Chapter 1 Basic Still Image Compression Algorithm

Generally, a still image is a sensory signal that contains significant amounts of redundant information which are represented in their canonical form. Image data compression is the technique and the process of reducing the redundancies in image data required to represent a given quantity of information [A1], [B2]. As a result, data storage requirements and communication costs are decreased. In digital image compression, data redundancy is the main issue and better compression can be achieved by reducing or eliminating data redundancy. There are three types of basic data redundancies: coding redundancy, inter-pixel redundancy, and perceptual redundancy [A1].

Coding redundancy occurs when the codes assigned to a set of events such as the pixel values of an image have not been selected to take full advantage of the probabilities of the events. Inter-pixel redundancy usually refers to the correlations resulted from the structural or geometric relationships between the objects in an image. Due to the high correlations between the neighboring pixels, any given pixel can be easily predicted from the value or values of its neighboring pixels and the information carried by individual pixels can be relatively small. Any information is said to be perceptually redundant if certain information simply has less relative importance than other information in terms of the human perceptual system [A1]. For instance, all the neighboring pixels in the smooth region of a natural image have a very high degree of similarity and this insignificant variation in the values of the neighboring pixels is not noticeable to the human eye [B2].

1.1 Basic Image Compression Model

In the introduction of this chapter, we have discussed the three types of data redundancies. In order to reduce these redundancies, a practical data compression system is required. As Fig. 1.1 shows, a basic image compression system consists of an encoder and a decoder. In the encoding process as shown in Fig. 1.1(a), the first stage transform the image into a non-visual format which contains reduced inter-pixel redundancies compared to that in the original input image. Most transform operations employed in this stage are usually reversible. A quantizer is employed in the second stage in order to reduce the perceptual redundancies of the input image. This process is, however, irreversible and it is not used in error-free compression. In the last stage of the basic image compression model, a symbol encoder creates a fixed- or variable-length code to represent the quantized output and maps the output in accordance with the code. A variable-length code is used to represent the mapped and quantized data set in most cases. The encoder assigns the shortest code words to the most frequently occurring output values and thus reduces coding redundancy. This operation is reversible. In the decoding process as shown in Fig. 1.1(b), the blocks are performed in reverse order. The reverse quantization is not included in the overall decoding process because it causes irreversible information loss.

 SHAPE * MERGEFORMAT

Fig. 1.1
A basic image compression model. (a) Encoding process. (b) Decoding process [A1], [B1].

1.2 Transform Coding

1.2.1 Image Encoding Algorithm Using the Orthogonal Transform

Suppose that we have a matrix V. If the transpose matrix Vt equals to the inverse matrix V-1, then the matrix V is called orthogonal matrix. An orthogonal transform is easier to implement compared to the conventional linear transform because the computation of the inverse of matrix V is not required. One only needs to calculate the transposed matrix of V. Table 1.1 summarizes the differences between the linear transform and the orthogonal transform.

Table 1.1
A comparison of the properties of a linear transform and an orthogonal transform [B1].

	The Linear Transform
	The Orthogonal Transform

	
[image: image2.wmf]1

1

yAx

xVy

yAxAVy

AV

yAxVx

-

-

=

=

==

=

==

· Need to compute the inverse of V
	
[image: image3.wmf]t

yVx

=

· No need to find the inverse of V
· Only need the transpose matrix Vt because transpose matrix Vt = inverse matrix V-1
· Or
[image: image4.wmf]1

t

VVVVI

-

==

· Transformation Coefficient:
[image: image5.wmf]1

(1,2,.....,)

N

nnkk

k

yvxnN

=

==

å

In most coding algorithms, the input image is divided into transform blocks and orthogonal transforms are then performed on each block. Neighboring image pixels next to each other in horizontal and vertical directions have high correlation with each other. We need to remove such correlations in both directions. Therefore, an image with a size of K1 by K2 can be divided into blocks each has a size of N1 by N2. We can use a 2-D matrix
[image: image6.wmf]211122

(1,1)

nn

xnNnN

££££

 to represent each block. However, we need to transform
[image: image7.wmf]21

nn

x

 into 1-D vector format since the orthogonal transform equation requires x to be 1-D [B1].

The pixels of a 2-D block are read and extracted from left to right in each row starting from the top row all the way to the bottom row. These pixels are then re-aligned and filled into a 1-D vector in the same sequence which the pixels are read. This is achieved by the following way:

[image: image8.wmf]121

21(1)

nnnnNnn

xx

=×-+

=

.

 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.1)

The resulting vector is

[image: image9.wmf][

]

1231

.....

t

NN

xxxxx

-

=

x

.

 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.2)

By dividing a K1 by K2 image into N1 by N2 blocks, we can get a total of K1K2/N1N2 blocks. It is known that each block contains N = N1xN2 pixels. The number of multiplications required for performing orthogonal transformation on a block which is converted into 1-D vector format is

[image: image10.wmf]222

12

NNN

=´

.
 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.3)

The number of multiplications required for the orthogonal transformation on the whole image is

[image: image11.wmf]22

12

121212

12

mul

KK

NNNKKNN

NN

=´=

.
 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.4)

According to the above equation, we can conclude that dividing the overall image into smaller blocks reduces the computational complexity. However, this defeats the purpose of removing the correlations between the neighboring pixels [B1].

In signal processing, Parseval’s relation states that orthogonal transformation is only a matrix which rotates the vector that is being transformed. The rotation preserves the subject vector length (i.e. the vector to be transformed has constant vector length before and after the orthogonal transformation.). This relation can be expressed as

[image: image12.wmf]t

V

==

yxx

.
 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.5)

Image compression algorithms that employs the orthogonal transform as its transform coding algorithm usually follows the following procedures [B1]:

1. Divide the image into transform blocks in a defined size and obtain the vector [image: image14.png]

 that represents the pixels in each block.

2. Perform orthogonal transform to each transform block and obtain transform coefficients [image: image16.png]

.

3. Quantize the coefficients using the transform coefficients as a unit.

4. Encode the quantized coefficients using an entropy coder.

1.2.2 Karhunen-Loeve Transform (KLT)

Suppose M is the number of total blocks in an image and N is the number of total pixels within each block, pixels in each block can be expressed in the following 1-D vector form:

[image: image17.wmf](1)(1)(1)(1)

12

()()()()

12

()()()()

12

t

N

t

mmmm

N

t

MMMM

N

xxxx

xxxx

xxxx

ì

éù

=

ëû

ï

ï

ï

ï

éù

=

í

ëû

ï

ï

ï

éù

=

ï

ëû

î

L

M

L

M

L

 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.6)

The general orthogonal transform equation to be perform on the divided blocks is

[image: image18.wmf]()()

(1,2,,)

mtm

yVxmM

==

L

.
 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.7)

Optimal orthogonal transform reduces the correlation (de-correlates) among the N pixels in each block to the greatest extent. The definition of covariance can be applied here to provide a good measurement on the correlation between pixels xi and xj or the correlation between the transform coefficients yi and yj:

[image: image19.wmf]()()()()

()()

ij

mmmm

yymiijj

CEyyyy

éù

=--

ëû

 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.8)

[image: image20.wmf]()()()()

()()

ij

mmmm

xxmiijj

CExxxx

éù

=--

ëû

 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.9)

where

[image: image21.wmf]()()()()

11

NN

mmmm

inininin

nn

yvxyvx

==

==

åå

.
 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.10)

To simplify the calculation, we assume that

[image: image22.wmf]()()()

mmm

iii

xxx

Ü-

.
 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.11)

Therefore, the covariance measurement can be simplified and re-expressed as

[image: image23.wmf]()()

ij

mm

xxmij

CExx

éù

=

ëû

 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.12)

[image: image24.wmf]()()

ij

mm

yymij

CEyy

éù

=

ëû

.
 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.13)

The covariance measurements can be written as the following covariance matrices:

[image: image25.wmf]()()()()

111

()()()()

1

()()()()

111

()()()()

1

mmmm

mmN

xx

mmmm

mNmNN

mmmm

mmN

yy

mmmm

mNmNN

ExxExx

C

ExxExx

EyyEyy

C

EyyEyy

éù

éùéù

ëûëû

êú

=

êú

êú

éùéù

êú

ëûëû

ëû

éù

éùéù

ëûëû

êú

=

êú

êú

éùéù

êú

ëûëû

ëû

L

MOM

L

L

MOM

L

 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.14)

and the covariance matrices can also be defined in vector format

[image: image26.wmf]()()

()

mmt

xxm

CExx

éù

=

ëû

 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.15)

[image: image27.wmf]()()

()

mmt

yym

CEyy

éù

=

ëû

.
 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.16)

By substituting
[image: image28.wmf]()()

mtm

yVx

=

 into
[image: image29.wmf]yy

C

, the following relation can be derived:

[image: image30.wmf]()()()()

()()

tmtmttmmt

yymm

t

xx

CEVxVxVExxV

VCV

éùéù

==

ëûëû

=

.
 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.17)

[image: image31.wmf]yy

C

 is a diagonal matrix
[image: image32.wmf]1

[,,]

yyN

Cdiag

ll

=

L

 which is a result of the diagonalization of
[image: image33.wmf]xx

C

 by matrix V. For KLT,
[image: image34.wmf]xx

C

 has N real numbered characteristic values which form a characteristic vector
[image: image35.wmf]1

[,,]

N

ll

L

. There are also N corresponding characteristic vector
[image: image36.wmf]1

[,,]

N

vv

L

and all characteristic vectors are orthogonal to each other. The condition
[image: image37.wmf]1

i

v

=

 must be satisfied for KLT.

KLT is actually an orthogonal transform that optimizes the transformation process by minimizing the average difference of square D. Consequently, minimum D is obtained by

[image: image38.wmf]1/

222

min

1

()2

N

N

R

yk

k

DV

es

-

=

æö

=P

ç÷

èø

 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.18)

where ε is a correction constant determined by the image itself and the
[image: image39.wmf]2

yk

s

 represents the discrete degree. Theoretically, the following condition is true for an arbitrary covariance matrix:

[image: image40.wmf]2

1

det

N

yyyk

k

C

s

=

£P

.
 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.19)

We note that Cyy is a diagonal matrix for KLT; therefore we can substitute (1.17)

 into the left-hand side of the above equation:

[image: image41.wmf]detdet()detdet()

det

tt

yyxxxx

xx

CVCVCVV

C

==

=

.
 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.20)

From the above equation, we can conclude that
[image: image42.wmf]det

xx

C

is independent of the transformation matrix V and
[image: image43.wmf]min

()

DV

can be re-written according to this relation:

[image: image44.wmf][

]

1/

1/

2222

min

()2det2det

N

N

RR

yyxx

DVCC

ee

--

éù

³=

ëû

.
 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.21)

As a result,
[image: image45.wmf]min

()

DV

 is independent of the transformation matrix V.

Suppose that we have a 3 by 2 transform block:

[image: image46.wmf]123

456

xxx

X

xxx

éù

=

êú

ëû

 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.22)

We can represent the ij element of Cxx as

[image: image47.wmf]hv

mijHV

Exx

rr

éù

=×

ëû

 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.23)

where h is the horizontal distance between xi and xj, and v is the vertical distance between xi and xj. In the case of (1.22)

, Em[x1x6] equals to ρH2ρV. Therefore, Cxx can be obtained as

[image: image48.wmf]123456

22

1

2

22

3

22

4

5

22

6

1

1

1

1

1

1

HHVVHVH

HHVHVVH

VHHVHVHV

xx

VVHVHHH

VHVVHHH

VHVHVHH

xxxxxx

x

x

x

C

x

x

x

rrrrrrr

rrrrrrr

rrrrrrrr

rrrrrrr

rrrrrrr

rrrrrrr

éù

êú

êú

êú

=

êú

êú

êú

êú

êú

ëû

.
 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.24)

This above equation can also be re-written as

[image: image49.wmf]22

22

22

22

11

111

11

11

111

11

HHHH

HHVHH

HHHH

xx

HHHH

VHHHH

HHHH

C

rrrr

rrrrr

rrrr

rrrr

rrrrr

rrrr

éù

éùéù

êú

êúêú

××

êú

êúêú

êú

êúêú

ëûëû

êú

=

êú

éùéù

êú

êúêú

××

êú

êúêú

êú

êúêú

ëûëû

ëû

.
 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.25)

Once again we can further simplify (1.25)

 by using Kronecker Product and represent Cxx as

[image: image50.wmf]2

2

1

1

1

1

1

V

H

HH

V

xxHH

V

HH

C

C

C

rr

r

rr

r

rr

éù

êú

éù

êú

éù

êú

=Ä

êú

êú

êú

êú

ëû

êú

ëû

êú

êú

ëû

14243

1442443

.
 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.26)

As shown in (1.26)

, the auto-covariance function can be separated into vertical and horizontal components CV and CH such that the computational complexity of the KLT is greatly reduced.

Since KLT is related to and dependent on the image data to be transformed, individual KLT must be computed for each image. This increases the computational complexity. The KLT matrix used by the encoder must be sent to the decoder. This also increases the overall decoding time. These problems can be solved by generalizing KLT [B1].

1.2.3 Discrete Cosine Transform (DCT)

Based on the concept of KLT, DCT, a generic transform that does not need to be computed for each image can be derived. Based on the derivation in (1.24)

, the auto-covariance matrix of any transform block of size N can be represented by

[image: image51.wmf]21

22

12

N

N

xxMODEL

NN

C

rrr

rrr

rrr

-

-

--

éù

êú

êú

=

êú

êú

ëû

L

L

MMOM

L

 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.27)

which is in a Toeplitz matrix form [B4]. This means that the KLT can be decided only by one particular parameter ρ, but the parameter ρ is still data dependent. Therefore, by setting the parameter ρ as 0.90 to 0.98 such that ρ→1, we can obtain the extreme condition of KLT. That is, as ρ approaches to 1, the KLT is no longer optimal, but fortunately the KLT at this extreme condition can still effectively remove the dependencies between pixels [B1]. After a detailed derivation described in [B1], we get

[image: image52.wmf]1(21)(1)

cos(1)

2

2(21)(1)

cos(1)

2

ij

ij

j

NN

v

ij

j

NN

p

p

ì

--

=

ï

ï

=

í

--

ï

¹

ï

î

 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.28)

where i = 1, 2,…, N and j = 1, 2,…, N. Note that N is the dimension of the selected block. This equation constitutes the basis set for the DCT and the kernel of the 2-D DCT is expressed as

[image: image53.wmf]11

11

00

2()()(21)(1)(21)(1)

(,)(,)coscos

22

2()()(21)(21)

(,)coscos

22

NN

ij

NN

ij

CuCviujv

Fuvfij

NNN

CuCviujv

fij

NNN

pp

pp

==

--

==

æöæö

=

ç÷ç÷

èøèø

++

æöæö

=

ç÷ç÷

èøèø

åå

åå

 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.29)

where
[image: image54.wmf]0

i

£

,
[image: image55.wmf]1

vN

£-

 and

[image: image56.wmf]()

1

1/2(0)

(0)

Cn

n

n

=

ì

=

ï

í

¹

ï

î

.
 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.30)

Based on the fact that the basis images for DCT are fixed and input independent, we can easily notice that the compuational complexity of DCT is much lower than that of the KLT. Although the implementation of the sinusoidal transforms including the DCT is not as simple as the nonsinusoidal transforms, the DCT does possess a comparable information packing ability. On the whole, the DCT provides a good compromise between information packing ability and computational complexity [A1].

It is noteworthy that the DCT is a much more appropriate transform coding compared to the DFT because the DCT produces less blocking artifacts. From the 1-D point of view, the implicit n-point periodicity of the DFT results in boundary discontinuities which contributes to the amount of high-frequency transform content. Consequently, truncation of these high-frequency coefficients during the quantization process leads to the Gibb’s phenomenon that causes incorrect values at the boundary points. On the contrary, the DCT which has the implicit 2n-point periodicity does not produce such discontinuities [A1].

1.3 The JPEG Still Picture Compression Standard

The DCT-based JPEG (Joint Photographic Experts Group) standard is an international image compression standard defined by the Consultative Committee of International Telegraph and Telephone (CCITT) and International Organization for Standardization (ISO) [A], [B], [B1], [B2]. The standard supports continuous-tone still image in both grayscale and color. JPEG has the following modes of operation [A],[B]: (1) a sequential DCT-based mode which encode each image component in one single scan from left to right and top to bottom; (2) a progressive encoding mode that compress and decompress the image in multiple scans such that the image is built up from coarse resolution to fine resolution as each successive scan is performed; (3) a lossless encoding mode which ensures perfect image reconstruction; and (4) a hierarchical mode which compress the image at multiple resolutions so that viewers do not have to decompress the image at its full resolution if they wish to view the image in lower resolutions. A brief introduction on the processing steps for both DCT-based and predictive coding based modes are given in the following subsections. Detailed implementations of the progressive and hierarchical modes can be found in [A] and [B].

1.3.1 Processing Steps for DCT-Based JPEG Coding Modes

Fig. 1.2 indicates that the compression in the DCT-based modes of operation is performed in three sequential steps: DCT computation, quantization, and variable-length code assignment [A1], [B]. The input image is first divided into a group of 8×8 blocks and the pixel values are shifted from unsigned integers to signed integers by subtracting a quantity of 2n-1. The 2-D DCT of each block is then computed. Each 8×8 block is processed left to right and top to bottom. The FDCT of an 8×8 block of pixels f(x, y) for (x, y = 0, 1, . . ., 7) is defined by:

[image: image57.wmf]77

00

1(21)(21)

(,)()()(,)coscos

41616

xy

xuyv

FuvCuCvfxy

pp

==

éù

++

=

êú

ëû

åå

 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.31)

where

[image: image58.wmf]1/2 for 0

()

 1 otherwise

k

Ck

=

=

ì

ï

í

ï

î

.
 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.32)

Each of the obtained DCT coefficient values can be regarded as the unique spatial frequency. The coefficient located at F(0, 0) with zero frequency in both dimensions is called the DC coefficient and the rest 63 coefficients are called the AC coefficients [B]. Note that the AC coefficients are independent of the average pixel value of the transform block and the DC coefficient is 1/8 of the sum of the pixel values in a particular transform block [B1]. Most of the spatial frequencies obtained from a typical 8×8 sample block of a typical input image have either zero or near-zero amplitude and they do not need to be encoded [A], [B].

 SHAPE * MERGEFORMAT

Fig. 1.2
DCT-based encoder process [B].

The transformed coefficients output from the FDCT are then uniformly quantized by a quantization process which involves a fixed 64-element quantization table [B1], [B]. The main goal of this process is to achieve greater compression rate by discarding information that is not visually significant [B]. There are actually two quantization tables specified by the JPEG standard for reference: the luminance quantization matrix and the chrominance quantization matrix [B2]. They are defined as the following:

[image: image60.wmf]1611101624405161

1212141926586055

1413162440576956

1417222951878062

(,)

182237566810910377

243555648110411377

49647887103121120101

7292959811210010399

l

Quv

éù

êú

êú

êú

êú

êú

=

êú

êú

êú

êú

êú

êú

ëû

 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.33)

[image: image61.wmf]1718244799999999

1821266699999999

2426569999999999

4766999999999999

(,)

9999999999999999

9999999999999999

9999999999999999

9999999999999999

c

Quv

éù

êú

êú

êú

êú

êú

=

êú

êú

êú

êú

êú

êú

ëû

 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.34)

The first matrix of (1.33)

 is for quantizing the transformed coefficients of the luminance component of an image and the second one is for quantizing the transformed coefficients of the chrominance components of the image. In the quantization process is defined by the following:

[image: image62.wmf](,)

(,)

(,)

Q

Fuv

FuvIntegerRound

Quv

æö

=

ç÷

èø

 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.35)

Each DCT coefficient is divided by its corresponding quantizer step size and the result of the division is rounded to the nearest integer.

After the quantization of the DCT coefficients, the DC coefficient and the 63 AC coefficients are treated differently. Since the DC coefficients usually contain a large fraction of the total energy in an image, the quantized DC coefficient is encoded by differential encoding which encode the DC coefficient as the difference from the same coefficient of the previous quantized block [B]. Differential DC encoding is performed in a defined order as shown in Fig. 1.3. The AC coefficients are ordered into the “zig-zag” order [B] such that low-frequency AC coefficients are placed before high-frequency AC coefficients. This ordering makes upcoming entropy coding process much easier because by keeping higher frequency coefficients (which are more likely to be zero after quantization) together, we can form long runs of zeros [B2]. Consequently, the nonzero AC coefficients are coded using a variable-length code. The coded coefficients can be expressed as the number of preceding zeros and the coefficient’s value that interrupts the zero run. For example, suppose that we have the following coefficient sequence after the zig-zag process:

[image: image63.wmf]{

3

6

2,0,0,0,6,4,0,0,0,0,0,0,11,11,0,,0

allzeros

L

14243123

 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.36)

The above sequence can be expressed as

[image: image64.wmf](0:2),(3:6),(0:4),(6:1),(0:1),(0:1),(0:1

),

EOB

.
 MACROBUTTON MTPlaceRef * MERGEFORMAT (1.37)

 SHAPE * MERGEFORMAT

Fig. 1.3
Differential DC encoding [B].

[image: image66.wmf]
Fig. 1.4
Zig-zag ordering of AC coefficients [B].

In the final stage of the compression algorithm, additional compression is achieved by entropy encoding. The quantized DCT coefficients are compressed more compactly according to their statistical characteristics. Although both Huffman coding and arithmetic coding are specified for all modes of operation, the baseline sequential codec uses Huffman coding [B]. Predefined Huffman code tables are provided for both luminance and chrominance processing, but adaptive tables can also be constructed based on the characteristics of the input image being compressed [A1], [B].

In DCT progressive-mode, the codec is slightly different. An image buffer is added before entering the entropy coding step, so that an image can be stored and then parceled out in multiple scans which can result in improving quality. For the hierarchical mode of operation, the steps shown are used as building blocks in a larger framework [B].

1.3.2 Predictive Lossless JPEG

Lossless JPEG [A], [B] is actually a mode of operation of JPEG. This mode exists due to the fact that the Discrete Cosine Transform (DCT) based form cannot guarantee that encoder input would exactly match decoder output since the Inverse DCT is not rigorously defined. Unlike the lossy mode which is based on the DCT, the lossless coding process employs a simple predictive coding model called differential pulse code modulation (DPCM) [A]. This is a model in which predictions of the sample values are estimated from the neighboring samples that are already coded in the image. Most predictors take the average of the samples immediately above and to the left of the target sample. DPCM encodes the differences between the predicted samples instead of encoding each sample independently. The differences from one sample to the next are usually close to zero. A typical DPCM encoder is displayed in Fig. 1.5. The block in the figure acts as a storage of the current sample which will later be a previous sample.

 SHAPE * MERGEFORMAT

Fig. 1.5
DPCM encoder model [A].
The main steps of the lossless operation mode are depicted in Fig. 1.6. In the process, the predictor combines up to three neighboring samples at A, B, and C shown in Fig. 1.7 in order to produce a prediction of the sample value at the position labeled by X. The three neighboring samples must be already predicted samples. Any one of the predictors shown in Table 1.2 can be used to estimate the sample located at X [B], [C].

Once all the samples are predicted, the differences between the samples can be obtained and entropy-coded in a lossless fashion using Huffman or arithmetic coding.

 SHAPE * MERGEFORMAT

Fig. 1.6
Simplified block diagrams for lossless mode [C].

[image: image70.bmp] [image: image69.png]

Fig. 1.7
Three neighboring samples around the sample to be predicted [B].

Table 1.2
Predictors for lossless coding [C].

	Selection-value
	Prediction

	0
	No prediction

	1
	A

	2
	B

	3
	C

	4
	A + B – C

	5
	A + (B – C)/2

	6
	B + (A – C)/2

	7
	(A + B)/2

Typically, compressions using lossless operation mode can achieve around 2:1 compression ratio for color images [B]. This mode is quite popular in medical imaging field, but generally it is not very widely used.

Input Image

Transform Coding

Quantization

Symbol�Encoding

Bit stream

Encoding Process

Bit stream

Transform Decoding

Symbol�Decoding

Recovered Image

Decoding Process

(a)

(b)

Source

Image Data

FDCT

Table

Specifications

Compressed

Image Data

DCT-Based Encoder

Quantizer

Entropy

Encoder

Table

Specifications

8×8 blocks

blocki-1

blocki

DCi-1

DCi

Difference = DCi - DCi-1

……….

……….

Previous

sample

Difference

Sample

-

+

Source

Image Data

Predictor

Entropy

Encoder

Table

Specifications

Compressed

Image Data

Lossless Encoder

C

A

B

X

D

[image: image71.bmp]_1301232179.unknown

_1301232195.unknown

_1301232203.unknown

_1301232212.unknown

_1301232216.unknown

_1301232218.unknown

_1301232220.unknown

_1301232222.unknown

_1301232223.unknown

_1301232221.unknown

_1301232219.unknown

_1301232217.unknown

_1301232214.unknown

_1301232215.unknown

_1301232213.unknown

_1301232208.unknown

_1301232210.unknown

_1301232211.unknown

_1301232209.unknown

_1301232205.unknown

_1301232206.unknown

_1301232204.unknown

_1301232199.unknown

_1301232201.unknown

_1301232202.unknown

_1301232200.unknown

_1301232197.unknown

_1301232198.unknown

_1301232196.unknown

_1301232187.unknown

_1301232191.unknown

_1301232193.unknown

_1301232194.unknown

_1301232192.unknown

_1301232189.unknown

_1301232190.unknown

_1301232188.unknown

_1301232183.unknown

_1301232185.unknown

_1301232186.unknown

_1301232184.unknown

_1301232181.unknown

_1301232182.unknown

_1301232180.unknown

_1301232171.unknown

_1301232175.unknown

_1301232177.unknown

_1301232178.unknown

_1301232176.unknown

_1301232173.unknown

_1301232174.unknown

_1301232172.unknown

_1301232166.unknown

_1301232168.unknown

_1301232170.unknown

_1301232167.unknown

_1301232164.unknown

_1301232165.unknown

_1301232163.unknown

