourier transform is not practical for computing 
spectral information because it requires all previous and future information about the 
signal over the entire time domain and it cannot observe frequencies varying with 
time because the resulting function after Fourier transform is a function independent 
of time [1]. On the other hand, wavelet transforms are based on wavelets which are 
varying frequency in limited duration [2]. Due to the practicality of the wavelet 
transforms, this research paper is written to investigate the properties and the 
improvements that can be made to enhance the performance of the wavelet 
transforms. At the beginning of this paper, background information such as 
time-frequency analysis and multiresolution analysis are given. Techniques related 
to multiresolution theory are also briefly discussed. The mid-portion of the paper 
focuses on the wavelet transforms and their derivations for both one dimensional 
and two dimensional cases. Improved algorithms for the wavelet transforms 
including the fast wavelet transform, lifting scheme, and reversible integer wavelet 
transform are provided in the remainder of this paper. Lifting-based discrete wavelet 
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transform has many advantages over the convolution-based transform and it can be 
combined with the concept of integer-to-integer transform in order to enhance the 
performance of lossless image compression. 
 

2. Backgrounds on Time-Frequency Analysis and the 

Windowed Fourier Transform 
 
A window function w(t) [1] is used to identify regions in time corresponding to the 
desired spectral characteristics at all frequencies. Multiplying a signal with a 
window function before taking FT can restrict the spectral info of the signal to the 
domain of influence of the window function. By translating a window function in 
time domain, we can cover all the information in entire time domain and analyze the 
spectral info in localized neighborhoods in time. The center t* and radius wΔ of a 
window function w are defined as 

2 2*
2

( )t w t w t dt
∞−

−∞
= ∫       (1) 

1 2
1 2* 2

2
( ) ( )w w t t w t dt

∞−

−∞

⎡ ⎤Δ = −⎢ ⎥⎣ ⎦∫      (2) 

We assume that both w  and ŵ  ( w  is well-localized in time and ŵ  is 
well-localized in frequency) are window functions with rapid decay in time and 
frequency, respectively. The FT of any window function w with t*=0 is defined as 

1( , )( ) ( ) ( )
2

w jwtT w f f t w t e dtτ τ
π

∞ −

−∞
= −∫     (3) 

2 wΔ  and 2 ŵΔ are the width (width of time window) and height (width of frequency 
window) of the window function respectively. The constant time-frequency area is 

ˆ4 w wΔ Δ . In order to achieve a localized time-frequency spectrum, narrow time and 
frequency windows are required. Therefore, a different windowed FT that can 
achieve varying time and frequency is needed. In order to realize different degrees 
of localization, the size of the time window must be changed. This can be done by 
reciprocally varying the size of the frequency window while keeping the area of the 
window constant. But there is a tradeoff between time and frequency localization 
[1]. 
 
2.1 Heisenberg’s Uncertainty Principle 
 
Heisenberg’s Uncertainty Principle imposes a lower bound on the area of the time 
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frequency window of any window function: 

2 2
ˆ

2 2

ˆ
4 4 2

ˆw w

xw w
w w

ω
Δ Δ = ⋅ ⋅ ≥       (4) 

The principle suggests that a function’s frequency component and the position of the 
component cannot both be measured to an arbitrary degree of precision 
simultaneously: 

 

2 2

2
2

ˆ
1

ˆ 2

wfxf
f f

⋅ ≥  for ( )f C R∞∈     (5) 

 
The windowed FT ( , )( )wT w fτ  is called Gabor transform if the window function is 
a Gaussian. Gabor transform has a tight and rigid time-frequency window and it 
does not vary over time or frequency. A sinusoid’s frequency is able to localize 
transient spectral information with high frequency to a narrow interval and it allows 
wider time interval [1]. 

 

3. Multiresolution Analysis 
 
Multiresolution analysis (MRA) [3] is a very well-known and unique mathematical 
theory that incorporates and unifies various image processing techniques such as 
subband coding, pyramidal image processing, and quadrature mirror filtering. These 
techniques will be discussed in the following section. The main purpose of this 
analysis is to obtain different approximations of a function f(x) at different levels of 
resolution [2], [4]. Both the mother wavelet ( )xψ  and the scaling function ( )xϕ  
are important functions to be considered in multiresolution analysis [4]. 
 
A linear combination of expansion functions [2] is often a better representation to 
express a signal function f(x): 

 ( ) ( )k k
k

f x xα ϕ=∑        (6) 

The kα  and the ( )k xϕ in (6) are called real-valued expansion coefficients and 
real-valued expansion functions respectively. A unique ( )k xϕ  is called a basis 
function for a unique expansion in which only one set of kα  exists for a particular 
f(x). The function space of the expansion set { }( )k xϕ  can be expressed as 

 { }( )k
k

V span xϕ=        (7) 
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The expansion coefficients can be found by computing the inner product of the 
function f(x) and the dual function of ( )k xϕ : 

 *( ), ( ) ( ) ( )k k kx f x x f x dxα ϕ ϕ= = ∫     (8) 

The fact that ( ) ( )k kx xϕ ϕ= is true if the expansion functions form an orthonormal 
basis. On an orthonormal basis, the inner product is expressed as  

 
0 ,

( ), ( )
1 ,j k jk

j k
x x

j k
ϕ ϕ δ

≠⎧
= = ⎨ =⎩

     (9) 

The equation (8) can be rewritten as 

 ( ), ( )k k x f xα ϕ=       (10) 

In another occasion which the expansion functions are not orthonormal but are an 
orthogonal basis for V, then the basis functions and their duals are called 
biorthogonal. The biorthogonality can be shown as  

 
0 ,

( ), ( )
1 ,j k jk

j k
x x

j k
ϕ ϕ δ

≠⎧
= = ⎨ =⎩

     (11) 

 
3.1 Scaling Function 
 
A scaling function [2] is used to approximate an image function at different level of 
approximations. Each approximation is differed by a factor of two from the 
approximation at the nearest neighboring level. Scaling functions are actually 
expansion functions which are composed of integer translations and binary scaling 
and contained in the set { }, ( )j k xϕ . The general scaling functions are  

 /2
, ( ) 2 (2 )j j

j k x x kϕ ϕ= −       (12) 

for both j and k∈ , and 2( ) ( )x Lϕ ∈ . The parameter k and j determine the 
position of , ( )j k xϕ  along the x-axis and the width of , ( )j k xϕ along the x-axis 
respectively. For a specific j, the subspace of an expansion set is commonly 
expressed as 

{ }, ( )j j k
k

V Span xϕ=       (13) 

The parameter j is proportional to the size of Vj [2]. There are four fundamental 
requirements [2] of multiresolution analysis that scaling functions must follow: 
1. The scaling function is orthogonal to its integer translates. 
2. The subspaces spanned by the scaling function at low resolutions are contained 

within those spanned at higher resolutions: 
 1 0 1 2V V V V V V−∞ − ∞⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ .   (14) 

3. The only function that is common to all jV  is ( ) 0f x = . That is 

 { }0V−∞ = .       (15) 
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Fig. 1 The spatial relation of scaling and wavelet function spaces. 
 
This is also called downward completeness property [4]. 

 
4. Any function can be represented with arbitrary precision. As the level of the 

expansion function approaches infinity, the expansion function space V 
contains all the subspaces. 

 ( ){ }2V L∞ = R        (16) 

This is also called upward completeness property [4]. With the above condition 
being satisfied, the weighted sum of the expansion functions of subspace Vj+1 

can be used to express the expansion functions of subspace Vj [2]: 

, 1,( ) ( )j k n j n
n

x xϕ α ϕ +=∑       (17) 

 
3.2 Wavelet Function 
 
Wavelet function [2] is a type of scaling function that satisfied the four MRA 
requirements for scaling functions described in the previous subsection. The wavelet 
function is analogous to the scaling function expression in (12). Both integer 
translation and binary scaling are incorporated. The function ( )xψ is defined as 

/ 2
, ( ) 2 (2 )j j

j k x x kψ ψ= −      (18) 

for all k∈Z  that spans the space jW  where 

{ }, ( )j j k
k

W span xψ=      (19) 

The wavelet function spans the difference between any two adjacent scaling 
subspaces, jV  and 1jV +  as depicted in   
Fig. 1. Therefore, a general equation describing the relationship between the scaling 
and wavelet function spaces is derived: 

1j j jV V W+ = ⊕        (20) 

2 1 1 0 0 1V V W V W W= ⊕ = ⊕ ⊕

0V0W
1W

1 0 0V V W= ⊕
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This expression can be further extended to express the space of all measurable, 
square-integrable functions: 

( )2
0 0 1 .......L V W W= ⊕ ⊕ ⊕R      (21) 

Equation (21) can be expressed without the scaling function space: 

( )2
2 1 0 1 2..... .....L W W W W W− −= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕R   (22) 

  
Fig. 1 also illustrates crucial information about the purpose of wavelet and scaling 
functions. The scaling function at the lowest resolution level 0V  provides an 
approximation to the actual function f(x) and wavelets from 0W  encodes the 
difference between this approximation and the actual function [2]. In fact, any 
wavelet function can be expressed as a weighted sum of shifted, double-resolution 
scaling functions [2]: 

 ( ) ( ) 2 (2 )
n

x h n x nψψ φ= −∑      (23) 

where the ( )h nψ  are called the wavelet function coefficients. The ( )h nψ  can be 
related to ( )h nφ  by 

 ( ) ( 1) (1 )nh n h nψ φ= − −      (24) 

4. MRA Related Techniques 
 
4.1 Subband Coding 
 
Subband coding [2] decomposes an image into a set of band-limited components, 
called subbands. The subbands can be reassembled to reconstruct the original image 
perfectly without error. Fig. 2 shows the components of two-band subband coding 
and decoding system. Reconstruction of the original signal is accomplished by 
upsampling, filtering, and summing the individual subbands as shown in the top 
block diagram of Fig. 2.  
 Here we use Z-transform to express the subband coding theory because 
Z-transform can easily handle changes in sampling rate. According to the 
Z-transform and its sampling theorem, we can express the output as 

 
[ ]
[ ]

1
0 0 1 12

1
0 0 1 12

ˆ ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

X z H z G z H z G z X z

H z G z H z G z X z

= +

+ − + − −
 (25) 

where the second component, which contains the –z dependence, represents the  
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Fig. 2 A two-band filter bank for coding and decoding system and the 
corresponding spectrum. 

 
aliasing introduced by the downsampling and upsampling processes. 
 The following conditions are required for perfect reconstruction of the input (i.e. 

ˆ ( ) ( )X z X z= ): 

 0 0 1 1

0 0 1 1

( ) ( ) ( ) ( ) 0
( ) ( ) ( ) ( ) 2

H z G z H z G z
H z G z H z G z

− + − =
+ =

 (26) 

 
4.2 Pyramidal Image Processing 
 
In early 1980s, a concept based on a pyramid structure was proposed. Image 
pyramid theory [2], [4] was actually developed earlier than the multiresolution 
analysis was formed. A pyramidal structure containing a collection of decreasing 
resolution images are depicted in Fig. 3. In that figure, the level J image has the 
highest resolution while the 0 level represents the lowest resolution approximation. 
For a fully populated pyramid, there are J + 1 levels from 2J × 2J to 20 × 20 and the 
size of the image decreases as the resolution goes down. Fig. 4 shows the 
fundamental system that can be iterated to generate both prediction residual pyramid 
and approximation pyramid. In the figure, a level J input is first fed into an 
approximation filter followed by a  
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Fig. 3 A pyramidal structure of an image. 

 

 
 
Fig. 4 System block diagram for building approximation and prediction residual 

pyramids. 
 
downsampler. The result of the approximation filter is downsampled by a factor of 2. 
As a result, a level J – 1 approximation that is reduced in resolution is produced and 
it is also used to generate a prediction image using an upsampler and an 
interpolation filter. Finally, a prediction residual image is obtained by computing the 
difference of the level J input image and the prediction image [2]. 
 

5. The Integral Wavelet Transform 
 
The general integral wavelet transform or continuous wavelet transform [1], [2], [4] 
is defined by 

,( )( , ) ( ) ( )a bW f a b f x x dxψ ψ
∞

−∞
= ∫      (27) 

where the mother wavelet is 
1 2

, ( ) t b
a b a

t aψ ψ− ⎛ ⎞−
⎜ ⎟
⎝ ⎠

=       (28) 

Level J – 1 
Approximation 

Level J 
Prediction 
residual 

Approximation 
filter 

Interpolation
filter 

2 ↓ 

2 ↑ 

+ ‐ 
Level J 

Input image 

Level 0 (apex) 
Level 1 

Level 2 

Level J‐1 

Level J (base) 

1 x 1 
2 x 2 

4x 4 

N/2 x N/2 

N x N 
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with ,a b∈ and 2 ( )Lψ ∈ . The continuous real variables a and b  are 
concerned with the function’s dilation (scaling) and translation respectively [4]. In 

(28), ψ  is called the wavelet function and ,a bψ  are called wavelets. Suppose both 

the wavelet function ψ  and the FT ψ̂  are window functions with centers t* and 

w*, and radii ψΔ and ψ̂Δ , the wavelet transform can be written as  

1 2
,( )( , ) ( ) ( )a bW f a b a f t t dtψ ψ

∞−

−∞
= ∫      (29) 

The 2a ψΔ  and 1
ˆ2a ψ

− Δ  are the width (width of time window which is inversely 

proportional to the center frequency 1 *a ω− ) and height (width of frequency window 
which is directly proportional to the center frequency) of the time-frequency 

window respectively. The constant time-frequency area is ˆ4 ψ ψΔ Δ  [1]. The 

admissibility criterion [1], [2], [4] must be satisfied in order to allow the wavelet 
transform to have invertible property: 

2( )
C dψ

ξ
ξ

ξ
∞

−∞

Ψ
= < ∞∫       (30) 

where ξ  is space and scale variable and ( )ξΨ  is the Fourier transform of ( )xψ . 
Once the admissibility criterion is satisfied, the inverse transform can be constructed 
by 

,2
1 1( ) ( , ) ( )a ba b

f x W a b x dadb
C aψ

ψ
+∞ +∞

=−∞ =−∞
= ∫ ∫     (31) 

 

6. The Discrete Wavelet Transform 
 
It is necessary to express the continuous dilation and translation parameters a  and 
b  in terms of discrete values. A popular way to discretize a  and b  as suggested 
by Acharya and Ray [4] is expressing the parameters as 

0
ja a= ,    0 0

jb kb a=      (32) 

where the parameter j affect the scaling of the wavelet transform and k is related to 
the translation of the wavelet function. Since the translation distance varies with 
respect to the scale of the wavelet function, the parameter b in continuous domain 
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must take the scaling factor into the account. Thus, 0
ja  is multiplied to 0kb  

complete discretization of b . By substituting a  and b  into equation (28), the 
wavelet function can be represented as 

2
, 0 0 0( ) ( )j j

a b x a a x kbψ ψ− −= −      (33) 

According to the dyadic sampling method, the value of 0a and 0b  are selected as 2 

and 1 respectively. 2 ja =  and 2 jb k= . Thus, the wavelet function [4] on an 
orthonormal basis is defined as 

2
, ( ) 2 (2 )j j

j k x x kψ ψ− −= −      (34) 

The discrete wavelet coefficients [2] can be obtained by expanding the function f(x) 
as a sequence of numbers. Note that the wavelet function is analogous to the 
function shown in (18) with the negative signs of the dilation parameter j. By 
applying the principle of series expansion, the discrete wavelet transform 
coefficients are defined as 

 
0

1

0 ,
0

1( , ) ( ) ( )
M

j k
x

W j k f x x
Mϕ ϕ

−

=

= ∑      (35) 

 
1

,
0

1( , ) ( ) ( )
M

j k
x

W j k f x x
Mψ ψ

−

=

= ∑      (36) 

for 0j j≥  and the 0( , )W j kφ  and ( , )W j kψ are the approximation coefficient and 

detail coefficient respectively. The parameter M is a power of 2 which ranges from 0 
to J - 1. The DWT coefficients enable us to reconstruct the signal function f(x) as 

0
0

0 , ,
1 1( ) ( , ) ( ) ( , ) ( )j k j k

k j j k
f x W j k x W j k x

M Mϕ ψϕ ψ
∞

=

= +∑ ∑∑  (37) 

where 1
M

 acts as a normalizing factor [2]. The reason that the discrete wavelet 

transform is a better transform than Fourier transform is because DWT have a better 
ability in localizing both time and frequency. This makes the image compression 
easier to manipulate [4]. 
 

7. The Fast Wavelet Transform 
 
An algorithm called the fast wavelet transform (FWT) [2] has been developed by 
Mallat in order to achieve fast and efficient implementation of the discrete wavelet 
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transform. The FWT is similar to the two-band subband coding scheme which is 
also based on the relationship between the coefficients of the DWT at adjacent 
scales. 

We first consider the multiresolution equation 

 ( ) ( ) 2 (2 )
n

x h n x nϕϕ ϕ= −∑  (38) 

By a scaling of x by 2 j , translation of x by k units, and making m = 2k + n, we would 
get 

 
( )

1

(2 ) ( ) 2 2(2 )

( 2 ) 2 (2 )

j j

n

j

m

x k h n x k n

h m k x m

ϕ

ϕ

ϕ ϕ

ϕ +

− = − −

= − −

∑

∑
 (39) 

and analogously,  

 1(2 ) ( 2 ) 2 (2 )j j

m
x k h m k x mψψ ϕ +− = − −∑  (40) 

A property that involves the convolution of a scaling function and a wavelet 
coefficient can be derived by the following steps: 

1. We begin by considering the definition of the discrete wavelet transform as 
shown in equation (35) and (36). 

2. By substituting equation (12) into (36), we get 

/21( , ) ( )2 (2 )j j

x
W j k f x x k

Mψ ψ= −∑      (41) 

3. Replace (2 )j x kψ −  with the right side of equation (40): 

/2 11( , ) ( )2 ( 2 ) 2 (2 )j j

x m
W j k f x h m k x m

Mψ ψ ϕ +⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
∑ ∑   (42) 

4. Rearrange the summation part of the equation: 

( 1)/2 11( , ) ( 2 ) ( )2 (2 )j j

m x
W j k h m k f x x m

Mψ ψ ϕ+ +⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
∑ ∑   (43) 

where the bracketed quantity is identical to Eq. (41) with 0 1j j= + .   
Therefore, 

 ( , ) ( 2 ) ( 1, )
m

W j k h m k W j mψ ψ ϕ= − +∑  (44) 

and similarly the DWT approximation coefficient at scale j + 1 can be expressed as  

( , ) ( 2 ) ( 1, )
m

W j k h m k W j mϕ ϕ ϕ= − +∑     (45) 

Equation (44) and (45) demonstrate that both the approximation and the detail 
coefficients ( , )W j kϕ  and ( , )W j kψ  at scale j can be obtained by convolving

( 1, )W j kϕ + , approximation coefficients at the scale j + 1, with the time-reversed 
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scaling and wavelet vectors, ( )h nϕ −  and ( )h nψ − followed by the subsequent 
subsampling. The equation (44) and (45) can then be expressed in the following  

 
Fig. 5 A forward fast wavelet transform analysis filter bank. 

 

 
Fig. 6 A synthesis filter bank of the inverse fast wavelet transform. 

 

  Fig. 7 The analysis filter bank of the two-dimensional FWT. 
 
 
convolution formats: 

 
2 , 0

( , ) ( ) ( 1, )
n k k

W j k h n W j nψ ψ ϕ = ≥
= − ∗ +     (46) 

 
2 , 0

( , ) ( ) ( 1, )
n k k

W j k h n W j nϕ ϕ ϕ = ≥
= − ∗ +     (47) 

The above equations are illustrated in Fig. 5. 
  Reconstruction of the original f(x) can be done by the inverse fast wavelet 
transform which employs the scaling and wavelet vectors that are used in the 
forward fast wavelet transform with the level j approximation and detail coefficients. 

( )h nψ

( 1, )W j nϕ +

( )h nϕ

2 ↑

2 ↑

( , )W j nψ  

( , )W j nϕ

+

( )h nψ −

( 1, )W j nϕ +

( )h nϕ −

2 ↓

2 ↓

( , )W j nψ

( , )W j nϕ

( )h nψ −

( 1, , )W j m nϕ +

( )h nϕ −

2 ↓

2 ↓

( , , )DW j m nψ

( , , )W j m nϕ

( )h mψ − 2 ↓

( )h mϕ − 2 ↓

( )h mψ − 2 ↓

( )h mϕ − 2 ↓

( , , )VW j m nψ

( , , )HW j m nψ

Columns

Columns

Rows

Rows
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This synthesis process generates the level j + 1 approximation coefficients. The 
synthesis filter bank is depicted in Fig. 6. Note that the FWT analysis filter are 

0 ( ) ( )h n h nφ= −  and 1( ) ( )h n h nψ= − , the required inverse FWT synthesis filters are 

0 0( ) ( ) ( )g n h n h nφ= − =  and 1 1( ) ( ) ( )g n h n h nψ= − =  [2].   

 

8. Wavelet Transforms in Two Dimensions 
 

A two-dimensional scaling function, ( , )x yϕ , and three two-dimensional wavelet 
( , )H x yψ , ( , )V x yψ  and ( , )D x yψ are critical elements for wavelet transforms in 

two dimensions [2]. These scaling function and directional wavelets are composed 
of the product of a one-dimensional scaling function ϕ and corresponding wavelet ψ 
which are demonstrated as the following: 

 ( , ) ( ) ( )x y x yϕ ϕ ϕ=        (48) 
 ( , ) ( ) ( )H x y x yψ ψ ϕ=       (49) 
 ( , ) ( ) ( )V x y y xψ ϕ ψ=       (50) 
 ( , ) ( ) ( )D x y x yψ ψ ψ=       (51) 

where Hψ  measures the horizontal variations (horizontal edges), Vψ  corresponds 
to the vertical variations (vertical edges), and Dψ  detects the variations along the 
diagonal directions. 
 The two-dimensional DWT can be implemented using digital filters and 
downsamplers. The block diagram in Fig. 7 shows the process of taking the 
one-dimensional FWT of the rows of f (x, y) and the subsequent one-dimensional 
FWT of the resulting columns. Three sets of detail coefficients including the 
horizontal, vertical, and diagonal details are produced. By iterating the single-scale 
filter bank process, multi-scale filter bank can be generated. This is achieved by 
tying the approximation output to the input of another filter bank to produce an 
arbitrary scale transform. For the one-dimensional case, an image f (x, y) is used as 
the first scale input. The resulting outputs are four quarter-size subimages: Wφ , 

HWψ , VWψ , and DWψ  which are shown in the center quad-image in Fig. 8. Two 
iterations of the filtering process produce the two-scale decomposition at the right of 
Fig. 8. Fig. 9 shows the synthesis filter bank that is exactly the reverse of the 
forward decomposition process. 
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  Fig. 8 A two-level decomposition of the two-dimensional FWT. 
 

 

Fig. 9 The synthesis filter bank of the two-dimensional FWT. 
 

9. Lifting Scheme 
 
Direct discrete wavelet transform implementation is theoretical invertible. However, 
due to the finite register length of the computer system, inversion errors could occur 
and it would result in unsuccessful image reconstruction. In practical cases, the 
wavelet coefficients will be rounded to the nearest integer in the discrete 
transformation stage. This makes the lossless compression impossible [5]. An 
improved implementation called lifting-based wavelet transform which is based on 
the wavelet theory is proposed and it requires significantly fewer arithmetic 
computations and memory compared to the convolution based discrete wavelet 
transform. The lifting-based DWT scheme breaks up the high-pass and low-pass 
wavelet filters into a sequence of smaller filters. These decomposed filters are then 
converted into a sequence of upper and lower triangular filters [4]. The derivations of 
the triangular matrices by lifting factorization are presented in this section. Before we 
move onto the lifting scheme, there are two essential stages that must be performed:  

( )h nψ −

( 1, , )W j m nϕ +

( )h nϕ −

2 ↑

2 ↑

( , , )DW j m nψ  

( , , )W j m nϕ

( )h mψ −2 ↑ 

( )h mϕ −2 ↑ 

( )h mψ −2 ↑ 

( )h mϕ −2 ↑ 

( , , )VW j m nψ

( , , )HW j m nψ

Columns

Columns

Rows 

Rows 

Rows 

Rows 

+

+

+

( 1, , )W j m nϕ +

( , , )W j m nϕ ( , , )HW j m nψ

( , , )VW j m nψ ( , , )DW j m nψ
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1. Representing a finite impulse response (FIR) in Laurent polynomial with 
Z-transform and 

2. Factorizing the Laurent polynomial using Euclidean algorithm. 
 

9.1 FIR representation in Laurent Polynomials 
 
In the lifting scheme, the finite impulse response filters (FIR) h and g are expressed in 
Laurent polynomial with the aid of Z-transform. For instance, the Laurent polynomial 
representation of filter h with Z-transform can be defined as 

( )
n

i
i

i m
h z h z−

=

= ∑        (52) 

where m and n are positive integers and { }|ih i∈ ∈ [6]. The degree of the 

Laurent polynomial h can be found by h n m= −  and the length of the filter is 

1h +  [4]. Suppose there are two non-zero Laurent polynomials ( )a z  and ( )b z  

with ( ) ( )a z b z≥ . The product and quotient of these two Laurent polynomials will 

produce a Laurent polynomials with a degree of ( ) ( )a z b z+  and ( ) ( )a z b z−  

respectively. Since the exact division of Laurent polynomials cannot be achieved, 

the remainder Laurent polynomial ( )r z  has a degree of ( ) ( )r z b z< . Meanwhile, 

The resulting polynomial degree will not change if an addition or subtraction 

operation is performed on the two Laurent polynomials. We can express the ( )a z  

as 

( ) ( ) ( ) ( )a z b z q z r z= +       (53) 

where the Laurent polynomial for quotient is denoted as ( )q z  [6]. 
 
9.2 Polyphase Representation of Filters 

 

We first consider the FIR-based discrete wavelet transform. The input image is fed 

into a low-pass filter h  and a high-pass filter g  separately. The outputs of the two 

filters are then subsampled. The resulting low-pass subband yL and high-pass subband 
yH are shown in Fig. 10. The original signal can be reconstructed by synthesis filters h 
and g which take the upsampled yL and yH as inputs [4]. 

In order to achieve perfect reconstruction of a signal, the filters shown in Fig. 10 
must satisfy the following conditions: 

1 1

1 1

( ) ( ) ( ) ( ) 2

( ) ( ) ( ) ( ) 0

h z h z g z g z

h z h z g z g z

− −

− −

⎧ + =⎪
⎨

− + − =⎪⎩
     (54) 
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The analysis and synthesis filters as shown in Fig. 10 are further decomposed into the  

 
Fig. 10 DWT analysis and synthesis system [6]. 

 
polyphase representations which are expressed as   

2 1 2( ) ( ) ( )e oh z h z z h z−= +        (55) 

2 1 2( ) ( ) ( )e og z g z z g z−= +       (56) 

2 1 2( ) ( ) ( )e oh z h z z h z−= +        (57) 

2 1 2( ) ( ) ( )e og z g z z g z−= +       (58) 

The he and ho in Z-transform can be expressed as 

2

2 1

( )

( )

k
e k

k
k

o k
k

h z h z

h z h z

−

−
+

⎧ =
⎪
⎨

=⎪
⎩

∑

∑
      (59) 

The two polyphase matrices of the filter h is defined as  

( ) ( ) ( ) ( )
( ) , ( )

( ) ( ) ( ) ( )
e e e e

o o o o

h z g z h z g z
P z P z

h z g z h z g z

⎡ ⎤⎡ ⎤
= = ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎢ ⎥⎣ ⎦

   (60) 

The parameter z is used since the polyphase representations are derived using 
Z-transform and the subscript e and o denote the even and odd sub-components of the 
filters which are split into subsequences. The purpose of the polyphase representation 
is to reduce the computation time. The perfect reconstruction is ensured only when the 
following relation is true [4], [6], [5]:  

1( ) ( )TP z P z I− =       (61) 
where I is a 2 by 2 identity matrix. Now the wavelet transform can be expressed using 
the polyphase matrix for forward discrete wavelet transform [4], [6] 

1

( )( )
( )

( )( )
eL

oH

x zy z
P z

z x zy z −

⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
     (62) 

and the inverse discrete wavelet transform [4] 

↑2 

+ 

1( )h z−  

1( )g z−  

↓2  Ly

Hy↓2 

( )h z

( )g z

↑2 
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Fig. 11 Polyphase representation of wavelet transform [6]. 

 

1

( ) ( )
( )

( ) ( )
e L

o H

x z y z
P z

z x z y z−

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
     (63) 

Fig. 10 can then be schematically redrawn as shown in Fig. 11 based on the 
equation (62) and (63). Finally, the upper and lower triangular matrices can be 
obtained by the lifting factorization process. The lifting sequences are generated 
by employing Euclidean algorithm which factorizes the polyphase matrix for a 
filter pair [4], [6]. 
 
9.3 The Lifting Scheme 

 
9.3.1 Primal Lifting Scheme 

 
By definition, if the wavelet filter pair h and g are complementary, then any other 
finite filter gnew [6] that is complementary to h can be expressed as 

2( ) ( ) ( ) ( )newg z g z h z s z= +      (64) 
where 2( )s z  is a Laurent polynomial. With the aid of polyphase decomposition 
explained in the equations (55)~(58), the above equation can be proved by 
expanding the polyphase representation which contains the even and odd 
components: 

{ } { }
{ } { }

2

2 1 2 2 1 2 2

2 2 2 1 2 2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

new

e o e o

e e o o

g z g z h z s z

g z z g z h z z h z s z

g z h z s z z g z h z s z

− −

−

= +

= + + +

= + + +

  (65) 

Similar to the polyphase representation shown in (60), a new polyphase matrix [6] 
can be formulated as 

↑2 

+ 

z  

↓2  Ly

Hy↓2 
1z−

↑2  
1( )TP z−

 
( )P z  



18 
 

 

 

Fig. 12 The primal lifting scheme [6]. 
 

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

( ) ( ) 1 ( )
( ) ( ) 0 1

1 ( )
( )

0 1

e e enew

o o o

e e

o o

h z g z h z s z
P z

h z g z h z s z

h z g z s z
h z g z

s z
P z

+⎡ ⎤
= ⎢ ⎥+⎣ ⎦
⎡ ⎤ ⎡ ⎤

= ⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

     (66)
 

The dual polyphase matrix of Pnew is derived as 

1

1 0
( ) ( )

( ) 1
newP z P z

s z−

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

     (67) 

A new low-pass filter created by primal lifting is given by 

2( ) ( ) ( ) ( )newh z h z g z s z−= −      (68) 

Fig. 12 depicts the conventional low-pass and high-pass subband filter scheme and 
lifting of low-pass subband with the aid of high-pass subband. 
 
9.3.2 Dual Lifting Scheme 

 
Again, we suppose that h and g are complementary. Any other FIR hnew that is 
complementary to g can be expressed as 

2( ) ( ) ( ) ( )newh z h z g z t z= +      (69) 
and the polyphase matrix is given by 

1 0
( ) ( )

( ) 1
newP z P z

t z
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

     (70) 

A new high-pass filter created by dual lifting [4], [6] is given by 

2( ) ( ) ( ) ( )newg z g z h z t z−= −      (71) 

↑2 

+ 

1( )h z−

1( )g z−  

↓2  Ly

Hy↓2 

( )h z  

( )g z  

‐ 

( )s z

+ ↑2 

( )s z
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A schematic representation of dual lifting scheme is shown in Fig. 13. The figure 
demonstrates the conventional low-pass and high-pass subband filter scheme and 
lifting of high-pass subband with the aid of low-pass subband. 

 
Fig. 13 The dual lifting scheme [6]. 

 
9.4 Euclidean Algorithm for Laurent Polynomials 
 
The Euclidean algorithm [6], [7] is an important tool that can be used to find the 
greatest common divisor of two Laurent polynomials. Suppose we have two 
non-zero Laurent polynomials  and . By making   and 

 , we can formulate the Euclidean algorithm as the following steps 
starting with i = 0: 

1( ) ( )i ia z b z+ =         (72) 

1( ) ( )% ( )i i ib z a z b z+ =       (73) 
By iterating the above steps, we would get  

1

1

( ) 0 1 ( )
( ) 1 ( ) ( )

i i

i i i

a z a z
b z q z b z

+

+

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

    (74) 

The above equation can be rearranged as 

1

1

( ) ( )( ) 1
( ) ( )1 0

i ii

i i

a z a zq z
b z b z

+

+

⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

    (75) 

As a result of iteration, 

1

( ) ( ) 1 ( )
( ) 1 0 0

n
i n

i

a z q z a z
b z =

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
∏     (76) 

where the na is denoted as the greatest common denominator of  and . 
The n is the smallest number for which  = 0. The equation (76) will be used 
to factor lifting sequences as discussed in the next section. 
 
9.5 Lifting Factorization 
 
With the basic idea of the Euclidean algorithm being accounted for, we can now apply 
this algorithm to factor any pair of complementary filters (h, g) into lifting steps. The 

↑2 

+ 

1( )h z−

1( )g z−  

↓2  Ly

Hy↓2 

( )h z  

( )g z  ‐ 

( )t z
↑2 

+

( )t z
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greatest common divisor of the even and odd component he and ho of filter h can be 
computed using the Euclidean algorithm. As a result, the he and ho can be expressed 
as 

1

( ) ( ) 1
( ) 1 0 0

n
e i

io

h z q z K
h z =

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
∏

 
    (77) 

where K is the greatest common divisor of he and ho. A complementary filter gnew 
can always be found from a filter h such that  

1

( ) 1 0( ) ( )
( )

1 0 0 1/( ) ( )

new n
inew e e

new
io o

q z Kh z g z
P z

Kh z g z =

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
∏   (78) 

Since 

2 1 2 1( ) 1 1 ( ) 0 1
1 0 0 1 1 0

i iq z q z− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
    (79) 

and  

2

2

1 0( ) 1 0 1
( ) 11 0 1 0

i

i

q z
q z
⎡ ⎤⎡ ⎤ ⎡ ⎤

= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

     (80) 

we can rewrite (78) as 

/2
2 1

1 2

1 01 ( ) 0
( )

( ) 10 1 0 1/

n
inew

i i

q z K
P z

q z K
−

=

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
∏    (81) 

A general formula for generating a lifted filter g by lifting gnew is 
1 ( )

( ) ( )
0 1

new s z
P z P z ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

     (82) 

 
9.6 Scaled Lifting Scheme 
 
Recently a generalization of the improved lifting scheme [8], [9] has been developed 
to reduce the number of lifting matrices that is used to decompose the original 
matrix while the reversibility is preserved through proper reversible quantization. 
Suppose we have an input to output relation: 

[1] [1]
, , ,

[2] [2]
y x a b

y Ax y x A
y x c d
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

   (83) 

The lifting scheme can be applied to convert this relation into a reversible integer 
transform. The 2×2 matrix A can be decomposed as  

1 0
, 0

/ / 0 1
a b a b

A a
c d c a d bc a
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = ≠⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦
   (84) 



21 
 

Thus, the process of the forward integer transforms corresponding to matrix A can 
be expressed as 

[ ]1 2[1] [1] [2]ky Q p x p x−= +      (85) 

[ ]3 4[2] [1] [2]ky Q p y p x−= +      (86) 

  
(a)       (b) 

Fig. 14 Visual representation of processes of the (a) forward and (b) inverse 
integer transforms. 

 
where  

1 1 2 2( ), ( ),c cp Q a p Q b− −= =        

3 3 4 4( / ), ( / )c cp Q c a p Q d bc a− −= = −     (87) 
and c1, c2, c3, and c4 are some integers. The function Q-k represents the truncation 
operation which truncates the bits smaller than 2-k and the parameter k determines 

the size of truncate bit (i.e., [ ] 2 (2 )k k
kQ z round z−

− =  ). Similarly, the process of 

the inverse integer transform can recover the input x[1] and x[2] from the output 
y[1] and y[2]. This is shown as the following: 

[ ]4 3[2] ( [2] [1])rx Q q y p y−= −      (88) 

[ ]1 2[1] ( [1] [2])rx Q q y p x−= −      (89) 

where  

1 1
1 1 1 4 4 4( ), ( )d dq Q p q Q p− −

− −= =     (90) 

and d1 and d4 are some integers. The approximated constraints for the reversibility 
in equation (88) and (89) are defined as 

2 , / 2r k r ka d bc a− −> − >     (91) 
The processes of forward and inverse integer transforms as demonstrated in 
equation (85), (86), (88), and (89) are depicted in Fig. 14. Normally, the original 
lifting scheme decomposes a 2×2 matrix into 3 matrices and it requires the 
diagonal entries to be 1. Compared to the original lifting scheme, the scaled lifting 
scheme can decompose a 2×2 matrix into 2 matrices which is shown in equation 
(84) and it does not constrain all the diagonal entries to be 1 [9]. 
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Some major advantages [9] of the scaled lifting scheme are summarized in the 
following points: 
1. The scaled lifting scheme has better flexibility for determinant because the 

determinant of matrix A shown in equation (83) is not required to be 1. The 
det(A) can be any non-zero value instead. 

2. The conventional lifting scheme requires 3 stages for implementation while 
the scaled lifting scheme only requires 2. The reduction in implementation 
stage means fewer time cycles or less computation time is required for 
implementation. 

3. The scaled lifting scheme can achieve higher accuracy because it requires 
fewer times of quantization operation. 

According to [9], both quantization of matrix A and the rounding during the 
truncation operations can lead to approximation errors. The error which is 
represented in the normalized mean square error (NMSE) is still less than that 
produced by the original lifting scheme.  

 

10. Reversible Integer Wavelet Transforms 
 
An in-depth study on reversible integer wavelet transform was not conducted in this 
research paper. Therefore, this section will only provide some basic introduction on 
reversible integer wavelet transform method.  
 

Wavelet transforms are more widely used in the applications of lossy 
compression due to the fact that most wavelet transforms generate float-point 
coefficients that are not very suitable for lossless image compression. As a result, 
integer-to-integer wavelet transforms have been introduced since it is more practical 
for lossless image coding [10]. Reversible integer wavelet transform is also useful 
for compression systems that require minimal memory usage and low computational 
complexity [11]. The initial stage of the derivation of reversible integer wavelet 
transform involves splitting the input x[n] into even and odd indexed samples. The 
even indexed samples are defined as 

0[ ] [2 ]s n x n        (92) 

while the odd indexed samples are expressed as 

0[ ] [2 1]d n x n +       (93) 
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The M alternating dual lifting and primal lifting steps are then applied so that even 
samples sM[n] becomes the low-pass coefficients s[n] after multiplying to a scaling 
factor K and the odd samples dM[n] becomes the high-pass coefficients d[n] after 
multiplying to a scaling factor 1/K. Various types of forward reversible integer 
transforms are displayed in Table II of [11]. 
 

11. Conclusions 
 
We have discussed the implementation and theoretical foundation of the 
time-frequency analysis and the multiresolution analysis. Techniques based on or 
related to the multiresolution theory such as subband coding and pyramid algorithms 
are introduced. The mathematic foundation and derivations of the wavelet 
transforms are also covered starting from the integral wavelet transform. Based on 
the continuous wavelet transform, the discrete wavelet transform can be derived. 
Subsequent studies on the fast wavelet transform improved the discrete wavelet 
transform based on the multiresolution theory and made implementation of the 
transform feasible using convolution. The discrete wavelet transform can also be 
extended to two dimensional cases. A relatively new and efficient implementation 
called lifting-based wavelet transform has been developed and become a very 
important technique in image compression. The underlying theory and 
implementation of lifting algorithm is discussed. Future researches should continue 
on developing more effective transforms.  
si(z)  
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